remove batched
This commit is contained in:
parent
715540a77b
commit
4b850f0ce4
6 changed files with 1 additions and 331 deletions
18
Makefile
18
Makefile
|
@ -1,7 +1,6 @@
|
|||
# Define the default target now so that it is always the first target
|
||||
BUILD_TARGETS = \
|
||||
libllava.a \
|
||||
llama-batched \
|
||||
llama-batched-bench \
|
||||
llama-bench \
|
||||
llama-benchmark-matmult \
|
||||
|
@ -40,7 +39,7 @@ BUILD_TARGETS = \
|
|||
|
||||
# Legacy build targets that were renamed in #7809, but should still be removed when the project is cleaned
|
||||
LEGACY_TARGETS_CLEAN = main quantize quantize-stats perplexity imatrix embedding vdot q8dot convert-llama2c-to-ggml \
|
||||
simple batched batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli \
|
||||
simple batched-bench save-load-state server gguf gguf-split eval-callback llama-bench libllava.a llava-cli \
|
||||
retrieval speculative infill tokenize benchmark-matmult parallel export-lora lookahead lookup passkey gritlm
|
||||
|
||||
# Legacy build targets that were renamed in #7809, but we want to build binaries that for them that output a deprecation warning if people try to use them.
|
||||
|
@ -1154,16 +1153,6 @@ llama-tokenize: examples/tokenize/tokenize.cpp \
|
|||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-batched: examples/batched/batched.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-batched-bench: examples/batched-bench/batched-bench.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $<,$^) $(call GET_OBJ_FILE, $<) -o $@ $(LDFLAGS)
|
||||
|
||||
llama-quantize: examples/quantize/quantize.cpp \
|
||||
$(OBJ_ALL)
|
||||
$(CXX) $(CXXFLAGS) -c $< -o $(call GET_OBJ_FILE, $<)
|
||||
|
@ -1361,11 +1350,6 @@ llama-llava-cli: examples/llava/llava-cli.cpp \
|
|||
$(CXX) $(CXXFLAGS) -c examples/llava/llava.cpp -o $(call GET_OBJ_FILE, examples/llava/llava.cpp)
|
||||
$(CXX) $(CXXFLAGS) $(filter-out %.h $< examples/llava/clip.cpp examples/llava/llava.cpp,$^) $(call GET_OBJ_FILE, $<) $(call GET_OBJ_FILE, examples/llava/clip.cpp) $(call GET_OBJ_FILE, examples/llava/llava.cpp) -o $@ $(LDFLAGS)
|
||||
|
||||
ifeq ($(UNAME_S),Darwin)
|
||||
swift: examples/batched.swift
|
||||
(cd examples/batched.swift; make build)
|
||||
endif
|
||||
|
||||
common/build-info.cpp: $(wildcard .git/index) scripts/build-info.sh
|
||||
@sh scripts/build-info.sh "$(CC)" > $@.tmp
|
||||
@if ! cmp -s $@.tmp $@; then \
|
||||
|
|
|
@ -14,7 +14,6 @@ if (EMSCRIPTEN)
|
|||
else()
|
||||
add_subdirectory(cvector-generator)
|
||||
add_subdirectory(batched-bench)
|
||||
add_subdirectory(batched)
|
||||
add_subdirectory(benchmark)
|
||||
add_subdirectory(convert-llama2c-to-ggml)
|
||||
add_subdirectory(embedding)
|
||||
|
|
|
@ -1,5 +0,0 @@
|
|||
set(TARGET llama-batched)
|
||||
add_executable(${TARGET} batched.cpp)
|
||||
install(TARGETS ${TARGET} RUNTIME)
|
||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
|
@ -1,44 +0,0 @@
|
|||
# llama.cpp/example/batched
|
||||
|
||||
The example demonstrates batched generation from a given prompt
|
||||
|
||||
```bash
|
||||
./llama-batched -m ./models/llama-7b-v2/ggml-model-f16.gguf -p "Hello my name is" -np 4
|
||||
|
||||
...
|
||||
|
||||
main: n_len = 32, n_ctx = 2048, n_parallel = 4, n_kv_req = 113
|
||||
|
||||
Hello my name is
|
||||
|
||||
main: generating 4 sequences ...
|
||||
|
||||
main: stream 0 finished
|
||||
main: stream 1 finished
|
||||
main: stream 2 finished
|
||||
main: stream 3 finished
|
||||
|
||||
sequence 0:
|
||||
|
||||
Hello my name is Shirley. I am a 25-year-old female who has been working for over 5 years as a b
|
||||
|
||||
sequence 1:
|
||||
|
||||
Hello my name is Renee and I'm a 32 year old female from the United States. I'm looking for a man between
|
||||
|
||||
sequence 2:
|
||||
|
||||
Hello my name is Diana. I am looking for a housekeeping job. I have experience with children and have my own transportation. I am
|
||||
|
||||
sequence 3:
|
||||
|
||||
Hello my name is Cody. I am a 3 year old neutered male. I am a very friendly cat. I am very playful and
|
||||
|
||||
main: decoded 108 tokens in 3.57 s, speed: 30.26 t/s
|
||||
|
||||
llama_print_timings: load time = 587.00 ms
|
||||
llama_print_timings: sample time = 2.56 ms / 112 runs ( 0.02 ms per token, 43664.72 tokens per second)
|
||||
llama_print_timings: prompt eval time = 4089.11 ms / 118 tokens ( 34.65 ms per token, 28.86 tokens per second)
|
||||
llama_print_timings: eval time = 0.00 ms / 1 runs ( 0.00 ms per token, inf tokens per second)
|
||||
llama_print_timings: total time = 4156.04 ms
|
||||
```
|
|
@ -1,259 +0,0 @@
|
|||
#include "common.h"
|
||||
#include "llama.h"
|
||||
|
||||
#include <algorithm>
|
||||
#include <cmath>
|
||||
#include <cstdio>
|
||||
#include <string>
|
||||
#include <vector>
|
||||
|
||||
static void print_usage(int argc, char ** argv, const gpt_params & params) {
|
||||
gpt_params_print_usage(argc, argv, params);
|
||||
|
||||
LOG_TEE("\nexample usage:\n");
|
||||
LOG_TEE("\n %s -m model.gguf -p \"Hello my name is\" -n 32 -np 4\n", argv[0]);
|
||||
LOG_TEE("\n");
|
||||
}
|
||||
|
||||
int main(int argc, char ** argv) {
|
||||
gpt_params params;
|
||||
|
||||
params.prompt = "Hello my name is";
|
||||
params.n_predict = 32;
|
||||
|
||||
if (!gpt_params_parse(argc, argv, params)) {
|
||||
print_usage(argc, argv, params);
|
||||
return 1;
|
||||
}
|
||||
|
||||
|
||||
// number of parallel batches
|
||||
int n_parallel = params.n_parallel;
|
||||
|
||||
// total length of the sequences including the prompt
|
||||
int n_predict = params.n_predict;
|
||||
|
||||
// init LLM
|
||||
|
||||
llama_backend_init();
|
||||
llama_numa_init(params.numa);
|
||||
|
||||
// initialize the model
|
||||
|
||||
llama_model_params model_params = llama_model_params_from_gpt_params(params);
|
||||
|
||||
llama_model * model = llama_load_model_from_file(params.model.c_str(), model_params);
|
||||
|
||||
if (model == NULL) {
|
||||
fprintf(stderr , "%s: error: unable to load model\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// tokenize the prompt
|
||||
|
||||
std::vector<llama_token> tokens_list;
|
||||
tokens_list = ::llama_tokenize(model, params.prompt, true);
|
||||
|
||||
const int n_kv_req = tokens_list.size() + (n_predict - tokens_list.size())*n_parallel;
|
||||
|
||||
// initialize the context
|
||||
|
||||
llama_context_params ctx_params = llama_context_params_from_gpt_params(params);
|
||||
|
||||
ctx_params.n_ctx = n_kv_req;
|
||||
ctx_params.n_batch = std::max(n_predict, n_parallel);
|
||||
|
||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||
|
||||
if (ctx == NULL) {
|
||||
fprintf(stderr , "%s: error: failed to create the llama_context\n" , __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
const int n_ctx = llama_n_ctx(ctx);
|
||||
|
||||
LOG_TEE("\n%s: n_predict = %d, n_ctx = %d, n_batch = %u, n_parallel = %d, n_kv_req = %d\n", __func__, n_predict, n_ctx, ctx_params.n_batch, n_parallel, n_kv_req);
|
||||
|
||||
// make sure the KV cache is big enough to hold all the prompt and generated tokens
|
||||
if (n_kv_req > n_ctx) {
|
||||
LOG_TEE("%s: error: n_kv_req (%d) > n_ctx, the required KV cache size is not big enough\n", __func__, n_kv_req);
|
||||
LOG_TEE("%s: either reduce n_parallel or increase n_ctx\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
// print the prompt token-by-token
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
for (auto id : tokens_list) {
|
||||
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
|
||||
}
|
||||
|
||||
fflush(stderr);
|
||||
|
||||
// create a llama_batch
|
||||
// we use this object to submit token data for decoding
|
||||
llama_batch batch = llama_batch_init(std::max(tokens_list.size(), (size_t) n_parallel), 0, n_parallel);
|
||||
|
||||
std::vector<llama_seq_id> seq_ids(n_parallel, 0);
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
seq_ids[i] = i;
|
||||
}
|
||||
|
||||
// evaluate the initial prompt
|
||||
for (size_t i = 0; i < tokens_list.size(); ++i) {
|
||||
llama_batch_add(batch, tokens_list[i], i, seq_ids, false);
|
||||
}
|
||||
GGML_ASSERT(batch.n_tokens == (int) tokens_list.size());
|
||||
|
||||
if (llama_model_has_encoder(model)) {
|
||||
if (llama_encode(ctx, batch)) {
|
||||
LOG_TEE("%s : failed to eval\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
llama_token decoder_start_token_id = llama_model_decoder_start_token(model);
|
||||
if (decoder_start_token_id == -1) {
|
||||
decoder_start_token_id = llama_token_bos(model);
|
||||
}
|
||||
|
||||
llama_batch_clear(batch);
|
||||
llama_batch_add(batch, decoder_start_token_id, 0, seq_ids, false);
|
||||
}
|
||||
|
||||
// llama_decode will output logits only for the last token of the prompt
|
||||
batch.logits[batch.n_tokens - 1] = true;
|
||||
|
||||
if (llama_decode(ctx, batch) != 0) {
|
||||
LOG_TEE("%s: llama_decode() failed\n", __func__);
|
||||
return 1;
|
||||
}
|
||||
|
||||
//// assign the system KV cache to all parallel sequences
|
||||
//// this way, the parallel sequences will "reuse" the prompt tokens without having to copy them
|
||||
//for (int32_t i = 1; i < n_parallel; ++i) {
|
||||
// llama_kv_cache_seq_cp(ctx, 0, i, -1, -1);
|
||||
//}
|
||||
|
||||
if (n_parallel > 1) {
|
||||
LOG_TEE("\n\n%s: generating %d sequences ...\n", __func__, n_parallel);
|
||||
}
|
||||
|
||||
// main loop
|
||||
|
||||
// we will store the parallel decoded sequences in this vector
|
||||
std::vector<std::string> streams(n_parallel);
|
||||
|
||||
// remember the batch index of the last token for each parallel sequence
|
||||
// we need this to determine which logits to sample from
|
||||
std::vector<int32_t> i_batch(n_parallel, batch.n_tokens - 1);
|
||||
|
||||
int n_cur = batch.n_tokens;
|
||||
int n_decode = 0;
|
||||
|
||||
const auto t_main_start = ggml_time_us();
|
||||
|
||||
while (n_cur <= n_predict) {
|
||||
// prepare the next batch
|
||||
llama_batch_clear(batch);
|
||||
|
||||
// sample the next token for each parallel sequence / stream
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
if (i_batch[i] < 0) {
|
||||
// the stream has already finished
|
||||
continue;
|
||||
}
|
||||
|
||||
auto n_vocab = llama_n_vocab(model);
|
||||
auto * logits = llama_get_logits_ith(ctx, i_batch[i]);
|
||||
|
||||
std::vector<llama_token_data> candidates;
|
||||
candidates.reserve(n_vocab);
|
||||
|
||||
for (llama_token token_id = 0; token_id < n_vocab; token_id++) {
|
||||
candidates.emplace_back(llama_token_data{ token_id, logits[token_id], 0.0f });
|
||||
}
|
||||
|
||||
llama_token_data_array candidates_p = { candidates.data(), candidates.size(), false };
|
||||
|
||||
const int top_k = 40;
|
||||
const float top_p = 0.9f;
|
||||
const float temp = 0.4f;
|
||||
|
||||
llama_sample_top_k(ctx, &candidates_p, top_k, 1);
|
||||
llama_sample_top_p(ctx, &candidates_p, top_p, 1);
|
||||
llama_sample_temp (ctx, &candidates_p, temp);
|
||||
|
||||
const llama_token new_token_id = llama_sample_token(ctx, &candidates_p);
|
||||
|
||||
//const llama_token new_token_id = llama_sample_token_greedy(ctx, &candidates_p);
|
||||
|
||||
// is it an end of generation? -> mark the stream as finished
|
||||
if (llama_token_is_eog(model, new_token_id) || n_cur == n_predict) {
|
||||
i_batch[i] = -1;
|
||||
LOG_TEE("\n");
|
||||
if (n_parallel > 1) {
|
||||
LOG_TEE("%s: stream %d finished at n_cur = %d", __func__, i, n_cur);
|
||||
}
|
||||
|
||||
continue;
|
||||
}
|
||||
|
||||
// if there is only one stream, we print immediately to stdout
|
||||
if (n_parallel == 1) {
|
||||
LOG_TEE("%s", llama_token_to_piece(ctx, new_token_id).c_str());
|
||||
fflush(stdout);
|
||||
}
|
||||
|
||||
streams[i] += llama_token_to_piece(ctx, new_token_id);
|
||||
|
||||
i_batch[i] = batch.n_tokens;
|
||||
|
||||
// push this new token for next evaluation
|
||||
llama_batch_add(batch, new_token_id, n_cur, { i }, true);
|
||||
|
||||
n_decode += 1;
|
||||
}
|
||||
|
||||
// all streams are finished
|
||||
if (batch.n_tokens == 0) {
|
||||
break;
|
||||
}
|
||||
|
||||
n_cur += 1;
|
||||
|
||||
// evaluate the current batch with the transformer model
|
||||
if (llama_decode(ctx, batch)) {
|
||||
fprintf(stderr, "%s : failed to eval, return code %d\n", __func__, 1);
|
||||
return 1;
|
||||
}
|
||||
}
|
||||
|
||||
LOG_TEE("\n");
|
||||
|
||||
if (n_parallel > 1) {
|
||||
LOG_TEE("\n");
|
||||
|
||||
for (int32_t i = 0; i < n_parallel; ++i) {
|
||||
LOG_TEE("sequence %d:\n\n%s%s\n\n", i, params.prompt.c_str(), streams[i].c_str());
|
||||
}
|
||||
}
|
||||
|
||||
const auto t_main_end = ggml_time_us();
|
||||
|
||||
LOG_TEE("%s: decoded %d tokens in %.2f s, speed: %.2f t/s\n",
|
||||
__func__, n_decode, (t_main_end - t_main_start) / 1000000.0f, n_decode / ((t_main_end - t_main_start) / 1000000.0f));
|
||||
|
||||
llama_print_timings(ctx);
|
||||
|
||||
fprintf(stderr, "\n");
|
||||
|
||||
llama_batch_free(batch);
|
||||
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
|
||||
llama_backend_free();
|
||||
|
||||
return 0;
|
||||
}
|
|
@ -183,11 +183,6 @@ if [ "$1" -eq "1" ]; then
|
|||
|
||||
make -j && ./bin/llama-perplexity -m ../models/tinyllama-1b/ggml-model-f16.gguf -f ./wikitext-2-raw/wiki.test.raw -ngl 100 --chunks 32
|
||||
|
||||
# batched
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
GGML_CUDA=1 make -j && ./llama-batched ./models/tinyllama-1b/ggml-model-f16.gguf "Hello, my name is" 8 128 999
|
||||
|
||||
# batched-bench
|
||||
cd /workspace/llama.cpp
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue