fix backward pass for add_at and change arguments to have same order as in view
This commit is contained in:
parent
226521a4f1
commit
48bcc4dcf9
3 changed files with 169 additions and 31 deletions
60
ggml.c
60
ggml.c
|
@ -5058,10 +5058,10 @@ struct ggml_tensor * ggml_add_at_impl(
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t offset,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t nb3,
|
||||
size_t offset,
|
||||
bool inplace) {
|
||||
GGML_ASSERT(ggml_nelements(b) <= ggml_nelements(a));
|
||||
GGML_ASSERT(ggml_is_contiguous(a));
|
||||
|
@ -5076,10 +5076,10 @@ struct ggml_tensor * ggml_add_at_impl(
|
|||
|
||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||
struct ggml_tensor * c = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 5);
|
||||
((int32_t *) c->data)[0] = offset;
|
||||
((int32_t *) c->data)[1] = nb1;
|
||||
((int32_t *) c->data)[2] = nb2;
|
||||
((int32_t *) c->data)[3] = nb3;
|
||||
((int32_t *) c->data)[0] = nb1;
|
||||
((int32_t *) c->data)[1] = nb2;
|
||||
((int32_t *) c->data)[2] = nb3;
|
||||
((int32_t *) c->data)[3] = offset;
|
||||
((int32_t *) c->data)[4] = inplace ? 1 : 0;
|
||||
|
||||
result->op = GGML_OP_ADD_AT;
|
||||
|
@ -5095,22 +5095,22 @@ struct ggml_tensor * ggml_add_at(
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t offset,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t nb3) {
|
||||
return ggml_add_at_impl(ctx, a, b, offset, nb1, nb2, nb3, false);
|
||||
size_t nb3,
|
||||
size_t offset) {
|
||||
return ggml_add_at_impl(ctx, a, b, nb1, nb2, nb3, offset, false);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ggml_add_at_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t offset,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t nb3) {
|
||||
return ggml_add_at_impl(ctx, a, b, offset, nb1, nb2, nb3, true);
|
||||
size_t nb3,
|
||||
size_t offset) {
|
||||
return ggml_add_at_impl(ctx, a, b, nb1, nb2, nb3, offset, true);
|
||||
}
|
||||
|
||||
// ggml_sub
|
||||
|
@ -8135,10 +8135,10 @@ static void ggml_compute_forward_add_at_f32(
|
|||
|
||||
// view src0 and dst with these strides and data offset inbytes during add_at
|
||||
// nb0 is implicitely element_size because src0 and dst are contiguous
|
||||
size_t offset = ((int32_t *) opt0->data)[0];
|
||||
size_t nb1 = ((int32_t *) opt0->data)[1];
|
||||
size_t nb2 = ((int32_t *) opt0->data)[2];
|
||||
size_t nb3 = ((int32_t *) opt0->data)[3];
|
||||
size_t nb1 = ((int32_t *) opt0->data)[0];
|
||||
size_t nb2 = ((int32_t *) opt0->data)[1];
|
||||
size_t nb3 = ((int32_t *) opt0->data)[2];
|
||||
size_t offset = ((int32_t *) opt0->data)[3];
|
||||
bool inplace = (bool) ((int32_t *) opt0->data)[4];
|
||||
|
||||
if (!inplace && (params->type == GGML_TASK_INIT)) {
|
||||
|
@ -13187,19 +13187,27 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
src0->grad = ggml_add_impl(ctx, src0->grad, tensor->grad, inplace);
|
||||
}
|
||||
if (src1->grad) {
|
||||
size_t offset;
|
||||
memcpy(&offset, tensor->padding, sizeof(size_t));
|
||||
GGML_ASSERT(ggml_nelements(tensor->opt[0]) == 5);
|
||||
GGML_ASSERT(tensor->opt[0]->type == GGML_TYPE_I32);
|
||||
const size_t nb1 = (( int32_t * ) tensor->opt[0]->data)[0];
|
||||
const size_t nb2 = (( int32_t * ) tensor->opt[0]->data)[1];
|
||||
const size_t nb3 = (( int32_t * ) tensor->opt[0]->data)[2];
|
||||
const size_t offset = (( int32_t * ) tensor->opt[0]->data)[3];
|
||||
|
||||
struct ggml_tensor * tensor_grad_view = ggml_view_4d(ctx,
|
||||
tensor->grad,
|
||||
src1->grad->ne[0],
|
||||
src1->grad->ne[1],
|
||||
src1->grad->ne[2],
|
||||
src1->grad->ne[3],
|
||||
nb1, nb2, nb3, offset);
|
||||
|
||||
src1->grad =
|
||||
ggml_add_impl(ctx,
|
||||
src1->grad,
|
||||
ggml_view_3d(ctx,
|
||||
tensor->grad,
|
||||
tensor->ne[0],
|
||||
tensor->ne[1],
|
||||
tensor->ne[2],
|
||||
tensor->nb[1],
|
||||
tensor->nb[2],
|
||||
offset),
|
||||
ggml_reshape(ctx,
|
||||
ggml_cont(ctx, tensor_grad_view),
|
||||
src1->grad),
|
||||
inplace);
|
||||
}
|
||||
} break;
|
||||
|
@ -13572,7 +13580,7 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
nb3 = (nb3 / n0) * ng;
|
||||
}
|
||||
|
||||
src0->grad = ggml_add_at_impl(ctx, src0->grad, tensor->grad, offset, nb1, nb2, nb3, inplace);
|
||||
src0->grad = ggml_add_at_impl(ctx, src0->grad, tensor->grad, nb1, nb2, nb3, offset, inplace);
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_PERMUTE:
|
||||
|
|
8
ggml.h
8
ggml.h
|
@ -499,19 +499,19 @@ extern "C" {
|
|||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t offset,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t nb3);
|
||||
size_t nb3,
|
||||
size_t offset);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_add_at_inplace(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b,
|
||||
size_t offset,
|
||||
size_t nb1,
|
||||
size_t nb2,
|
||||
size_t nb3);
|
||||
size_t nb3,
|
||||
size_t offset);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_sub(
|
||||
struct ggml_context * ctx,
|
||||
|
|
|
@ -45,7 +45,8 @@ float frand() {
|
|||
}
|
||||
|
||||
int irand(int n) {
|
||||
return rand()%n;
|
||||
if (n == 0) return 0;
|
||||
else return rand()%n;
|
||||
}
|
||||
|
||||
void get_random_dims(int64_t * dims, int ndims) {
|
||||
|
@ -696,6 +697,135 @@ int main(int argc, const char ** argv) {
|
|||
}
|
||||
}
|
||||
|
||||
// add_at 1d
|
||||
{
|
||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||
|
||||
const int nargs = 2;
|
||||
for (int ndims = 1; ndims <= 4; ++ndims) {
|
||||
|
||||
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
|
||||
get_random_dims(ne2, 1);
|
||||
while ((ne2[0] > ne[0]) || (ne2[0] > ggml_nelements(x[0]))) {
|
||||
get_random_dims(ne2, 1);
|
||||
}
|
||||
|
||||
x[1] = get_random_tensor(ctx0, 1, ne2, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
|
||||
const int max_offset = MAX(0, ggml_nelements(x[0]) - ggml_nelements(x[1]));
|
||||
const int offset = irand(max_offset) * ggml_element_size(x[0]);
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add_at(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
|
||||
|
||||
check_gradient("add_at 1d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
}
|
||||
}
|
||||
|
||||
// add_at 2d
|
||||
{
|
||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||
|
||||
const int nargs = 2;
|
||||
for (int ndims = 2; ndims <= 4; ++ndims) {
|
||||
|
||||
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
|
||||
get_random_dims(ne2, 2);
|
||||
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[0]*ne2[1] > ggml_nelements(x[0]))) {
|
||||
get_random_dims(ne2, 2);
|
||||
}
|
||||
|
||||
x[1] = get_random_tensor(ctx0, 2, ne2, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
|
||||
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
|
||||
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
|
||||
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
|
||||
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
|
||||
const int offset = offsets[0] + offsets[1];
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add_at(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
|
||||
|
||||
check_gradient("add_at 2d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
}
|
||||
}
|
||||
|
||||
// add_at 3d
|
||||
{
|
||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||
|
||||
const int nargs = 2;
|
||||
for (int ndims = 3; ndims <= 4; ++ndims) {
|
||||
|
||||
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
|
||||
get_random_dims(ne2, 3);
|
||||
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[2] > ne[2]) || (ne2[0]*ne2[1]*ne2[2] > ggml_nelements(x[0]))) {
|
||||
get_random_dims(ne2, 3);
|
||||
}
|
||||
|
||||
x[1] = get_random_tensor(ctx0, 3, ne2, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
|
||||
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
|
||||
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
|
||||
max_offsets[2] = MAX(0, x[0]->ne[2] - x[1]->ne[2]);
|
||||
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
|
||||
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
|
||||
offsets[2] = irand(max_offsets[2]) * x[0]->nb[2];
|
||||
const int offset = offsets[0] + offsets[1] + offsets[2];
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add_at(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
|
||||
|
||||
check_gradient("add_at 3d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
}
|
||||
}
|
||||
|
||||
// add_at 4d
|
||||
{
|
||||
int64_t ne2[4] = { 1, 1, 1, 1 };
|
||||
int64_t max_offsets[4] = { 0, 0, 0, 0 };
|
||||
int64_t offsets[4] = { 0, 0, 0, 0 };
|
||||
|
||||
const int nargs = 2;
|
||||
for (int ndims = 4; ndims <= 4; ++ndims) {
|
||||
|
||||
x[0] = get_random_tensor(ctx0, ndims, ne, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[0]);
|
||||
|
||||
get_random_dims(ne2, 4);
|
||||
while ((ne2[0] > ne[0]) || (ne2[1] > ne[1]) || (ne2[2] > ne[2]) || (ne2[3] > ne[3]) || (ne2[0]*ne2[1]*ne2[2]*ne2[3] > ggml_nelements(x[0]))) {
|
||||
get_random_dims(ne2, 4);
|
||||
}
|
||||
|
||||
x[1] = get_random_tensor(ctx0, 4, ne2, -1.0f, 1.0f);
|
||||
ggml_set_param(ctx0, x[1]);
|
||||
|
||||
max_offsets[0] = MAX(0, x[0]->ne[0] - x[1]->ne[0]);
|
||||
max_offsets[1] = MAX(0, x[0]->ne[1] - x[1]->ne[1]);
|
||||
max_offsets[2] = MAX(0, x[0]->ne[2] - x[1]->ne[2]);
|
||||
max_offsets[3] = MAX(0, x[0]->ne[3] - x[1]->ne[3]);
|
||||
offsets[0] = irand(max_offsets[0]) * x[0]->nb[0];
|
||||
offsets[1] = irand(max_offsets[1]) * x[0]->nb[1];
|
||||
offsets[2] = irand(max_offsets[2]) * x[0]->nb[2];
|
||||
offsets[3] = irand(max_offsets[3]) * x[0]->nb[3];
|
||||
const int offset = offsets[0] + offsets[1] + offsets[2] + offsets[3];
|
||||
|
||||
struct ggml_tensor * f = ggml_sum(ctx0, ggml_add_at(ctx0, x[0], x[1], x[0]->nb[1], x[0]->nb[2], x[0]->nb[3], offset));
|
||||
|
||||
check_gradient("add_at 4d", ctx0, x, f, ndims, nargs, 1e-3f, 1e-3f, INFINITY);
|
||||
}
|
||||
}
|
||||
|
||||
// view_1d
|
||||
{
|
||||
const int nargs = 1;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue