Quantize: specify each major tensor quant in CLI for common LLMs
This PR simply replicates the tensor per tensor custom quantization CLI feature brought by Ikawrakow for the token embeddings and output tensors in #6239 to : - attn_q.weight - attn_k.weight - attn_v.weight - attn_qkv.weight - attn_output.weight - ffn_gate - ffn_down - ffn_up This, to allow LlamaCPP users to easily tailor their chosen quant strategy to their needs, but ALSO to allow them to requant easily a quant "a bit too big" for their VRAM in the case of GPU users. For example, a nice Miqu 70b Q5_K_M (which has no FP16 weight available beyond dequants of Q5_K_M) is short of VRAM in one's pair of 3090s. And one is French, like me, so Miqu is one of his main local model. Requanting the Q5_K_M in... Q5_K_M, BUT with all the ffn_down and attn_v.weight tensors specified in Q5_K, and the attn_q.weight specified in Q4_K_M might save you approximatively 1.5GB without degrading too much the quality. That means 1.3-1.4GB of additional context (yummy with FA and KV Cache) and let's say 100-200MB of additional compute cache with a resonable Blas Batch Size in MMQ. But also : the unspecified tensors won't be requantized, because LlamaCPP just copy the tensor rather than requantizing it when a specific tensor quant of the chosent strategy is the same than the source. So one can enjoy the original Miqu quant of these tensors rather than a dequant/requant. And that's just an example. I think that many LCPP users could enjoy this feature for their own needs. This, even if it remains quite basic : This PR doesn't support hybrid quantization of a tensor (example, with a fraction of the layers in the upper quant (from layer 0 onwards), or the "more_bits" calculus devised by Ikawrakow to create intervals of different quants (ex : 1 layer every 3 layers quantized with the superior quant). CL example: `llama-quantize --allow-requantize --imatrix Q:\iMatrix\Sheared\princeton-nlp_Sheared-LLaMA-2.7B-AR-b1924-Q8_0.iMatrix_Wiki_c32_ch500.dat --output-tensor-type q4_0 --token-embedding-type q4_0 --attn-q-type q4_0 --attn-k-type q4_0 --attn-v-type q4_0 --attn-output-type q4_0 --ffn-gate-type q4_0 --ffn-down-type q4_0 --ffn-up-type q4_0 D:\text-generation-webui\models\Q8_0\princeton-nlp_Sheared-LLaMA-2.7B-AR-b1924-Q8_0.gguf D:\text-generation-webui\models\princeton-nlp_Sheared-LLaMA-2.7B-AR-b228N.iMatrix_Wiki_c32_ch500-Q5_K_M.gguf Q5_K_M` for a full q4_0 quant equivalent to a pure quant, but specified tensor by tensor.
This commit is contained in:
parent
2d5dd7bb3f
commit
4a95bd5d7d
3 changed files with 256 additions and 121 deletions
|
@ -95,19 +95,34 @@ static bool try_parse_ftype(const std::string & ftype_str_in, llama_ftype & ftyp
|
|||
//
|
||||
[[noreturn]]
|
||||
static void usage(const char * executable) {
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf("usage: %s [--help] [--allow-requantize] [--leave-output-tensor] [--pure] [--imatrix] [--include-weights] [--exclude-weights] [--output-tensor-type] [--token-embedding-type] [--attn-q-type] [--attn-k-type] [--attn-v-type] [--attn-qkv-type] [--attn-output-type] [--ffn-gate-type] [--ffn-down-type] [--ffn-up-type] [--keep-split] [--override-kv] model-f32.gguf [model-quant.gguf] type [nthreads]\n\n", executable);
|
||||
printf(" --allow-requantize: Allows requantizing tensors that have already been quantized. Warning: This can severely reduce quality compared to quantizing from 16bit or 32bit\n");
|
||||
printf(" --leave-output-tensor: Will leave output.weight un(re)quantized. Increases model size but may also increase quality, especially when requantizing\n");
|
||||
printf(" --pure: Disable k-quant mixtures and quantize all tensors to the same type\n");
|
||||
printf(" --imatrix file_name: use data in file_name as importance matrix for quant optimizations\n");
|
||||
printf(" --include-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n");
|
||||
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor\n");
|
||||
printf(" --token-embedding-type ggml_type: use this ggml_type for the token embeddings tensor\n");
|
||||
printf(" --keep-split: will generate quatized model in the same shards as input");
|
||||
printf(" --exclude-weights tensor_name: use importance matrix for this/these tensor(s)\n\n");
|
||||
printf(" Optional specific tensor quantization types to amend the selected quantization strategy type:\n");
|
||||
printf(" --output-tensor-type ggml_type: use this ggml_type for the output.weight tensor.\n");
|
||||
printf(" --token-embedding-type ggml_type: use this ggml_type for the token_embd.weight tensor.\n");
|
||||
printf(" --attn-q-type ggml_type: use this ggml_type for the attn_q.weight tensor.\n");
|
||||
printf(" --attn-k-type ggml_type: use this ggml_type for the attn_k.weight tensor.\n");
|
||||
printf(" --attn-v-type ggml_type: use this ggml_type for the attn_v.weight tensor.\n");
|
||||
printf(" --attn-qkv-type ggml_type: use this ggml_type for the attn_qkv.weight tensor.\n");
|
||||
printf(" --attn-output-type ggml_type: use this ggml_type for the attn_output.weight tensor.\n");
|
||||
printf(" --ffn-gate-type ggml_type: use this ggml_type for the ffn_gate tensor.\n");
|
||||
printf(" --ffn-down-type ggml_type: use this ggml_type for the ffn_down tensor.\n");
|
||||
printf(" --ffn-up-type ggml_type: use this ggml_type for the ffn_up tensor.\n\n");
|
||||
printf(" --keep-split: will generate quatized model in the same shards as input\n");
|
||||
printf(" --override-kv KEY=TYPE:VALUE\n");
|
||||
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n");
|
||||
printf(" Advanced option to override model metadata by key in the quantized model. May be specified multiple times.\n\n");
|
||||
printf("Note: --include-weights and --exclude-weights cannot be used together\n");
|
||||
printf("Note: The token embeddings tensor is loaded in system RAM, even in case of full GPU/VRAM offload.\n");
|
||||
printf("Note: The recommanded type for the output tensor is q6_K for the ffn types > iq3_xxs and < q8_0.\n");
|
||||
printf("Note: Usually, attn-q-type can be one type below the chosen ffn type, and attn-v-type should be one type above.\n");
|
||||
printf("Note: --attn-qkv-type replaces the types attn-q, attn-k, and attn-v on some models.\n");
|
||||
printf("Note: Write the specific tensor legacy quants as qN_N, the K-Quants as qN_K, the IQ-Quants as iqN_xx.\n");
|
||||
//TODO: - eventually - harmonize the CAPS writing of the FTYPEs, and non CAPS writing of the GGML_TYPEs.
|
||||
printf("\nAllowed quantization types:\n");
|
||||
for (auto & it : QUANT_OPTIONS) {
|
||||
if (it.name != "COPY") {
|
||||
|
@ -261,6 +276,54 @@ int main(int argc, char ** argv) {
|
|||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--attn-q-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.attn_q_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--attn-k-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.attn_k_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--attn-v-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.attn_v_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--attn-qkv-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.attn_qkv_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--attn-output-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.attn_output_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--ffn-gate-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.ffn_gate_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--ffn-down-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.ffn_down_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--ffn-up-type") == 0) {
|
||||
if (arg_idx < argc-1) {
|
||||
params.ffn_up_type = parse_ggml_type(argv[++arg_idx]);
|
||||
} else {
|
||||
usage(argv[0]);
|
||||
}
|
||||
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
|
||||
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
|
||||
usage(argv[0]);
|
||||
|
|
|
@ -345,7 +345,15 @@ extern "C" {
|
|||
int32_t nthread; // number of threads to use for quantizing, if <=0 will use std::thread::hardware_concurrency()
|
||||
enum llama_ftype ftype; // quantize to this llama_ftype
|
||||
enum ggml_type output_tensor_type; // output tensor type
|
||||
enum ggml_type token_embedding_type; // itoken embeddings tensor type
|
||||
enum ggml_type token_embedding_type; // token embeddings tensor type
|
||||
enum ggml_type attn_q_type; // attention query tensor type
|
||||
enum ggml_type attn_k_type; // attention key tensor type
|
||||
enum ggml_type attn_v_type; // attention value tensor type
|
||||
enum ggml_type attn_qkv_type; // attention query-key-value tensor type
|
||||
enum ggml_type attn_output_type; // attention output tensor type
|
||||
enum ggml_type ffn_gate_type; // feedforward network gate type
|
||||
enum ggml_type ffn_down_type; // feedforward network down type
|
||||
enum ggml_type ffn_up_type; // feedforward network up type
|
||||
bool allow_requantize; // allow quantizing non-f32/f16 tensors
|
||||
bool quantize_output_tensor; // quantize output.weight
|
||||
bool only_copy; // only copy tensors - ftype, allow_requantize and quantize_output_tensor are ignored
|
||||
|
|
292
src/llama.cpp
292
src/llama.cpp
|
@ -15381,147 +15381,179 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
|||
}
|
||||
}
|
||||
} else if (name.find("attn_v.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
|
||||
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||||
if (qs.model.type == MODEL_70B) {
|
||||
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
||||
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
||||
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
||||
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
// TODO: explore better strategies
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
if (qs.params->attn_v_type < GGML_TYPE_COUNT) {
|
||||
new_type = qs.params->attn_v_type;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
|
||||
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S && qs.model.hparams.n_gqa() >= 4) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
new_type = qs.model.hparams.n_gqa() >= 4 ? GGML_TYPE_Q4_K : !qs.has_imatrix ? GGML_TYPE_IQ3_S : GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S) && qs.model.hparams.n_gqa() >= 4) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q5_K;
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && qs.model.hparams.n_gqa() >= 4) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) &&
|
||||
use_more_bits(qs.i_attention_wv, qs.n_attention_wv)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) new_type = GGML_TYPE_Q5_K;
|
||||
if (qs.model.type == MODEL_70B) {
|
||||
// In the 70B model we have 8 heads sharing the same attn_v weights. As a result, the attn_v.weight tensor is
|
||||
// 8x smaller compared to attn_q.weight. Hence, we can get a nice boost in quantization accuracy with
|
||||
// nearly negligible increase in model size by quantizing this tensor with more bits:
|
||||
if (new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K) new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
// TODO: explore better strategies
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
}
|
||||
++qs.i_attention_wv;
|
||||
} else if (name.find("attn_k.weight") != std::string::npos) {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
// TODO: explore better strategies
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
||||
new_type = GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
new_type = GGML_TYPE_IQ2_S;
|
||||
if (qs.params->attn_k_type < GGML_TYPE_COUNT) {
|
||||
new_type = qs.params->attn_k_type;
|
||||
} else {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
// for the 8-expert model, bumping this to Q8_0 trades just ~128MB
|
||||
// TODO: explore better strategies
|
||||
new_type = GGML_TYPE_Q8_0;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
||||
new_type = GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
new_type = GGML_TYPE_IQ2_S;
|
||||
}
|
||||
}
|
||||
} else if (name.find("attn_q.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
||||
new_type = GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
new_type = GGML_TYPE_IQ2_S;
|
||||
if (qs.params->attn_q_type < GGML_TYPE_COUNT) {
|
||||
new_type = qs.params->attn_q_type;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS) {
|
||||
new_type = GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) {
|
||||
new_type = GGML_TYPE_IQ2_S;
|
||||
}
|
||||
}
|
||||
} else if (name.find("ffn_down") != std::string::npos) {
|
||||
auto info = layer_info(qs.i_ffn_down, qs.n_ffn_down, name.c_str());
|
||||
int i_layer = info.first, n_layer = info.second;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
|
||||
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
|
||||
new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
|
||||
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
||||
: GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
|
||||
(qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
||||
new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
if (arch == LLM_ARCH_FALCON) {
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
|
||||
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
} else {
|
||||
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
if (qs.params->ffn_down_type < GGML_TYPE_COUNT) {
|
||||
new_type = qs.params->ffn_down_type;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) {
|
||||
if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS && !qs.has_imatrix) {
|
||||
new_type = i_layer < n_layer/8 ? GGML_TYPE_Q4_K : GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q5_K
|
||||
: arch != LLM_ARCH_FALCON || use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q4_K
|
||||
: GGML_TYPE_Q3_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M && (i_layer < n_layer/8 ||
|
||||
(qs.model.hparams.n_expert == 8 && use_more_bits(i_layer, n_layer)))) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
||||
new_type = arch == LLM_ARCH_FALCON ? GGML_TYPE_Q4_K : GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
||||
if (arch == LLM_ARCH_FALCON) {
|
||||
new_type = i_layer < n_layer/16 ? GGML_TYPE_Q6_K :
|
||||
use_more_bits(i_layer, n_layer) ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
||||
} else {
|
||||
if (use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
}
|
||||
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
|
||||
&& qs.has_imatrix && i_layer < n_layer/8) {
|
||||
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
|
||||
// We only do it when an imatrix is provided because a) we want to make sure that one can always get the
|
||||
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
|
||||
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
|
||||
}
|
||||
}
|
||||
else if (i_layer < n_layer/8 && (ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) && !qs.has_imatrix) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M && use_more_bits(i_layer, n_layer)) new_type = GGML_TYPE_Q6_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && arch != LLM_ARCH_FALCON && i_layer < n_layer/8) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
else if ((ftype == LLAMA_FTYPE_MOSTLY_Q4_0 || ftype == LLAMA_FTYPE_MOSTLY_Q5_0)
|
||||
&& qs.has_imatrix && i_layer < n_layer/8) {
|
||||
// Guard against craziness in the first few ffn_down layers that can happen even with imatrix for Q4_0/Q5_0.
|
||||
// We only do it when an imatrix is provided because a) we want to make sure that one can always get the
|
||||
// same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix.
|
||||
new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1;
|
||||
}
|
||||
++qs.i_ffn_down;
|
||||
} else if (name.find("attn_output.weight") != std::string::npos) {
|
||||
if (arch != LLM_ARCH_FALCON) {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
if (qs.params->attn_output_type < GGML_TYPE_COUNT) {
|
||||
new_type = qs.params->attn_output_type;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||||
if (arch != LLM_ARCH_FALCON) {
|
||||
if (qs.model.hparams.n_expert == 8) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
|
||||
ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS) {
|
||||
new_type = GGML_TYPE_Q5_K;
|
||||
}
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K ) new_type = GGML_TYPE_Q3_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS) new_type = GGML_TYPE_IQ3_S;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M ) new_type = GGML_TYPE_Q4_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L ) new_type = GGML_TYPE_Q5_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_M ) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
}
|
||||
}
|
||||
else if (name.find("attn_qkv.weight") != std::string::npos) {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
if (qs.params->attn_qkv_type < GGML_TYPE_COUNT) {
|
||||
new_type = qs.params->attn_qkv_type;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L || ftype == LLAMA_FTYPE_MOSTLY_IQ3_M) {
|
||||
new_type = GGML_TYPE_Q4_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K;
|
||||
else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K;
|
||||
}
|
||||
else if (name.find("ffn_gate") != std::string::npos) {
|
||||
auto info = layer_info(qs.i_ffn_gate, qs.n_ffn_gate, name.c_str());
|
||||
int i_layer = info.first, n_layer = info.second;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
||||
new_type = GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
if (qs.params->ffn_gate_type < GGML_TYPE_COUNT) {
|
||||
new_type = qs.params->ffn_gate_type;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
||||
new_type = GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
}
|
||||
++qs.i_ffn_gate;
|
||||
}
|
||||
else if (name.find("ffn_up") != std::string::npos) {
|
||||
auto info = layer_info(qs.i_ffn_up, qs.n_ffn_up, name.c_str());
|
||||
int i_layer = info.first, n_layer = info.second;
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
||||
new_type = GGML_TYPE_IQ3_XXS;
|
||||
if (qs.params->ffn_up_type < GGML_TYPE_COUNT) {
|
||||
new_type = qs.params->ffn_up_type;
|
||||
} else {
|
||||
if (ftype == LLAMA_FTYPE_MOSTLY_IQ3_XS && (i_layer >= n_layer/8 && i_layer < 7*n_layer/8)) {
|
||||
new_type = GGML_TYPE_IQ3_XXS;
|
||||
}
|
||||
}
|
||||
++qs.i_ffn_up;
|
||||
}
|
||||
|
@ -15920,6 +15952,30 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
|
||||
new_type = params->output_tensor_type;
|
||||
}
|
||||
if (params->attn_q_type < GGML_TYPE_COUNT && strcmp(tensor->name, "attn_q.weight") == 0) {
|
||||
new_type = params->attn_q_type;
|
||||
}
|
||||
if (params->attn_k_type < GGML_TYPE_COUNT && strcmp(tensor->name, "attn_k.weight") == 0) {
|
||||
new_type = params->attn_k_type;
|
||||
}
|
||||
if (params->attn_v_type < GGML_TYPE_COUNT && strcmp(tensor->name, "attn_v.weight") == 0) {
|
||||
new_type = params->attn_v_type;
|
||||
}
|
||||
if (params->attn_qkv_type < GGML_TYPE_COUNT && strcmp(tensor->name, "attn_qkv.weight") == 0) {
|
||||
new_type = params->attn_qkv_type;
|
||||
}
|
||||
if (params->attn_output_type < GGML_TYPE_COUNT && strcmp(tensor->name, "attn_output.weight") == 0) {
|
||||
new_type = params->attn_output_type;
|
||||
}
|
||||
if (params->ffn_gate_type < GGML_TYPE_COUNT && strcmp(tensor->name, "ffn_gate") == 0) {
|
||||
new_type = params->ffn_gate_type;
|
||||
}
|
||||
if (params->ffn_down_type < GGML_TYPE_COUNT && strcmp(tensor->name, "ffn_down") == 0) {
|
||||
new_type = params->ffn_down_type;
|
||||
}
|
||||
if (params->ffn_up_type < GGML_TYPE_COUNT && strcmp(tensor->name, "ffn_up") == 0) {
|
||||
new_type = params->ffn_up_type;
|
||||
}
|
||||
|
||||
// If we've decided to quantize to the same type the tensor is already
|
||||
// in then there's nothing to do.
|
||||
|
@ -16322,6 +16378,14 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
|
|||
/*.ftype =*/ LLAMA_FTYPE_MOSTLY_Q5_1,
|
||||
/*.output_tensor_type =*/ GGML_TYPE_COUNT,
|
||||
/*.token_embedding_type =*/ GGML_TYPE_COUNT,
|
||||
/*.attn_q_type =*/ GGML_TYPE_COUNT,
|
||||
/*.attn_k_type =*/ GGML_TYPE_COUNT,
|
||||
/*.attn_v_type =*/ GGML_TYPE_COUNT,
|
||||
/*.attn_qkv_type =*/ GGML_TYPE_COUNT,
|
||||
/*.attn_output_type =*/ GGML_TYPE_COUNT,
|
||||
/*.ffn_gate_type =*/ GGML_TYPE_COUNT,
|
||||
/*.ffn_down_type =*/ GGML_TYPE_COUNT,
|
||||
/*.ffn_up_type =*/ GGML_TYPE_COUNT,
|
||||
/*.allow_requantize =*/ false,
|
||||
/*.quantize_output_tensor =*/ true,
|
||||
/*.only_copy =*/ false,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue