feature : support Baichuan serial models (#3009)

This commit is contained in:
jameswu2014 2023-09-15 00:32:10 +08:00 committed by GitHub
parent 35f73049af
commit 4c8643dd6e
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
4 changed files with 781 additions and 3 deletions

462
llama.cpp
View file

@ -155,6 +155,7 @@ static std::string format(const char * fmt, ...) {
enum llm_arch {
LLM_ARCH_LLAMA,
LLM_ARCH_FALCON,
LLM_ARCH_BAICHUAN,
LLM_ARCH_GPT2,
LLM_ARCH_GPTJ,
LLM_ARCH_GPTNEOX,
@ -169,6 +170,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
{ LLM_ARCH_GPTJ, "gptj" },
{ LLM_ARCH_GPTNEOX, "gptneox" },
{ LLM_ARCH_MPT, "mpt" },
{ LLM_ARCH_BAICHUAN,"baichuan" },
};
enum llm_kv {
@ -309,6 +311,25 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_BAICHUAN,
{
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
{ LLM_TENSOR_OUTPUT, "output" },
{ LLM_TENSOR_ROPE_FREQS, "rope_freqs" },
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_ATTN_ROT_EMBD, "blk.%d.attn_rot_embd" },
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
},
},
{
LLM_ARCH_FALCON,
{
@ -1683,6 +1704,15 @@ static void llm_load_hparams(
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
case LLM_ARCH_BAICHUAN:
{
GGUF_GET_KEY(ctx, hparams.f_norm_rms_eps, gguf_get_val_f32, GGUF_TYPE_FLOAT32, true, kv(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS));
switch (hparams.n_layer) {
case 32: model.type = e_model::MODEL_7B; break;
case 40: model.type = e_model::MODEL_13B; break;
default: model.type = e_model::MODEL_UNKNOWN;
}
} break;
default: (void)0;
};
@ -1923,7 +1953,6 @@ static void llm_load_tensors(
const int64_t n_vocab = hparams.n_vocab;
const auto tn = LLM_TN(model.arch);
switch (model.arch) {
case LLM_ARCH_LLAMA:
{
@ -1966,6 +1995,72 @@ static void llm_load_tensors(
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
auto & layer = model.layers[i];
layer.attn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd}, backend);
layer.wq = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd}, backend_split);
layer.wk = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wv = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}, backend_split);
layer.wo = ml.create_tensor(ctx, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}, backend_split);
layer.ffn_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}, backend);
layer.w1 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff}, backend_split);
layer.w2 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
layer.w3 = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
if (backend == GGML_BACKEND_GPU) {
vram_weights +=
ggml_nbytes(layer.attn_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.ffn_norm) +
ggml_nbytes(layer.w1) + ggml_nbytes(layer.w2) + ggml_nbytes(layer.w3);
}
}
} break;
case LLM_ARCH_BAICHUAN:
{
model.tok_embeddings = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
{
ggml_backend backend_norm;
ggml_backend backend_output;
if (n_gpu_layers > int(n_layer)) {
// norm is not performance relevant on its own but keeping it in VRAM reduces data copying
// on Windows however this is detrimental unless everything is on the GPU
#ifndef _WIN32
backend_norm = low_vram ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#else
backend_norm = low_vram || n_gpu_layers <= (int) n_layer + 2 ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD;
#endif // _WIN32
backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
} else {
backend_norm = GGML_BACKEND_CPU;
backend_output = GGML_BACKEND_CPU;
}
model.output_norm = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}, backend_norm);
model.output = ml.create_tensor(ctx, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}, backend_output);
if (backend_norm == GGML_BACKEND_GPU) {
vram_weights += ggml_nbytes(model.output_norm);
}
if (backend_output == GGML_BACKEND_GPU_SPLIT) {
vram_weights += ggml_nbytes(model.output);
}
}
const uint32_t n_ff = hparams.n_ff;
const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
@ -2542,6 +2637,367 @@ static struct ggml_cgraph * llm_build_llama(
return gf;
}
static struct ggml_cgraph * llm_build_baichaun(
llama_context & lctx,
const llama_token * tokens,
const float * embd,
int n_tokens,
int n_past) {
GGML_ASSERT((!tokens && embd) || (tokens && !embd)); // NOLINT
const int N = n_tokens;
const auto & model = lctx.model;
const auto & hparams = model.hparams;
const auto & kv_self = lctx.kv_self;
GGML_ASSERT(!!kv_self.ctx);
const int64_t n_embd = hparams.n_embd;
const int64_t n_layer = hparams.n_layer;
const int64_t n_ctx = hparams.n_ctx;
const int64_t n_head = hparams.n_head;
const int64_t n_head_kv = hparams.n_head_kv;
const int64_t n_embd_head = hparams.n_embd_head();
const int64_t n_embd_gqa = hparams.n_embd_gqa();
GGML_ASSERT(n_embd_head == hparams.n_rot);
const float freq_base = hparams.rope_freq_base;
const float freq_scale = hparams.rope_freq_scale;
const float norm_rms_eps = hparams.f_norm_rms_eps;
const int n_gpu_layers = model.n_gpu_layers;
auto & buf_compute = lctx.buf_compute;
struct ggml_init_params params = {
/*.mem_size =*/ buf_compute.size,
/*.mem_buffer =*/ buf_compute.data,
/*.no_alloc =*/ false,
};
params.no_alloc = true;
struct ggml_context * ctx0 = ggml_init(params);
ggml_cgraph * gf = ggml_new_graph(ctx0);
struct ggml_tensor * cur;
struct ggml_tensor * inpL;
if (tokens) {
struct ggml_tensor * inp_tokens = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
ggml_allocr_alloc(lctx.alloc, inp_tokens);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inp_tokens->data, tokens, N*ggml_element_size(inp_tokens));
}
ggml_set_name(inp_tokens, "inp_tokens");
inpL = ggml_get_rows(ctx0, model.tok_embeddings, inp_tokens);
} else {
#ifdef GGML_USE_MPI
GGML_ASSERT(false && "not implemented");
#endif
inpL = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N);
ggml_allocr_alloc(lctx.alloc, inpL);
if (!ggml_allocr_is_measure(lctx.alloc)) {
memcpy(inpL->data, embd, N * n_embd * ggml_element_size(inpL));
}
}
const int i_gpu_start = n_layer - n_gpu_layers;
(void) i_gpu_start;
// offload functions set the tensor output backend to GPU
// tensors are GPU-accelerated if any input or the output has been offloaded
//
// with the low VRAM option VRAM scratch is disabled in llama_load_model_internal
// in that case ggml_cuda_assign_buffers has no effect
offload_func_t offload_func_nr = llama_nop; // nr = non-repeating
offload_func_t offload_func_kq = llama_nop;
offload_func_t offload_func_v = llama_nop;
#ifdef GGML_USE_CUBLAS
if (n_gpu_layers > n_layer) {
offload_func_nr = ggml_cuda_assign_buffers_no_alloc;
}
if (n_gpu_layers > n_layer + 1) {
offload_func_v = ggml_cuda_assign_buffers_no_alloc;
}
if (n_gpu_layers > n_layer + 2) {
offload_func_kq = ggml_cuda_assign_buffers_no_alloc;
}
#endif // GGML_USE_CUBLAS
struct ggml_tensor * KQ_scale = ggml_new_tensor_1d(ctx0, GGML_TYPE_F32, 1);
ggml_allocr_alloc(lctx.alloc, KQ_scale);
if (!ggml_allocr_is_measure(lctx.alloc)) {
ggml_set_f32(KQ_scale, 1.0f/sqrtf(float(n_embd)/n_head));
}
ggml_set_name(KQ_scale, "1/sqrt(n_embd_head)");
for (int il = 0; il < n_layer; ++il) {
ggml_format_name(inpL, "layer_inp_%d", il);
offload_func_t offload_func = llama_nop;
#ifdef GGML_USE_CUBLAS
if (il >= i_gpu_start) {
offload_func = ggml_cuda_assign_buffers_no_alloc;
}
#endif // GGML_USE_CUBLAS
struct ggml_tensor * inpSA = inpL;
// norm
{
cur = ggml_rms_norm(ctx0, inpL, norm_rms_eps);
offload_func(cur);
ggml_set_name(cur, "rms_norm_0");
// cur = cur*attn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].attn_norm);
offload_func(cur);
ggml_set_name(cur, "attention_norm_0");
}
// self-attention
{
// compute Q and K and RoPE them
struct ggml_tensor * tmpk = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
offload_func_kq(tmpk);
ggml_set_name(tmpk, "tmpk");
struct ggml_tensor * tmpq = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
offload_func_kq(tmpq);
ggml_set_name(tmpq, "tmpq");
struct ggml_tensor * Kcur;
struct ggml_tensor * Qcur;
switch (model.type) {
case MODEL_7B:
Kcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpk, n_embd_head, n_head_kv, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
Qcur = ggml_rope_custom_inplace(ctx0, ggml_reshape_3d(ctx0, tmpq, n_embd_head, n_head, N), n_past, n_embd_head, 0, 0, freq_base, freq_scale);
break;
case MODEL_13B:
Kcur = ggml_reshape_3d(ctx0, tmpk, n_embd/n_head, n_head, N);
Qcur = ggml_reshape_3d(ctx0, tmpq, n_embd/n_head, n_head, N);
break;
default:
GGML_ASSERT(false);
}
offload_func_kq(Kcur);
ggml_set_name(Kcur, "Kcur");
offload_func_kq(Qcur);
ggml_set_name(Qcur, "Qcur");
// store key and value to memory
{
// compute the transposed [N, n_embd] V matrix
struct ggml_tensor * tmpv = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
offload_func_v(tmpv);
ggml_set_name(tmpv, "tmpv");
struct ggml_tensor * Vcur = ggml_transpose(ctx0, ggml_reshape_2d(ctx0, tmpv, n_embd_gqa, N));
offload_func_v(Vcur);
ggml_set_name(Vcur, "Vcur");
struct ggml_tensor * k = ggml_view_1d(ctx0, kv_self.k, N*n_embd_gqa, (ggml_element_size(kv_self.k)*n_embd_gqa)*(il*n_ctx + n_past));
offload_func_kq(k);
ggml_set_name(k, "k");
struct ggml_tensor * v = ggml_view_2d(ctx0, kv_self.v, N, n_embd_gqa,
( n_ctx)*ggml_element_size(kv_self.v),
(il*n_ctx)*ggml_element_size(kv_self.v)*n_embd_gqa + n_past*ggml_element_size(kv_self.v));
offload_func_v(v);
ggml_set_name(v, "v");
// important: storing RoPE-ed version of K in the KV cache!
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Kcur, k));
ggml_build_forward_expand(gf, ggml_cpy(ctx0, Vcur, v));
}
struct ggml_tensor * Q = ggml_permute(ctx0, Qcur, 0, 2, 1, 3);
offload_func_kq(Q);
ggml_set_name(Q, "Q");
struct ggml_tensor * K =
ggml_view_3d(ctx0, kv_self.k,
n_embd_head, n_past + N, n_head_kv,
ggml_element_size(kv_self.k)*n_embd_gqa,
ggml_element_size(kv_self.k)*n_embd_head,
ggml_element_size(kv_self.k)*n_embd_gqa*n_ctx*il);
offload_func_kq(K);
ggml_set_name(K, "K");
// K * Q
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
offload_func_kq(KQ);
ggml_set_name(KQ, "KQ");
// KQ_scaled = KQ / sqrt(n_embd_head)
// KQ_scaled shape [n_past + N, N, n_head, 1]
struct ggml_tensor * KQ_scaled = ggml_scale_inplace(ctx0, KQ, KQ_scale);
offload_func_kq(KQ_scaled);
ggml_set_name(KQ_scaled, "KQ_scaled");
struct ggml_tensor * KQ_masked;
struct ggml_tensor * KQ_scaled_alibi;
switch (model.type) {
case MODEL_7B:
KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
break;
case MODEL_13B:
KQ_scaled_alibi =ggml_alibi(ctx0, KQ_scaled, n_past, n_head, 8);
ggml_set_name(KQ_scaled_alibi, "KQ_scaled_alibi");
KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
break;
default:
GGML_ASSERT(false);
}
// KQ_masked = mask_past(KQ_scaled)
// struct ggml_tensor * KQ_masked = ggml_diag_mask_inf_inplace(ctx0, KQ_scaled, n_past);
// struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled_alibi, n_past);
// offload_func_kq(KQ_masked);
// ggml_set_name(KQ_masked, "KQ_masked");
// KQ = soft_max(KQ_masked)
struct ggml_tensor * KQ_soft_max = ggml_soft_max_inplace(ctx0, KQ_masked);
offload_func_v(KQ_soft_max);
ggml_set_name(KQ_soft_max, "KQ_soft_max");
// split cached V into n_head heads
struct ggml_tensor * V =
ggml_view_3d(ctx0, kv_self.v,
n_past + N, n_embd_head, n_head_kv,
ggml_element_size(kv_self.v)*n_ctx,
ggml_element_size(kv_self.v)*n_ctx*n_embd_head,
ggml_element_size(kv_self.v)*n_ctx*n_embd_gqa*il);
offload_func_v(V);
ggml_set_name(V, "V");
#if 1
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V, KQ_soft_max);
offload_func_v(KQV);
ggml_set_name(KQV, "KQV");
#else
// make V contiguous in memory to speed up the matmul, however we waste time on the copy
// on M1 this is faster for the perplexity computation, but ~5% slower for the single-token generation
// is there a better way?
struct ggml_tensor * V_cont = ggml_cpy(ctx0, V, ggml_new_tensor_3d(ctx0, kv_self.v->type, n_past + N, n_embd_head, n_head));
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_cont, KQ_soft_max);
#endif
// KQV_merged = KQV.permute(0, 2, 1, 3)
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
offload_func_v(KQV_merged);
ggml_set_name(KQV_merged, "KQV_merged");
// cur = KQV_merged.contiguous().view(n_embd, N)
cur = ggml_cpy(ctx0,
KQV_merged,
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
offload_func_v(cur);
ggml_set_name(cur, "KQV_merged_contiguous");
// projection (no bias)
cur = ggml_mul_mat(ctx0,
model.layers[il].wo,
cur);
offload_func(cur);
ggml_set_name(cur, "result_wo");
}
struct ggml_tensor * inpFF = ggml_add(ctx0, cur, inpSA);
offload_func(inpFF);
ggml_set_name(inpFF, "inpFF");
// feed-forward network
{
// norm
{
cur = ggml_rms_norm(ctx0, inpFF, norm_rms_eps);
offload_func(cur);
ggml_set_name(cur, "rms_norm_1");
// cur = cur*ffn_norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.layers[il].ffn_norm);
offload_func(cur);
ggml_set_name(cur, "ffn_norm");
}
struct ggml_tensor * tmp = ggml_mul_mat(ctx0,
model.layers[il].w3,
cur);
offload_func(tmp);
ggml_set_name(tmp, "result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w1,
cur);
offload_func(cur);
ggml_set_name(cur, "result_w1");
// SILU activation
cur = ggml_silu(ctx0, cur);
offload_func(cur);
ggml_set_name(cur, "silu");
cur = ggml_mul(ctx0, cur, tmp);
offload_func(cur);
ggml_set_name(cur, "silu_x_result_w3");
cur = ggml_mul_mat(ctx0,
model.layers[il].w2,
cur);
offload_func(cur);
ggml_set_name(cur, "result_w2");
}
cur = ggml_add(ctx0, cur, inpFF);
offload_func(cur);
ggml_set_name(cur, "inpFF_+_result_w2");
// input for next layer
inpL = cur;
}
cur = inpL;
// norm
{
cur = ggml_rms_norm(ctx0, cur, norm_rms_eps);
offload_func_nr(cur);
ggml_set_name(cur, "rms_norm_2");
// cur = cur*norm(broadcasted)
cur = ggml_mul(ctx0, cur, model.output_norm);
// offload_func_nr(cur); // TODO CPU + GPU mirrored backend
ggml_set_name(cur, "result_norm");
}
// lm_head
cur = ggml_mul_mat(ctx0, model.output, cur);
ggml_set_name(cur, "result_output");
ggml_build_forward_expand(gf, cur);
ggml_free(ctx0);
return gf;
}
static struct ggml_cgraph * llm_build_falcon(
llama_context & lctx,
const llama_token * tokens,
@ -2864,6 +3320,10 @@ static struct ggml_cgraph * llama_build_graph(
{
result = llm_build_llama(lctx, tokens, embd, n_tokens, n_past);
} break;
case LLM_ARCH_BAICHUAN:
{
result = llm_build_baichaun(lctx, tokens, embd, n_tokens, n_past);
} break;
case LLM_ARCH_FALCON:
{
result = llm_build_falcon(lctx, tokens, embd, n_tokens, n_past);