wip minicpmv
This commit is contained in:
parent
d0068ef0ed
commit
4a7ab89d75
9 changed files with 491 additions and 77 deletions
|
@ -17,7 +17,7 @@ from hashlib import sha256
|
|||
from typing import TYPE_CHECKING, Any, Callable, ContextManager, Iterable, Iterator, Literal, Sequence, TypeVar, cast
|
||||
from itertools import chain
|
||||
|
||||
from transformers import AutoConfig, AutoImageProcessor
|
||||
from transformers import AutoConfig
|
||||
import math
|
||||
import numpy as np
|
||||
import torch
|
||||
|
@ -134,6 +134,16 @@ class Model:
|
|||
return None
|
||||
raise KeyError(f"could not find any of: {keys}")
|
||||
|
||||
def find_vparams(self, keys: Iterable[str], optional: bool = False) -> Any:
|
||||
if self.vparams is None:
|
||||
raise ValueError("vision model parameters not set")
|
||||
key = next((k for k in keys if k in self.vparams), None)
|
||||
if key is not None:
|
||||
return self.vparams[key]
|
||||
if optional:
|
||||
return None
|
||||
raise KeyError(f"(vision) could not find any of: {keys}")
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_gpt2()
|
||||
|
||||
|
@ -269,6 +279,20 @@ class Model:
|
|||
self.gguf_writer.add_key_length(head_dim)
|
||||
self.gguf_writer.add_value_length(head_dim)
|
||||
|
||||
# Vision model parameters
|
||||
if self.vparams is not None and self.preprocessor_config is not None and self.vision_arch is not None:
|
||||
self.gguf_writer.add_vision_type("clip-vit")
|
||||
self.gguf_writer.add_vision_image_size(self.vparams["image_size"])
|
||||
self.gguf_writer.add_vision_patch_size(self.vparams["patch_size"])
|
||||
self.gguf_writer.add_vision_clip_architecture(gguf.MODEL_ARCH_NAMES[self.vision_arch])
|
||||
self.gguf_writer.add_vision_clip_block_count(self.vparams["num_hidden_layers"])
|
||||
self.gguf_writer.add_vision_clip_embedding_length(self.vparams["hidden_size"])
|
||||
self.gguf_writer.add_vision_clip_feed_forward_length(self.vparams["intermediate_size"])
|
||||
self.gguf_writer.add_vision_clip_head_count(self.vparams["num_attention_heads"])
|
||||
self.gguf_writer.add_vision_clip_image_mean(self.preprocessor_config["image_mean"])
|
||||
self.gguf_writer.add_vision_clip_image_std(self.preprocessor_config["image_std"])
|
||||
self.gguf_writer.add_vision_clip_select_layer(self.find_hparam(["vision_feature_layer", "mm_vision_select_layer"]))
|
||||
|
||||
self.gguf_writer.add_file_type(self.ftype)
|
||||
logger.info(f"gguf: file type = {self.ftype}")
|
||||
|
||||
|
@ -488,17 +512,14 @@ class Model:
|
|||
return hparams
|
||||
|
||||
@staticmethod
|
||||
def load_preprocessor_config(dir_or_model_id: Path | str):
|
||||
def load_preprocessor_config(dir_model: Path):
|
||||
# TODO: this varies vastly among models, need to handle more cases in the future
|
||||
if isinstance(dir_or_model_id, Path):
|
||||
file_path = dir_or_model_id / "preprocessor_config.json"
|
||||
if os.path.exists(file_path):
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
else:
|
||||
raise Exception(f"Preprocessor config not found at {file_path}")
|
||||
file_path = dir_model / "preprocessor_config.json"
|
||||
if os.path.exists(file_path):
|
||||
with open(file_path, "r", encoding="utf-8") as f:
|
||||
return json.load(f)
|
||||
else:
|
||||
return AutoImageProcessor.from_pretrained(dir_or_model_id).to_dict()
|
||||
raise Exception(f"Preprocessor config not found at {file_path}")
|
||||
|
||||
@classmethod
|
||||
def register(cls, *names: str) -> Callable[[AnyModel], AnyModel]:
|
||||
|
@ -551,7 +572,9 @@ class Model:
|
|||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model)
|
||||
# DEBIAN_FRONTEND=noninteractive means that the script is running in a non-interactive environment (i.e. CI), so we cannot answer Y/N when it asks for user input
|
||||
is_cli_non_interactive = os.environ.get("DEBIAN_FRONTEND", "") == "noninteractive"
|
||||
tokenizer = AutoTokenizer.from_pretrained(self.dir_model, trust_remote_code=is_cli_non_interactive)
|
||||
vocab_size = self.hparams.get("vocab_size", len(tokenizer.vocab))
|
||||
assert max(tokenizer.vocab.values()) < vocab_size
|
||||
|
||||
|
@ -1607,9 +1630,10 @@ class LlamaModel(Model):
|
|||
|
||||
# only tested with https://huggingface.co/mtgv/MobileVLM_V2-1.7B
|
||||
if "mm_vision_tower" in self.hparams and model_type == "mobilevlm":
|
||||
from transformers import AutoImageProcessor
|
||||
vision_model_id = self.hparams["mm_vision_tower"]
|
||||
self.vparams = AutoConfig.from_pretrained(vision_model_id).to_dict()["vision_config"]
|
||||
self.preprocessor_config = self.load_preprocessor_config(vision_model_id)
|
||||
self.preprocessor_config = AutoImageProcessor.from_pretrained(vision_model_id).to_dict()
|
||||
self.vision_arch = gguf.MODEL_ARCH.VISION_MOBILEVLM
|
||||
|
||||
if self.vparams is not None and self.vision_arch is not None:
|
||||
|
@ -1648,34 +1672,6 @@ class LlamaModel(Model):
|
|||
if self.hparams.get("vocab_size", 32000) == 49152:
|
||||
self.gguf_writer.add_add_bos_token(False)
|
||||
|
||||
# For vision model
|
||||
if self.vparams is not None and self.preprocessor_config is not None and self.vision_arch is not None:
|
||||
self.gguf_writer.add_vision_type("clip-vit")
|
||||
self.gguf_writer.add_vision_image_size(self.vparams["image_size"])
|
||||
self.gguf_writer.add_vision_patch_size(self.vparams["patch_size"])
|
||||
self.gguf_writer.add_vision_clip_architecture(gguf.MODEL_ARCH_NAMES[self.vision_arch])
|
||||
self.gguf_writer.add_vision_clip_block_count(self.vparams["num_hidden_layers"])
|
||||
self.gguf_writer.add_vision_clip_embedding_length(self.vparams["hidden_size"])
|
||||
self.gguf_writer.add_vision_clip_feed_forward_length(self.vparams["intermediate_size"])
|
||||
self.gguf_writer.add_vision_clip_head_count(self.vparams["num_attention_heads"])
|
||||
self.gguf_writer.add_vision_clip_image_mean(self.preprocessor_config["image_mean"])
|
||||
self.gguf_writer.add_vision_clip_image_std(self.preprocessor_config["image_std"])
|
||||
self.gguf_writer.add_vision_clip_patch_merge_type(gguf.CLIPPatchMergeType.FLAT)
|
||||
max_pos_embd = (self.vparams["image_size"] // self.vparams["patch_size"])**2 + 1
|
||||
self.gguf_writer.add_vision_clip_max_position_embeddings(max_pos_embd)
|
||||
if "vision_feature_layer" in self.hparams:
|
||||
self.gguf_writer.add_vision_clip_select_layer(self.hparams["vision_feature_layer"])
|
||||
elif "mm_vision_select_layer" in self.hparams:
|
||||
self.gguf_writer.add_vision_clip_select_layer(self.hparams["mm_vision_select_layer"])
|
||||
else:
|
||||
raise ValueError("gguf: can not find vision_feature_layer parameter.")
|
||||
# TODO: should not hardcode these, but they are currently missing from config.json
|
||||
if self.vision_arch == gguf.MODEL_ARCH.VISION_LLAVA:
|
||||
self.gguf_writer.add_vision_clip_projector_type(gguf.constants.CLIPProjectorType.MLP)
|
||||
if self.vision_arch == gguf.MODEL_ARCH.VISION_MOBILEVLM:
|
||||
self.gguf_writer.add_vision_clip_projector_type(gguf.constants.CLIPProjectorType.LDPV2)
|
||||
self.gguf_writer.add_vision_clip_layer_norm_epsilon(1e-05)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
hparams = self.hparams
|
||||
|
@ -1692,6 +1688,18 @@ class LlamaModel(Model):
|
|||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LINEAR)
|
||||
self.gguf_writer.add_rope_scaling_factor(self.hparams["rope_scaling"]["factor"])
|
||||
|
||||
# For vision model
|
||||
if self.vparams is not None:
|
||||
self.gguf_writer.add_vision_clip_patch_merge_type(gguf.CLIPPatchMergeType.FLAT)
|
||||
# TODO: should not hardcode these, but they are currently missing from config.json
|
||||
if self.vision_arch == gguf.MODEL_ARCH.VISION_LLAVA:
|
||||
self.gguf_writer.add_vision_clip_projector_type(gguf.constants.CLIPProjectorType.MLP)
|
||||
if self.vision_arch == gguf.MODEL_ARCH.VISION_MOBILEVLM:
|
||||
self.gguf_writer.add_vision_clip_projector_type(gguf.constants.CLIPProjectorType.LDPV2)
|
||||
self.gguf_writer.add_vision_clip_layer_norm_epsilon(1e-05)
|
||||
max_pos_embd = (self.vparams["image_size"] // self.vparams["patch_size"])**2 + 1
|
||||
self.gguf_writer.add_vision_clip_max_position_embeddings(max_pos_embd)
|
||||
|
||||
@staticmethod
|
||||
def permute(weights: Tensor, n_head: int, n_head_kv: int | None):
|
||||
if n_head_kv is not None and n_head != n_head_kv:
|
||||
|
@ -2132,16 +2140,50 @@ class DbrxModel(Model):
|
|||
@Model.register("MiniCPMForCausalLM", "MiniCPMV")
|
||||
class MiniCPMModel(Model):
|
||||
model_arch = gguf.MODEL_ARCH.MINICPM
|
||||
proj_type: gguf.constants.CLIPProjectorType | None
|
||||
|
||||
def __init__(self, *args, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
|
||||
model_type = self.hparams.get("model_type", None)
|
||||
|
||||
# only tested with https://huggingface.co/openbmb/MiniCPM-V-2_6
|
||||
if "vision_config" in self.hparams and model_type == "minicpmv":
|
||||
self.vparams = self.hparams["vision_config"]
|
||||
self.preprocessor_config = self.load_preprocessor_config(self.dir_model)
|
||||
self.vision_arch = gguf.MODEL_ARCH.VISION_MINICPMV
|
||||
version = str(self.hparams.get("version", "unknown"))
|
||||
if version == "2.5":
|
||||
self.proj_type = gguf.constants.CLIPProjectorType.MINICPMV_2_5
|
||||
elif version == "2.6":
|
||||
self.proj_type = gguf.constants.CLIPProjectorType.MINICPMV_2_6
|
||||
else:
|
||||
raise ValueError(f"Unsupported MiniCPM-V version: {version}")
|
||||
|
||||
if self.vparams is not None and self.vision_arch is not None and self.preprocessor_config is not None:
|
||||
self.preprocessor_config["image_mean"] = [0.5, 0.5, 0.5]
|
||||
self.preprocessor_config["image_std"] = [0.5, 0.5, 0.5]
|
||||
self.hparams["vision_feature_layer"] = 0
|
||||
self.v_tensor_map = gguf.get_tensor_name_map(self.vision_arch, self.vparams["num_hidden_layers"])
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
super().set_gguf_parameters()
|
||||
embedding_scale = float(self.hparams["scale_emb"])
|
||||
# scale_emb
|
||||
embedding_scale = float(self.hparams.get("scale_emb", 1.0))
|
||||
self.gguf_writer.add_embedding_scale(embedding_scale)
|
||||
logger.info(f"gguf: (minicpm) embedding_scale = {embedding_scale}")
|
||||
residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
|
||||
# scale_depth
|
||||
if "scale_depth" in self.hparams:
|
||||
residual_scale = self.hparams["scale_depth"] / self.hparams["num_hidden_layers"] ** 0.5
|
||||
else:
|
||||
residual_scale = 1.0
|
||||
self.gguf_writer.add_residual_scale(residual_scale)
|
||||
logger.info(f"gguf: (minicpm) residual_scale = {residual_scale}")
|
||||
logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
|
||||
# logit_scale
|
||||
if "dim_model_base" in self.hparams:
|
||||
logit_scale = self.hparams["hidden_size"] / self.hparams["dim_model_base"]
|
||||
else:
|
||||
logit_scale = 1.0
|
||||
self.gguf_writer.add_logit_scale(logit_scale)
|
||||
logger.info(f"gguf: (minicpm) logit_scale = {logit_scale}")
|
||||
if self.hparams.get("rope_scaling") is not None:
|
||||
|
@ -2149,6 +2191,15 @@ class MiniCPMModel(Model):
|
|||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.LONGROPE)
|
||||
logger.info(f"gguf: (minicpm) rope_scaling_type = {gguf.RopeScalingType.LONGROPE}")
|
||||
|
||||
# For vision model
|
||||
if self.vparams is not None and self.proj_type is not None:
|
||||
self.gguf_writer.add_vision_clip_patch_merge_type(gguf.CLIPPatchMergeType.FLAT)
|
||||
self.gguf_writer.add_vision_clip_projector_type(self.proj_type)
|
||||
self.gguf_writer.add_vision_clip_layer_norm_epsilon(1e-06)
|
||||
max_pos_embd = (self.vparams["image_size"] // self.vparams["patch_size"])**2
|
||||
self.gguf_writer.add_vision_clip_max_position_embeddings(max_pos_embd)
|
||||
|
||||
|
||||
def generate_extra_tensors(self) -> Iterable[tuple[str, Tensor]]:
|
||||
rope_dims = self.hparams["hidden_size"] // self.hparams["num_attention_heads"]
|
||||
|
||||
|
@ -2167,18 +2218,33 @@ class MiniCPMModel(Model):
|
|||
yield (self.format_tensor_name(gguf.MODEL_TENSOR.ROPE_FACTORS_SHORT), torch.tensor(short_factors, dtype=torch.float32))
|
||||
|
||||
def set_vocab(self):
|
||||
self._set_vocab_sentencepiece()
|
||||
if self.vision_arch == gguf.MODEL_ARCH.VISION_MINICPMV:
|
||||
# undocumented anywhere, I only found this thanks to https://huggingface.co/openbmb/MiniCPM-V-2_6-gguf
|
||||
self._set_vocab_gpt2()
|
||||
else:
|
||||
self._set_vocab_sentencepiece()
|
||||
|
||||
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
|
||||
del bid # unused
|
||||
|
||||
# For vision model
|
||||
if name.startswith("llm."):
|
||||
name = name.replace("llm.", "")
|
||||
# attention, someone mess up and use underscore instead of dot
|
||||
if name.endswith("in_proj_weight"):
|
||||
name = name.replace("_weight", ".weight")
|
||||
if name.endswith("in_proj_bias"):
|
||||
name = name.replace("_bias", ".bias")
|
||||
if "post_layernorm" in name:
|
||||
return [] # skip post_layernorm
|
||||
|
||||
n_head = self.hparams["num_attention_heads"]
|
||||
n_kv_head = self.hparams.get("num_key_value_heads")
|
||||
|
||||
# HF models permute some of the tensors, so we need to undo that
|
||||
if name.endswith(("q_proj.weight")):
|
||||
if not name.startswith("vpm") and name.endswith(("q_proj.weight")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
|
||||
if name.endswith(("k_proj.weight")):
|
||||
if not name.startswith("vpm") and name.endswith(("k_proj.weight")):
|
||||
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
|
||||
|
||||
return [(self.map_tensor_name(name), data_torch)]
|
||||
|
@ -5064,7 +5130,7 @@ class LazyTorchTensor(gguf.LazyBase):
|
|||
|
||||
def parse_args() -> argparse.Namespace:
|
||||
parser = argparse.ArgumentParser(
|
||||
description="Convert a huggingface model to a GGML compatible file")
|
||||
description="Convert a huggingface model to a GGML compatible file\n\nNote: When converting vision models, this script may use internet connection to download configuration files via Hugging Face.")
|
||||
parser.add_argument(
|
||||
"--vocab-only", action="store_true",
|
||||
help="extract only the vocab",
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue