llava: Add ACC OP for GPU acceleration to the Vulkan backend in the LLAVA CLIP model.
- The CLIP model now prioritizes the Vulkan backend over the CPU when vulkan available. - A GGML_OP_ACC shader has been added. - The encoding performance of the CLIP model improved from 4.2s on the CPU to 0.9s on the GPU. Signed-off-by: Changyeon Kim <cyzero.kim@samsung.com>
This commit is contained in:
parent
a21c6fd450
commit
4d56810a83
4 changed files with 68 additions and 0 deletions
|
@ -20,6 +20,10 @@
|
|||
#include "ggml-cann.h"
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
#include "ggml-vulkan.h"
|
||||
#endif
|
||||
|
||||
#define STB_IMAGE_IMPLEMENTATION
|
||||
#include "stb_image.h"
|
||||
|
||||
|
@ -1125,6 +1129,10 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
|||
LOG_TEE("%s: CLIP using CANN backend\n", __func__);
|
||||
#endif
|
||||
|
||||
#ifdef GGML_USE_VULKAN
|
||||
new_clip->backend = ggml_backend_vk_init(0);
|
||||
LOG_TEE("%s: CLIP using Vulkan backend\n", __func__);
|
||||
#endif
|
||||
|
||||
if (!new_clip->backend) {
|
||||
new_clip->backend = ggml_backend_cpu_init();
|
||||
|
|
|
@ -177,6 +177,7 @@ struct vk_device_struct {
|
|||
vk_pipeline pipeline_mul_mat_vec_nc_f16_f32;
|
||||
vk_pipeline pipeline_get_rows[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_get_rows_f32[GGML_TYPE_COUNT];
|
||||
vk_pipeline pipeline_acc_f32;
|
||||
vk_pipeline pipeline_add_f32, pipeline_add_f16_f32_f16;
|
||||
vk_pipeline pipeline_mul_f32;
|
||||
vk_pipeline pipeline_div_f32;
|
||||
|
@ -1647,6 +1648,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
|
|||
ggml_vk_create_pipeline(device, device->pipeline_add_f32, "add_f32", add_f32_len, add_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_add_f16_f32_f16, "add_f16_f32_f16", add_f16_f32_f16_len, add_f16_f32_f16_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_acc_f32, "acc_f32", acc_f32_len, acc_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
ggml_vk_create_pipeline(device, device->pipeline_mul_f32, "mul_f32", mul_f32_len, mul_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
ggml_vk_create_pipeline(device, device->pipeline_div_f32, "div_f32", div_f32_len, div_f32_data, "main", 3, sizeof(vk_op_binary_push_constants), {512, 1, 1}, {}, 1);
|
||||
|
||||
|
@ -3931,6 +3934,11 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
|
|||
return ctx->device->pipeline_get_rows_f32[src0->type];
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_ACC:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_acc_f32;
|
||||
}
|
||||
return nullptr;
|
||||
case GGML_OP_ADD:
|
||||
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
|
||||
return ctx->device->pipeline_add_f32;
|
||||
|
@ -4474,6 +4482,23 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context& subctx,
|
|||
});
|
||||
}
|
||||
|
||||
static void ggml_vk_acc(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||
const uint32_t dst_type_size = ggml_type_size(dst->type);
|
||||
const uint32_t d_offset = ((extra->offset + dst->view_offs) % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
|
||||
|
||||
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ACC, {
|
||||
(uint32_t)ggml_nelements(src0),
|
||||
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
|
||||
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
|
||||
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2],(uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
|
||||
d_offset,
|
||||
0.0f, 0.0f,
|
||||
});
|
||||
}
|
||||
|
||||
static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context& subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
const uint32_t src0_type_size = ggml_type_size(src0->type);
|
||||
const uint32_t src1_type_size = ggml_type_size(src1->type);
|
||||
|
@ -5758,6 +5783,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||
case GGML_OP_REPEAT:
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_CONCAT:
|
||||
|
@ -5803,6 +5829,10 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
|
|||
case GGML_OP_REPEAT:
|
||||
ggml_vk_repeat(ctx, compute_ctx, src0, node);
|
||||
|
||||
break;
|
||||
case GGML_OP_ACC:
|
||||
ggml_vk_acc(ctx, compute_ctx, src0, src1, node);
|
||||
|
||||
break;
|
||||
case GGML_OP_GET_ROWS:
|
||||
ggml_vk_get_rows(ctx, compute_ctx, src0, src1, node);
|
||||
|
@ -5939,6 +5969,7 @@ static bool ggml_vk_compute_forward(ggml_backend_vk_context * ctx, ggml_tensor *
|
|||
|
||||
switch (tensor->op) {
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
|
@ -6655,6 +6686,7 @@ GGML_CALL static bool ggml_backend_vk_supports_op(ggml_backend_t backend, const
|
|||
case GGML_OP_GROUP_NORM:
|
||||
case GGML_OP_RMS_NORM:
|
||||
case GGML_OP_ADD:
|
||||
case GGML_OP_ACC:
|
||||
case GGML_OP_MUL:
|
||||
case GGML_OP_DIV:
|
||||
case GGML_OP_CONCAT:
|
||||
|
@ -7109,6 +7141,8 @@ static void ggml_vk_check_results_0(ggml_tensor * tensor) {
|
|||
tensor_clone = ggml_pad(ggml_ctx, src0_clone, tensor->ne[0] - src0_clone->ne[0], tensor->ne[1] - src0_clone->ne[1], tensor->ne[2] - src0_clone->ne[2], tensor->ne[3] - src0_clone->ne[3]);
|
||||
} else if (tensor->op == GGML_OP_ADD) {
|
||||
tensor_clone = ggml_add(ggml_ctx, src0_clone, src1_clone);
|
||||
} else if (tensor->op == GGML_OP_ACC) {
|
||||
tensor_clone = ggml_acc(ggml_ctx, src0_clone, src1_clone);
|
||||
} else if (tensor->op == GGML_OP_NORM) {
|
||||
tensor_clone = ggml_norm(ggml_ctx, src0_clone, *(float *)tensor->op_params);
|
||||
} else if (tensor->op == GGML_OP_GROUP_NORM) {
|
||||
|
|
22
ggml/src/vulkan-shaders/acc.comp
Normal file
22
ggml/src/vulkan-shaders/acc.comp
Normal file
|
@ -0,0 +1,22 @@
|
|||
#version 450
|
||||
|
||||
#include "types.comp"
|
||||
#include "generic_binary_head.comp"
|
||||
|
||||
void main() {
|
||||
const uint idx = get_idx();
|
||||
if (idx >= p.ne) {
|
||||
return;
|
||||
}
|
||||
|
||||
const uint src1_i = src1_idx(idx);
|
||||
const uint oz = src1_i / p.nb02;
|
||||
const uint oy = (src1_i - (oz * p.nb02)) / p.nb01;
|
||||
const uint ox = src1_i % p.nb01;
|
||||
|
||||
if (ox < p.ne10 && oy < p.ne11 && oz < p.ne12) {
|
||||
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]) + FLOAT_TYPE(data_b[ox + oy * p.ne10 + oz * p.ne10 * p.ne11]));
|
||||
} else {
|
||||
data_d[p.d_offset + dst_idx(idx)] = D_TYPE(FLOAT_TYPE(data_a[src0_idx(idx)]));
|
||||
}
|
||||
}
|
|
@ -368,6 +368,10 @@ void process_shaders(std::vector<std::future<void>>& tasks) {
|
|||
string_to_spv("add_f16_f32_f16", "add.comp", {{"A_TYPE", "float16_t"}, {"B_TYPE", "float"}, {"D_TYPE", "float16_t"}, {"FLOAT_TYPE", "float"}});
|
||||
}));
|
||||
|
||||
tasks.push_back(std::async(std::launch::async, [] {
|
||||
string_to_spv("acc_f32", "acc.comp", {{"A_TYPE", "float"}, {"B_TYPE", "float"}, {"D_TYPE", "float"}, {"FLOAT_TYPE", "float"}});
|
||||
}));
|
||||
|
||||
tasks.push_back(std::async(std::launch::async, [] {
|
||||
string_to_spv("split_k_reduce", "mul_mat_split_k_reduce.comp", {});
|
||||
}));
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue