model: support arch DbrxForCausalLM
(#6515)
* model: dbrx convert to gguf #6344 * llama: support dbrx #6344 * doc: dbrx: add the model as supported * scripts: get-wikitext-2 add unzip * llama: increase maximum experts allowed * llama: factorize moe graph implementation between grok, mixtral and dbrx --------- Co-authored-by: Megha Agarwal <16129366+megha95@users.noreply.github.com>
This commit is contained in:
parent
ab9a3240a9
commit
4bd0f93e4a
7 changed files with 428 additions and 148 deletions
|
@ -126,6 +126,7 @@ class MODEL_ARCH(IntEnum):
|
|||
MAMBA = auto()
|
||||
XVERSE = auto()
|
||||
COMMAND_R = auto()
|
||||
DBRX = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
|
@ -195,6 +196,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.MAMBA: "mamba",
|
||||
MODEL_ARCH.XVERSE: "xverse",
|
||||
MODEL_ARCH.COMMAND_R: "command-r",
|
||||
MODEL_ARCH.DBRX: "dbrx",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
|
@ -642,6 +644,19 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.ATTN_K_NORM,
|
||||
MODEL_TENSOR.ATTN_Q_NORM,
|
||||
],
|
||||
MODEL_ARCH.DBRX: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_QKV,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_OUT_NORM,
|
||||
MODEL_TENSOR.FFN_GATE_INP,
|
||||
MODEL_TENSOR.FFN_GATE_EXP,
|
||||
MODEL_TENSOR.FFN_DOWN_EXP,
|
||||
MODEL_TENSOR.FFN_UP_EXP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
|
|
@ -10,7 +10,7 @@ class TensorNameMap:
|
|||
# Token embeddings
|
||||
MODEL_TENSOR.TOKEN_EMBD: (
|
||||
"gpt_neox.embed_in", # gptneox
|
||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen
|
||||
"transformer.wte", # gpt2 gpt-j mpt refact qwen dbrx
|
||||
"transformer.word_embeddings", # falcon
|
||||
"word_embeddings", # bloom
|
||||
"model.embed_tokens", # llama-hf
|
||||
|
@ -48,7 +48,7 @@ class TensorNameMap:
|
|||
# Output
|
||||
MODEL_TENSOR.OUTPUT: (
|
||||
"embed_out", # gptneox
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen mamba dbrx
|
||||
"output", # llama-pth bloom internlm2
|
||||
"word_embeddings_for_head", # persimmon
|
||||
"lm_head.linear", # phi2
|
||||
|
@ -60,7 +60,7 @@ class TensorNameMap:
|
|||
"transformer.ln_f", # gpt2 gpt-j falcon
|
||||
"model.norm", # llama-hf baichuan internlm2
|
||||
"norm", # llama-pth
|
||||
"transformer.norm_f", # mpt
|
||||
"transformer.norm_f", # mpt dbrx
|
||||
"ln_f", # refact bloom qwen gpt2
|
||||
"language_model.encoder.final_layernorm", # persimmon
|
||||
"model.final_layernorm", # persimmon
|
||||
|
@ -96,6 +96,7 @@ class TensorNameMap:
|
|||
"model.layers.{bid}.norm", # mamba-qbert
|
||||
"backbone.layers.{bid}.norm", # mamba
|
||||
"transformer.decoder_layer.{bid}.rms_norm", # Grok
|
||||
"transformer.blocks.{bid}.norm_attn_norm.norm_1", # dbrx
|
||||
),
|
||||
|
||||
# Attention norm 2
|
||||
|
@ -108,6 +109,7 @@ class TensorNameMap:
|
|||
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
||||
"transformer.h.{bid}.attn.c_attn", # gpt2 qwen
|
||||
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
||||
"transformer.blocks.{bid}.norm_attn_norm.attn.Wqkv", # dbrx
|
||||
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
||||
"h.{bid}.self_attention.query_key_value", # bloom
|
||||
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
||||
|
@ -152,23 +154,24 @@ class TensorNameMap:
|
|||
|
||||
# Attention output
|
||||
MODEL_TENSOR.ATTN_OUT: (
|
||||
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
||||
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
|
||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||
"h.{bid}.self_attention.dense", # bloom
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
||||
"layers.{bid}.attention.wo", # llama-pth
|
||||
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
|
||||
"model.layers.{bid}.self_attn.dense", # persimmon
|
||||
"h.{bid}.attn.c_proj", # gpt2
|
||||
"transformer.h.{bid}.mixer.out_proj", # phi2
|
||||
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
|
||||
"model.layers.{bid}.attention.wo", # internlm2
|
||||
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.linear"# Grok
|
||||
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
||||
"transformer.h.{bid}.attn.c_proj", # gpt2 refact qwen
|
||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||
"h.{bid}.self_attention.dense", # bloom
|
||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
||||
"layers.{bid}.attention.wo", # llama-pth
|
||||
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||
"language_model.encoder.layers.{bid}.self_attention.dense", # persimmon
|
||||
"model.layers.{bid}.self_attn.dense", # persimmon
|
||||
"h.{bid}.attn.c_proj", # gpt2
|
||||
"transformer.h.{bid}.mixer.out_proj", # phi2
|
||||
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
|
||||
"model.layers.{bid}.attention.wo", # internlm2
|
||||
"encoder.layers.{bid}.attn.out_proj", # nomic-bert
|
||||
"transformer.decoder_layer.{bid}.multi_head_attention.linear", # Grok
|
||||
"transformer.blocks.{bid}.norm_attn_norm.attn.out_proj", # dbrx
|
||||
),
|
||||
|
||||
# Attention output norm
|
||||
|
@ -176,6 +179,7 @@ class TensorNameMap:
|
|||
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
|
||||
"encoder.layers.{bid}.norm1", # nomic-bert
|
||||
"transformer.decoder_layer.{bid}.rms_norm_1", # Grok
|
||||
"transformer.blocks.{bid}.norm_attn_norm.norm_2", # dbrx
|
||||
),
|
||||
|
||||
# Rotary embeddings
|
||||
|
@ -202,9 +206,10 @@ class TensorNameMap:
|
|||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
"transformer.decoder_layer.{bid}.router" # Grok
|
||||
"layers.{bid}.feed_forward.gate", # mixtral
|
||||
"model.layers.{bid}.block_sparse_moe.gate", # mixtral
|
||||
"transformer.decoder_layer.{bid}.router", # Grok
|
||||
"transformer.blocks.{bid}.ffn.router.layer", # dbrx
|
||||
),
|
||||
|
||||
# Feed-forward up
|
||||
|
@ -233,6 +238,7 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.w3", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_v", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.v1", # dbrx
|
||||
),
|
||||
|
||||
# AWQ-activation gate
|
||||
|
@ -251,8 +257,9 @@ class TensorNameMap:
|
|||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear" # Grok (merged)
|
||||
"layers.{bid}.feed_forward.experts.w1", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w1", # dbrx
|
||||
),
|
||||
|
||||
# Feed-forward down
|
||||
|
@ -280,6 +287,7 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
"layers.{bid}.feed_forward.experts.w2", # mixtral (merged)
|
||||
"transformer.decoder_layer.{bid}.moe.linear_1", # Grok (merged)
|
||||
"transformer.blocks.{bid}.ffn.experts.mlp.w2", # dbrx
|
||||
),
|
||||
|
||||
MODEL_TENSOR.ATTN_Q_NORM: (
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue