From 4a5d50eb6125e95395d99b7477c7cf82639b5b8c Mon Sep 17 00:00:00 2001 From: slaren Date: Sun, 31 Mar 2024 01:24:05 +0100 Subject: [PATCH] update convert-hf-to-gguf.py --- convert-hf-to-gguf.py | 49 ++++++++++++++++++++++++++++++++++++++++++- 1 file changed, 48 insertions(+), 1 deletion(-) diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 18337839a..0e92b4fe1 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -1216,6 +1216,8 @@ class LlamaModel(Model): tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count) n_head = self.hparams.get("num_attention_heads") n_kv_head = self.hparams.get("num_key_value_heads") + n_experts = self.hparams.get("num_local_experts") + experts = dict() for name, data_torch in self.get_tensors(): # we don't need these if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")): @@ -1236,6 +1238,48 @@ class LlamaModel(Model): data = data.squeeze() + # process the experts separately + if name.find("block_sparse_moe.experts") != -1: + experts[name] = data + if len(experts) >= n_experts: + # merge the experts into a single 3d tensor + for bid in range(block_count): + for wid in range(1, 4): + full = True + for xid in range(n_experts): + ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight" + if ename not in experts: + full = False + break + if not full: + continue + + datas = [] + for xid in range(n_experts): + ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.w{wid}.weight" + datas.append(experts[ename]) + del experts[ename] + + data = np.stack(datas, axis=0) + + if self.ftype == 0 and data_dtype == np.float16: + data = data.astype(np.float32) + + if self.ftype == 1 and data_dtype == np.float32: + data = data.astype(np.float16) + + merged_name = f"layers.{bid}.feed_forward.experts.w{wid}" + + new_name = tensor_map.get_name(merged_name, try_suffixes=(".weight", ".bias")) + if new_name is None: + print(f"Can not map tensor {name!r}") + sys.exit() + + print(f"{new_name}, n_dims = {len(data.shape)}, shape = {data.shape} --> {data.dtype}") + + self.gguf_writer.add_tensor(new_name, data) + continue + # map tensor names new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: @@ -1249,7 +1293,7 @@ class LlamaModel(Model): if self.ftype == 0 and data_dtype == np.float16: data = data.astype(np.float32) - # TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32 + # 1d tensors need to be converted to float32 if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1: data = data.astype(np.float32) @@ -1261,6 +1305,9 @@ class LlamaModel(Model): self.gguf_writer.add_tensor(new_name, data) + if len(experts) > 0: + raise ValueError(f"Unprocessed experts: {experts.keys()}") + @Model.register("GrokForCausalLM") class GrokModel(Model):