diff --git a/.devops/full-cuda.Dockerfile b/.devops/full-cuda.Dockerfile
index 059fd2695..c01006efe 100644
--- a/.devops/full-cuda.Dockerfile
+++ b/.devops/full-cuda.Dockerfile
@@ -31,6 +31,6 @@ ENV LLAMA_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
-RUN make
+RUN make -j$(nproc)
ENTRYPOINT ["/app/.devops/tools.sh"]
diff --git a/.devops/full-rocm.Dockerfile b/.devops/full-rocm.Dockerfile
index 6ecf3bcc7..0314d469b 100644
--- a/.devops/full-rocm.Dockerfile
+++ b/.devops/full-rocm.Dockerfile
@@ -45,6 +45,6 @@ ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
-RUN make
+RUN make -j$(nproc)
ENTRYPOINT ["/app/.devops/tools.sh"]
diff --git a/.devops/full.Dockerfile b/.devops/full.Dockerfile
index 432fb5dad..6d5943a2f 100644
--- a/.devops/full.Dockerfile
+++ b/.devops/full.Dockerfile
@@ -18,7 +18,7 @@ COPY . .
ENV LLAMA_CURL=1
-RUN make
+RUN make -j$(nproc)
ENV LC_ALL=C.utf8
diff --git a/.devops/main-cuda.Dockerfile b/.devops/main-cuda.Dockerfile
index b937a4829..23f428944 100644
--- a/.devops/main-cuda.Dockerfile
+++ b/.devops/main-cuda.Dockerfile
@@ -23,7 +23,7 @@ ENV CUDA_DOCKER_ARCH=${CUDA_DOCKER_ARCH}
# Enable CUDA
ENV LLAMA_CUDA=1
-RUN make
+RUN make -j$(nproc)
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
diff --git a/.devops/main-rocm.Dockerfile b/.devops/main-rocm.Dockerfile
index 0a706dc73..37576d68e 100644
--- a/.devops/main-rocm.Dockerfile
+++ b/.devops/main-rocm.Dockerfile
@@ -40,6 +40,6 @@ ENV LLAMA_HIPBLAS=1
ENV CC=/opt/rocm/llvm/bin/clang
ENV CXX=/opt/rocm/llvm/bin/clang++
-RUN make
+RUN make -j$(nproc)
ENTRYPOINT [ "/app/main" ]
diff --git a/.devops/main.Dockerfile b/.devops/main.Dockerfile
index 3ab1decd6..763d75fce 100644
--- a/.devops/main.Dockerfile
+++ b/.devops/main.Dockerfile
@@ -9,7 +9,7 @@ WORKDIR /app
COPY . .
-RUN make
+RUN make -j$(nproc)
FROM ubuntu:$UBUNTU_VERSION as runtime
diff --git a/.devops/server-cuda.Dockerfile b/.devops/server-cuda.Dockerfile
index 59a52ba21..7f5228185 100644
--- a/.devops/server-cuda.Dockerfile
+++ b/.devops/server-cuda.Dockerfile
@@ -25,7 +25,7 @@ ENV LLAMA_CUDA=1
# Enable cURL
ENV LLAMA_CURL=1
-RUN make
+RUN make -j$(nproc)
FROM ${BASE_CUDA_RUN_CONTAINER} as runtime
diff --git a/.devops/server-rocm.Dockerfile b/.devops/server-rocm.Dockerfile
index c02a31dd8..a6b76dee8 100644
--- a/.devops/server-rocm.Dockerfile
+++ b/.devops/server-rocm.Dockerfile
@@ -45,6 +45,6 @@ ENV LLAMA_CURL=1
RUN apt-get update && \
apt-get install -y libcurl4-openssl-dev
-RUN make
+RUN make -j$(nproc)
ENTRYPOINT [ "/app/server" ]
diff --git a/.devops/server.Dockerfile b/.devops/server.Dockerfile
index be964e0e8..0d09d3627 100644
--- a/.devops/server.Dockerfile
+++ b/.devops/server.Dockerfile
@@ -11,7 +11,7 @@ COPY . .
ENV LLAMA_CURL=1
-RUN make
+RUN make -j$(nproc)
FROM ubuntu:$UBUNTU_VERSION as runtime
diff --git a/.devops/tools.sh b/.devops/tools.sh
index 3a7d274e4..97424c3aa 100755
--- a/.devops/tools.sh
+++ b/.devops/tools.sh
@@ -8,7 +8,7 @@ arg1="$1"
shift
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
- python3 ./convert.py "$@"
+ python3 ./convert-hf-to-gguf.py "$@"
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
diff --git a/.github/ISSUE_TEMPLATE/06-question.yml b/.github/ISSUE_TEMPLATE/06-question.yml
deleted file mode 100644
index 9d3ff4972..000000000
--- a/.github/ISSUE_TEMPLATE/06-question.yml
+++ /dev/null
@@ -1,38 +0,0 @@
-name: Question
-description: Used to ask questions about llama.cpp
-title: "Question: "
-labels: ["question"]
-body:
- - type: markdown
- attributes:
- value: |
- [Please search your question first in Discussion if you got a common general question.](https://github.com/ggerganov/llama.cpp/discussions/categories/q-a)
-
- - type: checkboxes
- id: prerequisites
- attributes:
- label: Prerequisites
- description: Please confirm the following before submitting your question.
- options:
- - label: I searched using keywords relevant to my issue to make sure that I am creating a new issue that is not already open (or closed).
- required: true
- - label: I reviewed the [Discussions](https://github.com/ggerganov/llama.cpp/discussions), and have a new useful question to share that cannot be answered within Discussions.
- required: true
-
- - type: textarea
- id: background-description
- attributes:
- label: Background Description
- description: Please provide a detailed written description of what you were trying to do, and what you expected `llama.cpp` to do as an question.
- placeholder: Detailed description of your question
- validations:
- required: true
-
- - type: textarea
- id: possible-answer
- attributes:
- label: Possible Answer
- description: If you have some idea of possible answers you want to confirm, that would also be appreciated.
- placeholder: Your idea of possible answers
- validations:
- required: false
diff --git a/.github/ISSUE_TEMPLATE/06-research.yml b/.github/ISSUE_TEMPLATE/06-research.yml
new file mode 100644
index 000000000..3ae4e9f8c
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/06-research.yml
@@ -0,0 +1,52 @@
+name: Research
+description: Track new technical research area
+title: "Research: "
+labels: ["research 🔬"]
+body:
+ - type: markdown
+ attributes:
+ value: |
+ Don't forget to check for any [duplicate research issue tickets](https://github.com/ggerganov/llama.cpp/issues?q=is%3Aopen+is%3Aissue+label%3A%22research+%F0%9F%94%AC%22)
+
+ - type: checkboxes
+ id: research-stage
+ attributes:
+ label: Research Stage
+ description: Track general state of this research ticket
+ options:
+ - label: Background Research (Let's try to avoid reinventing the wheel)
+ - label: Hypothesis Formed (How do you think this will work and it's effect?)
+ - label: Strategy / Implementation Forming
+ - label: Analysis of results
+ - label: Debrief / Documentation (So people in the future can learn from us)
+
+ - type: textarea
+ id: background
+ attributes:
+ label: Previous existing literature and research
+ description: Whats the current state of the art and whats the motivation for this research?
+
+ - type: textarea
+ id: hypothesis
+ attributes:
+ label: Hypothesis
+ description: How do you think this will work and it's effect?
+
+ - type: textarea
+ id: implementation
+ attributes:
+ label: Implementation
+ description: Got an approach? e.g. a PR ready to go?
+
+ - type: textarea
+ id: analysis
+ attributes:
+ label: Analysis
+ description: How does the proposed implementation behave?
+
+ - type: textarea
+ id: logs
+ attributes:
+ label: Relevant log output
+ description: Please copy and paste any relevant log output. This will be automatically formatted into code, so no need for backticks.
+ render: shell
diff --git a/.github/ISSUE_TEMPLATE/config.yml b/.github/ISSUE_TEMPLATE/config.yml
new file mode 100644
index 000000000..c88134dbb
--- /dev/null
+++ b/.github/ISSUE_TEMPLATE/config.yml
@@ -0,0 +1,13 @@
+blank_issues_enabled: true
+contact_links:
+ - name: Got an idea?
+ url: https://github.com/ggerganov/llama.cpp/discussions/categories/ideas
+ about: Pop it there. It may then become an enhancement ticket.
+ - name: Got a question?
+ url: https://github.com/ggerganov/llama.cpp/discussions/categories/q-a
+ about: Ask a question there!
+ - name: Want to contribute?
+ url: https://github.com/ggerganov/llama.cpp/wiki/contribute
+ about: Head to the contribution guide page of the wiki for areas you can help with
+
+
diff --git a/CMakeLists.txt b/CMakeLists.txt
index fbbc38644..52b392a13 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -106,6 +106,7 @@ set(LLAMA_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
"llama: max. batch size for using peer access")
option(LLAMA_CUDA_NO_PEER_COPY "llama: do not use peer to peer copies" OFF)
option(LLAMA_CUDA_NO_VMM "llama: do not try to use CUDA VMM" OFF)
+option(LLAMA_CUDA_FA_ALL_QUANTS "llama: compile all quants for FlashAttention" OFF)
option(LLAMA_CURL "llama: use libcurl to download model from an URL" OFF)
option(LLAMA_HIPBLAS "llama: use hipBLAS" OFF)
@@ -402,6 +403,8 @@ if (LLAMA_CUDA)
file(GLOB GGML_SOURCES_CUDA "ggml-cuda/*.cu")
list(APPEND GGML_SOURCES_CUDA "ggml-cuda.cu")
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-wmma*.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
add_compile_definitions(GGML_USE_CUDA)
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
@@ -427,6 +430,18 @@ if (LLAMA_CUDA)
if (LLAMA_CUDA_NO_PEER_COPY)
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
endif()
+ if (LLAMA_CUDA_FA_ALL_QUANTS)
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
+ add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
+ else()
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
+ list(APPEND GGML_SOURCES_CUDA ${SRCS})
+ endif()
if (LLAMA_STATIC)
if (WIN32)
@@ -571,6 +586,8 @@ if (LLAMA_HIPBLAS)
file(GLOB GGML_SOURCES_ROCM "ggml-cuda/*.cu")
list(APPEND GGML_SOURCES_ROCM "ggml-cuda.cu")
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-wmma*.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
add_compile_definitions(GGML_USE_HIPBLAS GGML_USE_CUDA)
@@ -590,6 +607,19 @@ if (LLAMA_HIPBLAS)
add_compile_definitions(GGML_CUDA_NO_PEER_COPY)
endif()
+ if (LLAMA_CUDA_FA_ALL_QUANTS)
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
+ add_compile_definitions(GGML_CUDA_FA_ALL_QUANTS)
+ else()
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
+ file(GLOB SRCS "ggml-cuda/template-instances/fattn-vec*f16-f16.cu")
+ list(APPEND GGML_SOURCES_ROCM ${SRCS})
+ endif()
+
add_compile_definitions(GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
add_compile_definitions(GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
add_compile_definitions(K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
@@ -1314,7 +1344,7 @@ set_target_properties(llama PROPERTIES PUBLIC_HEADER ${CMAKE_CURRENT_SOURCE_DIR}
install(TARGETS llama LIBRARY PUBLIC_HEADER)
install(
- FILES convert.py
+ FILES convert-hf-to-gguf.py
PERMISSIONS
OWNER_READ
OWNER_WRITE
diff --git a/Makefile b/Makefile
index 5caf31cdf..dfb3bb2cd 100644
--- a/Makefile
+++ b/Makefile
@@ -421,6 +421,15 @@ ifdef LLAMA_CUBLAS
LLAMA_CUDA := 1
endif
+OBJS_CUDA_TEMP_INST = $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-wmma*.cu))
+ifdef LLAMA_CUDA_FA_ALL_QUANTS
+ OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*.cu))
+else
+ OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*q4_0-q4_0.cu))
+ OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*q8_0-q8_0.cu))
+ OBJS_CUDA_TEMP_INST += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/template-instances/fattn-vec*f16-f16.cu))
+endif # LLAMA_CUDA_FA_ALL_QUANTS
+
ifdef LLAMA_CUDA
ifneq ('', '$(wildcard /opt/cuda)')
CUDA_PATH ?= /opt/cuda
@@ -431,6 +440,7 @@ ifdef LLAMA_CUDA
MK_LDFLAGS += -lcuda -lcublas -lculibos -lcudart -lcublasLt -lpthread -ldl -lrt -L$(CUDA_PATH)/lib64 -L/usr/lib64 -L$(CUDA_PATH)/targets/$(UNAME_M)-linux/lib -L/usr/lib/wsl/lib
OBJS += ggml-cuda.o
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
+ OBJS += $(OBJS_CUDA_TEMP_INST)
MK_NVCCFLAGS += -use_fast_math
ifdef LLAMA_FATAL_WARNINGS
MK_NVCCFLAGS += -Werror all-warnings
@@ -493,7 +503,10 @@ ifdef LLAMA_CUDA_NO_PEER_COPY
endif # LLAMA_CUDA_NO_PEER_COPY
ifdef LLAMA_CUDA_CCBIN
MK_NVCCFLAGS += -ccbin $(LLAMA_CUDA_CCBIN)
-endif
+endif # LLAMA_CUDA_CCBIN
+ifdef LLAMA_CUDA_FA_ALL_QUANTS
+ MK_NVCCFLAGS += -DGGML_CUDA_FA_ALL_QUANTS
+endif # LLAMA_CUDA_FA_ALL_QUANTS
ifdef JETSON_EOL_MODULE_DETECT
define NVCC_COMPILE
@@ -505,7 +518,7 @@ define NVCC_COMPILE
endef # NVCC_COMPILE
endif # JETSON_EOL_MODULE_DETECT
-ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
+ggml-cuda/%.o: ggml-cuda/%.cu ggml.h ggml-common.h ggml-cuda/common.cuh
$(NVCC_COMPILE)
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
@@ -571,6 +584,7 @@ ifdef LLAMA_HIP_UMA
MK_CPPFLAGS += -DGGML_HIP_UMA
endif # LLAMA_HIP_UMA
MK_LDFLAGS += -L$(ROCM_PATH)/lib -Wl,-rpath=$(ROCM_PATH)/lib
+ MK_LDFLAGS += -L$(ROCM_PATH)/lib64 -Wl,-rpath=$(ROCM_PATH)/lib64
MK_LDFLAGS += -lhipblas -lamdhip64 -lrocblas
HIPFLAGS += $(addprefix --offload-arch=,$(AMDGPU_TARGETS))
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
@@ -584,11 +598,12 @@ ifdef LLAMA_CUDA_NO_PEER_COPY
endif # LLAMA_CUDA_NO_PEER_COPY
OBJS += ggml-cuda.o
OBJS += $(patsubst %.cu,%.o,$(wildcard ggml-cuda/*.cu))
+ OBJS += $(OBJS_CUDA_TEMP_INST)
ggml-cuda.o: ggml-cuda.cu ggml-cuda.h ggml.h ggml-backend.h ggml-backend-impl.h ggml-common.h $(wildcard ggml-cuda/*.cuh)
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
-ggml-cuda/%.o: ggml-cuda/%.cu ggml-cuda/%.cuh ggml.h ggml-common.h ggml-cuda/common.cuh
+ggml-cuda/%.o: ggml-cuda/%.cu ggml.h ggml-common.h ggml-cuda/common.cuh
$(HIPCC) $(CXXFLAGS) $(HIPFLAGS) -x hip -c -o $@ $<
endif # LLAMA_HIPBLAS
@@ -748,6 +763,7 @@ libllama.a: llama.o ggml.o $(OBJS) $(COMMON_DEPS)
clean:
rm -vrf *.o tests/*.o *.so *.a *.dll benchmark-matmult lookup-create lookup-merge lookup-stats common/build-info.cpp *.dot $(COV_TARGETS) $(BUILD_TARGETS) $(TEST_TARGETS)
rm -vrf ggml-cuda/*.o
+ rm -vrf ggml-cuda/template-instances/*.o
find examples pocs -type f -name "*.o" -delete
#
diff --git a/README.md b/README.md
index 1cedc0d9a..4791f84af 100644
--- a/README.md
+++ b/README.md
@@ -2,7 +2,9 @@

-[](https://opensource.org/licenses/MIT) [](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
+[](https://opensource.org/licenses/MIT)
+[](https://github.com/ggerganov/llama.cpp/actions/workflows/server.yml)
+[](https://conan.io/center/llama-cpp)
[Roadmap](https://github.com/users/ggerganov/projects/7) / [Project status](https://github.com/ggerganov/llama.cpp/discussions/3471) / [Manifesto](https://github.com/ggerganov/llama.cpp/discussions/205) / [ggml](https://github.com/ggerganov/ggml)
@@ -20,7 +22,8 @@ Inference of Meta's [LLaMA](https://arxiv.org/abs/2302.13971) model (and others)
### Hot topics
-- **Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021**
+- **`convert.py` has been deprecated and moved to `examples/convert-legacy-llama.py`, please use `convert-hf-to-gguf.py`** https://github.com/ggerganov/llama.cpp/pull/7430
+- Initial Flash-Attention support: https://github.com/ggerganov/llama.cpp/pull/5021
- BPE pre-tokenization support has been added: https://github.com/ggerganov/llama.cpp/pull/6920
- MoE memory layout has been updated - reconvert models for `mmap` support and regenerate `imatrix` https://github.com/ggerganov/llama.cpp/pull/6387
- Model sharding instructions using `gguf-split` https://github.com/ggerganov/llama.cpp/discussions/6404
@@ -200,6 +203,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [KodiBot](https://github.com/firatkiral/kodibot) (GPL)
- [eva](https://github.com/ylsdamxssjxxdd/eva) (MIT)
- [AI Sublime Text plugin](https://github.com/yaroslavyaroslav/OpenAI-sublime-text) (MIT)
+- [AIKit](https://github.com/sozercan/aikit) (MIT)
*(to have a project listed here, it should clearly state that it depends on `llama.cpp`)*
@@ -386,6 +390,14 @@ In order to build llama.cpp you have four different options.
CLBLAST support for use OpenCL GPU acceleration in FreeBSD. Please read
the instructions for use and activate this options in this document below.
+### Homebrew
+
+On Mac and Linux, the homebrew package manager can be used via
+```
+brew install llama.cpp
+```
+The formula is automatically updated with new `llama.cpp` releases. More info: https://github.com/ggerganov/llama.cpp/discussions/7668
+
### Metal Build
On MacOS, Metal is enabled by default. Using Metal makes the computation run on the GPU.
@@ -489,6 +501,7 @@ Building the program with BLAS support may lead to some performance improvements
| LLAMA_CUDA_F16 | Boolean | false | If enabled, use half-precision floating point arithmetic for the CUDA dequantization + mul mat vec kernels and for the q4_1 and q5_1 matrix matrix multiplication kernels. Can improve performance on relatively recent GPUs. |
| LLAMA_CUDA_KQUANTS_ITER | 1 or 2 | 2 | Number of values processed per iteration and per CUDA thread for Q2_K and Q6_K quantization formats. Setting this value to 1 can improve performance for slow GPUs. |
| LLAMA_CUDA_PEER_MAX_BATCH_SIZE | Positive integer | 128 | Maximum batch size for which to enable peer access between multiple GPUs. Peer access requires either Linux or NVLink. When using NVLink enabling peer access for larger batch sizes is potentially beneficial. |
+ | LLAMA_CUDA_FA_ALL_QUANTS | Boolean | false | Compile support for all KV cache quantization type (combinations) for the FlashAttention CUDA kernels. More fine-grained control over KV cache size but compilation takes much longer. |
- #### hipBLAS
@@ -704,7 +717,8 @@ Building the program with BLAS support may lead to some performance improvements
To obtain the official LLaMA 2 weights please see the Obtaining and using the Facebook LLaMA 2 model section. There is also a large selection of pre-quantized `gguf` models available on Hugging Face.
-Note: `convert.py` does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
+Note: `convert.py` has been moved to `examples/convert-legacy-llama.py` and shouldn't be used for anything other than `Llama/Llama2/Mistral` models and their derievatives.
+It does not support LLaMA 3, you can use `convert-hf-to-gguf.py` with LLaMA 3 downloaded from Hugging Face.
```bash
# obtain the official LLaMA model weights and place them in ./models
@@ -721,10 +735,10 @@ ls ./models
python3 -m pip install -r requirements.txt
# convert the model to ggml FP16 format
-python3 convert.py models/mymodel/
+python3 convert-hf-to-gguf.py models/mymodel/
# [Optional] for models using BPE tokenizers
-python convert.py models/mymodel/ --vocab-type bpe
+python convert-hf-to-gguf.py models/mymodel/ --vocab-type bpe
# quantize the model to 4-bits (using Q4_K_M method)
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M
diff --git a/ci/run.sh b/ci/run.sh
index 940299025..3fc5f48b2 100755
--- a/ci/run.sh
+++ b/ci/run.sh
@@ -287,7 +287,7 @@ function gg_run_open_llama_7b_v2 {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
- python3 ../convert.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
+ python3 ../examples/convert-legacy-llama.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py
index 98b50d150..ad071b974 100755
--- a/convert-hf-to-gguf.py
+++ b/convert-hf-to-gguf.py
@@ -25,8 +25,6 @@ if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
import gguf
-from convert import LlamaHfVocab
-
logger = logging.getLogger("hf-to-gguf")
@@ -634,7 +632,7 @@ class Model:
special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_llama_hf(self):
- vocab = LlamaHfVocab(self.dir_model)
+ vocab = gguf.LlamaHfVocab(self.dir_model)
tokens = []
scores = []
toktypes = []
@@ -2842,7 +2840,12 @@ def main() -> None:
hparams = Model.load_hparams(dir_model)
with torch.inference_mode():
- model_class = Model.from_model_architecture(hparams["architectures"][0])
+ try:
+ model_class = Model.from_model_architecture(hparams["architectures"][0])
+ except NotImplementedError:
+ logger.error(f"Model {hparams['architectures'][0]} is not supported")
+ sys.exit(1)
+
model_instance = model_class(dir_model, ftype_map[args.outtype], fname_out, args.bigendian, args.use_temp_file, args.no_lazy)
logger.info("Set model parameters")
diff --git a/docs/HOWTO-add-model.md b/docs/HOWTO-add-model.md
index 48769cdf6..138124248 100644
--- a/docs/HOWTO-add-model.md
+++ b/docs/HOWTO-add-model.md
@@ -17,7 +17,7 @@ Also, it is important to check that the examples and main ggml backends (CUDA, M
### 1. Convert the model to GGUF
This step is done in python with a `convert` script using the [gguf](https://pypi.org/project/gguf/) library.
-Depending on the model architecture, you can use either [convert.py](../convert.py) or [convert-hf-to-gguf.py](../convert-hf-to-gguf.py).
+Depending on the model architecture, you can use either [convert-hf-to-gguf.py](../convert-hf-to-gguf.py) or [examples/convert-legacy-llama.py](../examples/convert-legacy-llama.py) (for `llama/llama2` models in `.pth` format).
The convert script reads the model configuration, tokenizer, tensor names+data and converts them to GGUF metadata and tensors.
diff --git a/convert.py b/examples/convert-legacy-llama.py
similarity index 82%
rename from convert.py
rename to examples/convert-legacy-llama.py
index da1247957..fd8401015 100755
--- a/convert.py
+++ b/examples/convert-legacy-llama.py
@@ -24,14 +24,16 @@ from abc import ABC, abstractmethod
from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor
from dataclasses import dataclass
from pathlib import Path
-from typing import TYPE_CHECKING, Any, Callable, ClassVar, IO, Iterable, Literal, Protocol, TypeVar, runtime_checkable, Optional
+from typing import TYPE_CHECKING, Any, Callable, IO, Iterable, Literal, TypeVar, Optional
import numpy as np
-from sentencepiece import SentencePieceProcessor
if 'NO_LOCAL_GGUF' not in os.environ:
- sys.path.insert(1, str(Path(__file__).parent / 'gguf-py'))
+ # use .parent.parent since we are in "examples" directory
+ sys.path.insert(1, str(Path(__file__).parent.parent / 'gguf-py'))
+
import gguf
+from gguf import BaseVocab, Vocab, NoVocab, BpeVocab, SentencePieceVocab, LlamaHfVocab
if TYPE_CHECKING:
from typing_extensions import Self, TypeAlias
@@ -380,306 +382,6 @@ class Metadata:
return metadata
-#
-# vocab
-#
-
-
-@runtime_checkable
-class BaseVocab(Protocol):
- tokenizer_model: ClassVar[str]
- name: ClassVar[str]
-
-
-class NoVocab(BaseVocab):
- tokenizer_model = "no_vocab"
- name = "no_vocab"
-
- def __repr__(self) -> str:
- return ""
-
-
-@runtime_checkable
-class Vocab(BaseVocab, Protocol):
- vocab_size: int
- added_tokens_dict: dict[str, int]
- added_tokens_list: list[str]
- fname_tokenizer: Path
-
- def __init__(self, base_path: Path): ...
- def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
-
-
-class BpeVocab(Vocab):
- tokenizer_model = "gpt2"
- name = "bpe"
-
- def __init__(self, base_path: Path):
- added_tokens: dict[str, int] = {}
-
- if (fname_tokenizer := base_path / 'vocab.json').exists():
- # "slow" tokenizer
- with open(fname_tokenizer, encoding="utf-8") as f:
- self.vocab = json.load(f)
-
- try:
- # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
- with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
- added_tokens = json.load(f)
- except FileNotFoundError:
- pass
- else:
- # "fast" tokenizer
- fname_tokenizer = base_path / FAST_TOKENIZER_FILE
-
- # if this fails, FileNotFoundError propagates to caller
- with open(fname_tokenizer, encoding="utf-8") as f:
- tokenizer_json = json.load(f)
-
- tokenizer_model: dict[str, Any] = tokenizer_json['model']
- if (
- tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
- or tokenizer_json['decoder']['type'] != 'ByteLevel'
- ):
- raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
-
- self.vocab = tokenizer_model["vocab"]
-
- if (added := tokenizer_json.get('added_tokens')) is not None:
- # Added tokens here can be duplicates of the main vocabulary.
- added_tokens = {item['content']: item['id']
- for item in added
- if item['content'] not in self.vocab}
-
- vocab_size = len(self.vocab)
- expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
- actual_ids = sorted(added_tokens.values())
- if expected_ids != actual_ids:
- expected_end_id = vocab_size + len(actual_ids) - 1
- raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
- f"{vocab_size} - {expected_end_id}; got {actual_ids}")
-
- items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
- self.added_tokens_dict = added_tokens
- self.added_tokens_list = [text for (text, idx) in items]
- self.vocab_size_base = vocab_size
- self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
- self.fname_tokenizer = fname_tokenizer
-
- def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
- reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
-
- for i, _ in enumerate(self.vocab):
- yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
-
- def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
- for text in self.added_tokens_list:
- score = -1000.0
- yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
-
- def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
- yield from self.bpe_tokens()
- yield from self.added_tokens()
-
- def __repr__(self) -> str:
- return f""
-
-
-class SentencePieceVocab(Vocab):
- tokenizer_model = "llama"
- name = "spm"
-
- def __init__(self, base_path: Path):
- added_tokens: dict[str, int] = {}
- if (fname_tokenizer := base_path / 'tokenizer.model').exists():
- # normal location
- try:
- with open(base_path / ADDED_TOKENS_FILE, encoding="utf-8") as f:
- added_tokens = json.load(f)
- except FileNotFoundError:
- pass
- elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
- # not found in alternate location either
- raise FileNotFoundError('Cannot find tokenizer.model')
-
- self.sentencepiece_tokenizer = SentencePieceProcessor()
- self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
- vocab_size = self.sentencepiece_tokenizer.vocab_size()
-
- new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
- expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
- actual_new_ids = sorted(new_tokens.keys())
-
- if expected_new_ids != actual_new_ids:
- raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
-
- # Token pieces that were added to the base vocabulary.
- self.added_tokens_dict = added_tokens
- self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
- self.vocab_size_base = vocab_size
- self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
- self.fname_tokenizer = fname_tokenizer
-
- def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
- tokenizer = self.sentencepiece_tokenizer
- for i in range(tokenizer.vocab_size()):
- piece = tokenizer.IdToPiece(i)
- text = piece.encode("utf-8")
- score: float = tokenizer.GetScore(i)
-
- toktype = gguf.TokenType.NORMAL
- if tokenizer.IsUnknown(i):
- toktype = gguf.TokenType.UNKNOWN
- if tokenizer.IsControl(i):
- toktype = gguf.TokenType.CONTROL
-
- # NOTE: I think added_tokens are user defined.
- # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
- # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
-
- if tokenizer.IsUnused(i):
- toktype = gguf.TokenType.UNUSED
- if tokenizer.IsByte(i):
- toktype = gguf.TokenType.BYTE
-
- yield text, score, toktype
-
- def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
- for text in self.added_tokens_list:
- score = -1000.0
- yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
-
- def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
- yield from self.sentencepiece_tokens()
- yield from self.added_tokens()
-
- def __repr__(self) -> str:
- return f""
-
-
-class LlamaHfVocab(Vocab):
- tokenizer_model = "llama"
- name = "hfft"
-
- def __init__(self, base_path: Path):
- fname_tokenizer = base_path / FAST_TOKENIZER_FILE
- # if this fails, FileNotFoundError propagates to caller
- with open(fname_tokenizer, encoding='utf-8') as f:
- tokenizer_json = json.load(f)
-
- # pre-check so we know if we need transformers
- tokenizer_model: dict[str, Any] = tokenizer_json['model']
- is_llama3 = (
- tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
- and not tokenizer_model.get('byte_fallback', True)
- )
- if is_llama3:
- raise TypeError('Llama 3 must be converted with BpeVocab')
-
- if not is_llama3 and (
- tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
- or tokenizer_json['decoder']['type'] != 'Sequence'
- ):
- raise FileNotFoundError('Cannot find Llama BPE tokenizer')
-
- try:
- from transformers import AutoTokenizer
- except ImportError as e:
- raise ImportError(
- "To use LlamaHfVocab, please install the `transformers` package. "
- "You can install it with `pip install transformers`."
- ) from e
-
- # Allow the tokenizer to default to slow or fast versions.
- # Explicitly set tokenizer to use local paths.
- self.tokenizer = AutoTokenizer.from_pretrained(
- base_path,
- cache_dir=base_path,
- local_files_only=True,
- )
- assert self.tokenizer.is_fast # assume tokenizer.json is used
-
- # Initialize lists and dictionaries for added tokens
- self.added_tokens_list = []
- self.added_tokens_dict = dict()
- self.added_tokens_ids = set()
-
- # Process added tokens
- for tok, tokidx in sorted(
- self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
- ):
- # Only consider added tokens that are not in the base vocabulary
- if tokidx >= self.tokenizer.vocab_size:
- self.added_tokens_list.append(tok)
- self.added_tokens_dict[tok] = tokidx
- self.added_tokens_ids.add(tokidx)
-
- # Store special tokens and their IDs
- self.specials = {
- tok: self.tokenizer.get_vocab()[tok]
- for tok in self.tokenizer.all_special_tokens
- }
- self.special_ids = set(self.tokenizer.all_special_ids)
-
- # Set vocabulary sizes
- self.vocab_size_base = self.tokenizer.vocab_size
- self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
-
- self.fname_tokenizer = fname_tokenizer
-
- def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
- reverse_vocab = {
- id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
- }
-
- for token_id in range(self.vocab_size_base):
- # Skip processing added tokens here
- if token_id in self.added_tokens_ids:
- continue
-
- # Convert token text to bytes
- token_text = reverse_vocab[token_id].encode("utf-8")
-
- # Yield token text, score, and type
- yield token_text, self.get_token_score(token_id), self.get_token_type(
- token_id, token_text, self.special_ids # Reuse already stored special IDs
- )
-
- def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
- # Special case for byte tokens
- if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
- return gguf.TokenType.BYTE
-
- # Determine token type based on whether it's a special token
- return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
-
- def get_token_score(self, token_id: int) -> float:
- # Placeholder for actual logic to determine the token's score
- # This needs to be implemented based on specific requirements
- return -1000.0 # Default score
-
- def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
- for text in self.added_tokens_list:
- if text in self.specials:
- toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
- score = self.get_token_score(self.specials[text])
- else:
- toktype = gguf.TokenType.USER_DEFINED
- score = -1000.0
-
- yield text.encode("utf-8"), score, toktype
-
- def has_newline_token(self):
- return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
-
- def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
- yield from self.hf_tokens()
- yield from self.added_tokens()
-
- def __repr__(self) -> str:
- return f""
-
-
#
# data loading
# TODO: reuse (probably move to gguf.py?)
diff --git a/examples/llava/MobileVLM-README.md b/examples/llava/MobileVLM-README.md
index 413e433dd..74f021dec 100644
--- a/examples/llava/MobileVLM-README.md
+++ b/examples/llava/MobileVLM-README.md
@@ -54,10 +54,10 @@ python ./examples/llava/convert-image-encoder-to-gguf \
--projector-type ldpv2
```
-4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
+4. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
-python ./convert.py path/to/MobileVLM-1.7B
+python ./examples/convert-legacy-llama.py path/to/MobileVLM-1.7B
```
5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k`
diff --git a/examples/llava/README.md b/examples/llava/README.md
index 4fb0cf381..8d1ae5270 100644
--- a/examples/llava/README.md
+++ b/examples/llava/README.md
@@ -50,10 +50,10 @@ python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
-5. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:
+5. Use `examples/convert-legacy-llama.py` to convert the LLaMA part of LLaVA to GGUF:
```sh
-python ./convert.py ../llava-v1.5-7b --skip-unknown
+python ./examples/convert-legacy-llama.py ../llava-v1.5-7b --skip-unknown
```
Now both the LLaMA part and the image encoder are in the `llava-v1.5-7b` directory.
@@ -92,7 +92,7 @@ python ./examples/llava/convert-image-encoder-to-gguf.py -m vit --llava-projecto
6) Then convert the model to gguf format:
```console
-python ./convert.py ../llava-v1.6-vicuna-7b/ --skip-unknown
+python ./examples/convert-legacy-llama.py ../llava-v1.6-vicuna-7b/ --skip-unknown
```
7) And finally we can run the llava-cli using the 1.6 model version:
diff --git a/examples/llava/requirements.txt b/examples/llava/requirements.txt
index f80f727a7..17cb4d5e5 100644
--- a/examples/llava/requirements.txt
+++ b/examples/llava/requirements.txt
@@ -1,3 +1,3 @@
--r ../../requirements/requirements-convert.txt
+-r ../../requirements/requirements-convert-legacy-llama.txt
pillow~=10.2.0
torch~=2.1.1
diff --git a/examples/make-ggml.py b/examples/make-ggml.py
deleted file mode 100755
index c73485ebf..000000000
--- a/examples/make-ggml.py
+++ /dev/null
@@ -1,98 +0,0 @@
-#!/usr/bin/env python3
-"""
-This script converts Hugging Face Llama, StarCoder, Falcon, Baichuan, and GPT-NeoX models to GGUF and quantizes them.
-
-Usage:
-python make-ggml.py {model_dir_or_hf_repo_name} --model_type {model_type} [--outname {output_name} (Optional)] [--outdir {output_directory} (Optional)] [--quants {quant_types} (Optional)] [--keep_fp16 (Optional)]
-
-Arguments:
-- model: (Required) The directory of the downloaded Hugging Face model or the name of the Hugging Face model repository. If the model directory does not exist, it will be downloaded from the Hugging Face model hub.
-- --model_type: (Required) The type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.
-- --outname: (Optional) The name of the output model. If not specified, the last part of the model directory path or the Hugging Face model repo name will be used.
-- --outdir: (Optional) The directory where the output model(s) will be stored. If not specified, '../models/{outname}' will be used.
-- --quants: (Optional) The types of quantization to apply. This should be a space-separated list. The default is 'Q4_K_M Q5_K_S'.
-- --keep_fp16: (Optional) If specified, the FP16 model will not be deleted after the quantized models are created.
-
-Old quant types (some base model types require these):
-- Q4_0: small, very high quality loss - legacy, prefer using Q3_K_M
-- Q4_1: small, substantial quality loss - legacy, prefer using Q3_K_L
-- Q5_0: medium, balanced quality - legacy, prefer using Q4_K_M
-- Q5_1: medium, low quality loss - legacy, prefer using Q5_K_M
-
-New quant types (recommended):
-- Q2_K: smallest, extreme quality loss - not recommended
-- Q3_K: alias for Q3_K_M
-- Q3_K_S: very small, very high quality loss
-- Q3_K_M: very small, very high quality loss
-- Q3_K_L: small, substantial quality loss
-- Q4_K: alias for Q4_K_M
-- Q4_K_S: small, significant quality loss
-- Q4_K_M: medium, balanced quality - recommended
-- Q5_K: alias for Q5_K_M
-- Q5_K_S: large, low quality loss - recommended
-- Q5_K_M: large, very low quality loss - recommended
-- Q6_K: very large, extremely low quality loss
-- Q8_0: very large, extremely low quality loss - not recommended
-- F16: extremely large, virtually no quality loss - not recommended
-- F32: absolutely huge, lossless - not recommended
-"""
-import subprocess
-subprocess.run(f"pip install huggingface-hub==0.16.4", shell=True, check=True)
-
-import argparse
-import os
-from huggingface_hub import snapshot_download
-
-def main(model, model_type, outname, outdir, quants, keep_fp16):
- if not os.path.isdir(model):
- print(f"Model not found at {model}. Downloading...")
- try:
- if outname is None:
- outname = model.split('/')[-1]
- model = snapshot_download(repo_id=model, cache_dir='../models/hf_cache')
- except Exception as e:
- raise Exception(f"Could not download the model: {e}")
-
- if outdir is None:
- outdir = f'../models/{outname}'
-
- if not os.path.isfile(f"{model}/config.json"):
- raise Exception(f"Could not find config.json in {model}")
-
- os.makedirs(outdir, exist_ok=True)
-
- print("Building llama.cpp")
- subprocess.run(f"cd .. && make quantize", shell=True, check=True)
-
- fp16 = f"{outdir}/{outname}.gguf.fp16.bin"
-
- print(f"Making unquantised GGUF at {fp16}")
- if not os.path.isfile(fp16):
- if model_type != "llama":
- subprocess.run(f"python3 ../convert-{model_type}-hf-to-gguf.py {model} 1 --outfile {fp16}", shell=True, check=True)
- else:
- subprocess.run(f"python3 ../convert.py {model} --outtype f16 --outfile {fp16}", shell=True, check=True)
- else:
- print(f"Unquantised GGML already exists at: {fp16}")
-
- print("Making quants")
- for type in quants:
- outfile = f"{outdir}/{outname}.gguf.{type}.bin"
- print(f"Making {type} : {outfile}")
- subprocess.run(f"../quantize {fp16} {outfile} {type}", shell=True, check=True)
-
- if not keep_fp16:
- os.remove(fp16)
-
-if __name__ == "__main__":
- parser = argparse.ArgumentParser(description='Convert/Quantize HF models to GGUF. If you have the HF model downloaded already, pass the path to the model dir. Otherwise, pass the Hugging Face model repo name. You need to be in the /examples folder for it to work.')
- parser.add_argument('model', help='Downloaded model dir or Hugging Face model repo name')
- parser.add_argument('--model_type', required=True, choices=['llama', 'starcoder', 'falcon', 'baichuan', 'gptneox'], help='Type of the model to be converted. Choose from llama, starcoder, falcon, baichuan, or gptneox.')
- parser.add_argument('--outname', default=None, help='Output model(s) name')
- parser.add_argument('--outdir', default=None, help='Output directory')
- parser.add_argument('--quants', nargs='*', default=["Q4_K_M", "Q5_K_S"], help='Quant types')
- parser.add_argument('--keep_fp16', action='store_true', help='Keep fp16 model', default=False)
-
- args = parser.parse_args()
-
- main(args.model, args.model_type, args.outname, args.outdir, args.quants, args.keep_fp16)
diff --git a/examples/server/public/index.js b/examples/server/public/index.js
index 695aec256..670960939 100644
--- a/examples/server/public/index.js
+++ b/examples/server/public/index.js
@@ -1 +1 @@
-const t=Symbol.for("preact-signals");function n(){if(r>1){r--;return}let t,n=!1;while(void 0!==i){let _=i;i=void 0;u++;while(void 0!==_){const i=_.o;_.o=void 0;_.f&=-3;if(!(8&_.f)&&h(_))try{_.c()}catch(e){if(!n){t=e;n=!0}}_=i}}u=0;r--;if(n)throw t}function e(t){if(r>0)return t();r++;try{return t()}finally{n()}}let _,i;function o(t){const n=_;_=void 0;try{return t()}finally{_=n}}let r=0,u=0,l=0;function s(t){if(void 0===_)return;let n=t.n;if(void 0===n||n.t!==_){n={i:0,S:t,p:_.s,n:void 0,t:_,e:void 0,x:void 0,r:n};if(void 0!==_.s)_.s.n=n;_.s=n;t.n=n;if(32&_.f)t.S(n);return n}else if(-1===n.i){n.i=0;if(void 0!==n.n){n.n.p=n.p;if(void 0!==n.p)n.p.n=n.n;n.p=_.s;n.n=void 0;_.s.n=n;_.s=n}return n}}function f(t){this.v=t;this.i=0;this.n=void 0;this.t=void 0}f.prototype.brand=t;f.prototype.h=function(){return!0};f.prototype.S=function(t){if(this.t!==t&&void 0===t.e){t.x=this.t;if(void 0!==this.t)this.t.e=t;this.t=t}};f.prototype.U=function(t){if(void 0!==this.t){const n=t.e,e=t.x;if(void 0!==n){n.x=e;t.e=void 0}if(void 0!==e){e.e=n;t.x=void 0}if(t===this.t)this.t=e}};f.prototype.subscribe=function(t){return k(()=>{const n=this.value,e=_;_=void 0;try{t(n)}finally{_=e}})};f.prototype.valueOf=function(){return this.value};f.prototype.toString=function(){return this.value+""};f.prototype.toJSON=function(){return this.value};f.prototype.peek=function(){const t=_;_=void 0;try{return this.value}finally{_=t}};Object.defineProperty(f.prototype,"value",{get(){const t=s(this);if(void 0!==t)t.i=this.i;return this.v},set(t){if(t!==this.v){if(u>100)throw new Error("Cycle detected");this.v=t;this.i++;l++;r++;try{for(let t=this.t;void 0!==t;t=t.x)t.t.N()}finally{n()}}}});function c(t){return new f(t)}function h(t){for(let n=t.s;void 0!==n;n=n.n)if(n.S.i!==n.i||!n.S.h()||n.S.i!==n.i)return!0;return!1}function a(t){for(let n=t.s;void 0!==n;n=n.n){const e=n.S.n;if(void 0!==e)n.r=e;n.S.n=n;n.i=-1;if(void 0===n.n){t.s=n;break}}}function p(t){let n,e=t.s;while(void 0!==e){const t=e.p;if(-1===e.i){e.S.U(e);if(void 0!==t)t.n=e.n;if(void 0!==e.n)e.n.p=t}else n=e;e.S.n=e.r;if(void 0!==e.r)e.r=void 0;e=t}t.s=n}function d(t){f.call(this,void 0);this.x=t;this.s=void 0;this.g=l-1;this.f=4}(d.prototype=new f).h=function(){this.f&=-3;if(1&this.f)return!1;if(32==(36&this.f))return!0;this.f&=-5;if(this.g===l)return!0;this.g=l;this.f|=1;if(this.i>0&&!h(this)){this.f&=-2;return!0}const t=_;try{a(this);_=this;const t=this.x();if(16&this.f||this.v!==t||0===this.i){this.v=t;this.f&=-17;this.i++}}catch(t){this.v=t;this.f|=16;this.i++}_=t;p(this);this.f&=-2;return!0};d.prototype.S=function(t){if(void 0===this.t){this.f|=36;for(let t=this.s;void 0!==t;t=t.n)t.S.S(t)}f.prototype.S.call(this,t)};d.prototype.U=function(t){if(void 0!==this.t){f.prototype.U.call(this,t);if(void 0===this.t){this.f&=-33;for(let t=this.s;void 0!==t;t=t.n)t.S.U(t)}}};d.prototype.N=function(){if(!(2&this.f)){this.f|=6;for(let t=this.t;void 0!==t;t=t.x)t.t.N()}};Object.defineProperty(d.prototype,"value",{get(){if(1&this.f)throw new Error("Cycle detected");const t=s(this);this.h();if(void 0!==t)t.i=this.i;if(16&this.f)throw this.v;return this.v}});function v(t){return new d(t)}function y(t){const e=t.u;t.u=void 0;if("function"==typeof e){r++;const i=_;_=void 0;try{e()}catch(n){t.f&=-2;t.f|=8;m(t);throw n}finally{_=i;n()}}}function m(t){for(let n=t.s;void 0!==n;n=n.n)n.S.U(n);t.x=void 0;t.s=void 0;y(t)}function g(t){if(_!==this)throw new Error("Out-of-order effect");p(this);_=t;this.f&=-2;if(8&this.f)m(this);n()}function b(t){this.x=t;this.u=void 0;this.s=void 0;this.o=void 0;this.f=32}b.prototype.c=function(){const t=this.S();try{if(8&this.f)return;if(void 0===this.x)return;const n=this.x();if("function"==typeof n)this.u=n}finally{t()}};b.prototype.S=function(){if(1&this.f)throw new Error("Cycle detected");this.f|=1;this.f&=-9;y(this);a(this);r++;const t=_;_=this;return g.bind(this,t)};b.prototype.N=function(){if(!(2&this.f)){this.f|=2;this.o=i;i=this}};b.prototype.d=function(){this.f|=8;if(!(1&this.f))m(this)};function k(t){const n=new b(t);try{n.c()}catch(t){n.d();throw t}return n.d.bind(n)}var S,w,x,C,E,U,H,P,N,$,D,T,F={},V=[],A=/acit|ex(?:s|g|n|p|$)|rph|grid|ows|mnc|ntw|ine[ch]|zoo|^ord|itera/i,M=Array.isArray;function W(t,n){for(var e in n)t[e]=n[e];return t}function O(t){var n=t.parentNode;n&&n.removeChild(t)}function L(t,n,e){var _,i,o,r={};for(o in n)"key"==o?_=n[o]:"ref"==o?i=n[o]:r[o]=n[o];if(arguments.length>2&&(r.children=arguments.length>3?S.call(arguments,2):e),"function"==typeof t&&null!=t.defaultProps)for(o in t.defaultProps)void 0===r[o]&&(r[o]=t.defaultProps[o]);return R(t,r,_,i,null)}function R(t,n,e,_,i){var o={type:t,props:n,key:e,ref:_,__k:null,__:null,__b:0,__e:null,__d:void 0,__c:null,constructor:void 0,__v:null==i?++x:i,__i:-1,__u:0};return null==i&&null!=w.vnode&&w.vnode(o),o}function I(){return{current:null}}function j(t){return t.children}function q(t,n){this.props=t,this.context=n}function B(t,n){if(null==n)return t.__?B(t.__,t.__i+1):null;for(var e;nn&&E.sort(P));J.__r=0}function K(t,n,e,_,i,o,r,u,l,s,f){var c,h,a,p,d,v=_&&_.__k||V,y=n.length;for(e.__d=l,Q(e,n,v),l=e.__d,c=0;c0?R(i.type,i.props,i.key,i.ref?i.ref:null,i.__v):i)?(i.__=t,i.__b=t.__b+1,u=Z(i,e,r,f),i.__i=u,o=null,-1!==u&&(f--,(o=e[u])&&(o.__u|=131072)),null==o||null===o.__v?(-1==u&&c--,"function"!=typeof i.type&&(i.__u|=65536)):u!==r&&(u===r+1?c++:u>r?f>l-r?c+=u-r:c--:u(null!=l&&0==(131072&l.__u)?1:0))for(;r>=0||u=0){if((l=n[r])&&0==(131072&l.__u)&&i==l.key&&o===l.type)return r;r--}if(u2&&(u.children=arguments.length>3?S.call(arguments,2):e),R(t.type,u,_||t.key,i||t.ref,null)}function ht(t,n){var e={__c:n="__cC"+T++,__:t,Consumer:function(t,n){return t.children(n)},Provider:function(t){var e,_;return this.getChildContext||(e=[],(_={})[n]=this,this.getChildContext=function(){return _},this.shouldComponentUpdate=function(t){this.props.value!==t.value&&e.some((function(t){t.__e=!0,z(t)}))},this.sub=function(t){e.push(t);var n=t.componentWillUnmount;t.componentWillUnmount=function(){e.splice(e.indexOf(t),1),n&&n.call(t)}}),t.children}};return e.Provider.__=e.Consumer.contextType=e}S=V.slice,w={__e:function(t,n,e,_){for(var i,o,r;n=n.__;)if((i=n.__c)&&!i.__)try{if((o=i.constructor)&&null!=o.getDerivedStateFromError&&(i.setState(o.getDerivedStateFromError(t)),r=i.__d),null!=i.componentDidCatch&&(i.componentDidCatch(t,_||{}),r=i.__d),r)return i.__E=i}catch(n){t=n}throw t}},x=0,C=function(t){return null!=t&&null==t.constructor},q.prototype.setState=function(t,n){var e;e=null!=this.__s&&this.__s!==this.state?this.__s:this.__s=W({},this.state),"function"==typeof t&&(t=t(W({},e),this.props)),t&&W(e,t),null!=t&&this.__v&&(n&&this._sb.push(n),z(this))},q.prototype.forceUpdate=function(t){this.__v&&(this.__e=!0,t&&this.__h.push(t),z(this))},q.prototype.render=j,E=[],H="function"==typeof Promise?Promise.prototype.then.bind(Promise.resolve()):setTimeout,P=function(t,n){return t.__v.__b-n.__v.__b},J.__r=0,N=0,$=et(!1),D=et(!0),T=0;var at,pt,dt,vt,yt=0,mt=[],gt=[],bt=w,kt=bt.__b,St=bt.__r,wt=bt.diffed,xt=bt.__c,Ct=bt.unmount,Et=bt.__;function Ut(t,n){bt.__h&&bt.__h(pt,t,yt||n),yt=0;var e=pt.__H||(pt.__H={__:[],__h:[]});return t>=e.__.length&&e.__.push({__V:gt}),e.__[t]}function Ht(t){return yt=1,Pt(Gt,t)}function Pt(t,n,e){var _=Ut(at++,2);if(_.t=t,!_.__c&&(_.__=[e?e(n):Gt(void 0,n),function(t){var n=_.__N?_.__N[0]:_.__[0],e=_.t(n,t);n!==e&&(_.__N=[e,_.__[1]],_.__c.setState({}))}],_.__c=pt,!pt.u)){var i=function(t,n,e){if(!_.__c.__H)return!0;var i=_.__c.__H.__.filter((function(t){return!!t.__c}));if(i.every((function(t){return!t.__N})))return!o||o.call(this,t,n,e);var r=!1;return i.forEach((function(t){if(t.__N){var n=t.__[0];t.__=t.__N,t.__N=void 0,n!==t.__[0]&&(r=!0)}})),!(!r&&_.__c.props===t)&&(!o||o.call(this,t,n,e))};pt.u=!0;var o=pt.shouldComponentUpdate,r=pt.componentWillUpdate;pt.componentWillUpdate=function(t,n,e){if(this.__e){var _=o;o=void 0,i(t,n,e),o=_}r&&r.call(this,t,n,e)},pt.shouldComponentUpdate=i}return _.__N||_.__}function Nt(t,n){var e=Ut(at++,3);!bt.__s&&Bt(e.__H,n)&&(e.__=t,e.i=n,pt.__H.__h.push(e))}function $t(t,n){var e=Ut(at++,4);!bt.__s&&Bt(e.__H,n)&&(e.__=t,e.i=n,pt.__h.push(e))}function Dt(t){return yt=5,Ft((function(){return{current:t}}),[])}function Tt(t,n,e){yt=6,$t((function(){return"function"==typeof t?(t(n()),function(){return t(null)}):t?(t.current=n(),function(){return t.current=null}):void 0}),null==e?e:e.concat(t))}function Ft(t,n){var e=Ut(at++,7);return Bt(e.__H,n)?(e.__V=t(),e.i=n,e.__h=t,e.__V):e.__}function Vt(t,n){return yt=8,Ft((function(){return t}),n)}function At(t){var n=pt.context[t.__c],e=Ut(at++,9);return e.c=t,n?(null==e.__&&(e.__=!0,n.sub(pt)),n.props.value):t.__}function Mt(t,n){bt.useDebugValue&&bt.useDebugValue(n?n(t):t)}function Wt(t){var n=Ut(at++,10),e=Ht();return n.__=t,pt.componentDidCatch||(pt.componentDidCatch=function(t,_){n.__&&n.__(t,_),e[1](t)}),[e[0],function(){e[1](void 0)}]}function Ot(){var t=Ut(at++,11);if(!t.__){for(var n=pt.__v;null!==n&&!n.__m&&null!==n.__;)n=n.__;var e=n.__m||(n.__m=[0,0]);t.__="P"+e[0]+"-"+e[1]++}return t.__}function Lt(){for(var t;t=mt.shift();)if(t.__P&&t.__H)try{t.__H.__h.forEach(jt),t.__H.__h.forEach(qt),t.__H.__h=[]}catch(n){t.__H.__h=[],bt.__e(n,t.__v)}}bt.__b=function(t){pt=null,kt&&kt(t)},bt.__=function(t,n){t&&n.__k&&n.__k.__m&&(t.__m=n.__k.__m),Et&&Et(t,n)},bt.__r=function(t){St&&St(t),at=0;var n=(pt=t.__c).__H;n&&(dt===pt?(n.__h=[],pt.__h=[],n.__.forEach((function(t){t.__N&&(t.__=t.__N),t.__V=gt,t.__N=t.i=void 0}))):(n.__h.forEach(jt),n.__h.forEach(qt),n.__h=[],at=0)),dt=pt},bt.diffed=function(t){wt&&wt(t);var n=t.__c;n&&n.__H&&(n.__H.__h.length&&(1!==mt.push(n)&&vt===bt.requestAnimationFrame||((vt=bt.requestAnimationFrame)||It)(Lt)),n.__H.__.forEach((function(t){t.i&&(t.__H=t.i),t.__V!==gt&&(t.__=t.__V),t.i=void 0,t.__V=gt}))),dt=pt=null},bt.__c=function(t,n){n.some((function(t){try{t.__h.forEach(jt),t.__h=t.__h.filter((function(t){return!t.__||qt(t)}))}catch(r){n.some((function(t){t.__h&&(t.__h=[])})),n=[],bt.__e(r,t.__v)}})),xt&&xt(t,n)},bt.unmount=function(t){Ct&&Ct(t);var n,e=t.__c;e&&e.__H&&(e.__H.__.forEach((function(t){try{jt(t)}catch(t){n=t}})),e.__H=void 0,n&&bt.__e(n,e.__v))};var Rt="function"==typeof requestAnimationFrame;function It(t){var n,e=function(){clearTimeout(_),Rt&&cancelAnimationFrame(n),setTimeout(t)},_=setTimeout(e,100);Rt&&(n=requestAnimationFrame(e))}function jt(t){var n=pt,e=t.__c;"function"==typeof e&&(t.__c=void 0,e()),pt=n}function qt(t){var n=pt;t.__c=t.__(),pt=n}function Bt(t,n){return!t||t.length!==n.length||n.some((function(n,e){return n!==t[e]}))}function Gt(t,n){return"function"==typeof n?n(t):n}function zt(t,n){w[t]=n.bind(null,w[t]||(()=>{}))}let Jt,Kt;function Qt(t){if(Kt)Kt();Kt=t&&t.S()}function Xt({data:t}){const n=Zt(t);n.value=t;const e=Ft(()=>{let t=this.__v;while(t=t.__)if(t.__c){t.__c.__$f|=4;break}this.__$u.c=()=>{var t;if(!C(e.peek())&&3===(null==(t=this.base)?void 0:t.nodeType))this.base.data=e.peek();else{this.__$f|=1;this.setState({})}};return v(()=>{let t=n.value.value;return 0===t?0:!0===t?"":t||""})},[]);return e.value}Xt.displayName="_st";Object.defineProperties(f.prototype,{constructor:{configurable:!0,value:void 0},type:{configurable:!0,value:Xt},props:{configurable:!0,get(){return{data:this}}},__b:{configurable:!0,value:1}});zt("__b",(t,n)=>{if("string"==typeof n.type){let t,e=n.props;for(let _ in e){if("children"===_)continue;let i=e[_];if(i instanceof f){if(!t)n.__np=t={};t[_]=i;e[_]=i.peek()}}}t(n)});zt("__r",(t,n)=>{Qt();let e,_=n.__c;if(_){_.__$f&=-2;e=_.__$u;if(void 0===e)_.__$u=e=function(t){let n;k((function(){n=this}));n.c=()=>{_.__$f|=1;_.setState({})};return n}()}Jt=_;Qt(e);t(n)});zt("__e",(t,n,e,_)=>{Qt();Jt=void 0;t(n,e,_)});zt("diffed",(t,n)=>{Qt();Jt=void 0;let e;if("string"==typeof n.type&&(e=n.__e)){let t=n.__np,_=n.props;if(t){let n=e.U;if(n)for(let e in n){let _=n[e];if(void 0!==_&&!(e in t)){_.d();n[e]=void 0}}else{n={};e.U=n}for(let i in t){let o=n[i],r=t[i];if(void 0===o){o=Yt(e,i,r,_);n[i]=o}else o.o(r,_)}}}t(n)});function Yt(t,n,e,_){const i=n in t&&void 0===t.ownerSVGElement,o=c(e);return{o:(t,n)=>{o.value=t;_=n},d:k(()=>{const e=o.value.value;if(_[n]!==e){_[n]=e;if(i)t[n]=e;else if(e)t.setAttribute(n,e);else t.removeAttribute(n)}})}}zt("unmount",(t,n)=>{if("string"==typeof n.type){let t=n.__e;if(t){const n=t.U;if(n){t.U=void 0;for(let t in n){let e=n[t];if(e)e.d()}}}}else{let t=n.__c;if(t){const n=t.__$u;if(n){t.__$u=void 0;n.d()}}}t(n)});zt("__h",(t,n,e,_)=>{if(_<3||9===_)n.__$f|=2;t(n,e,_)});q.prototype.shouldComponentUpdate=function(t,n){const e=this.__$u;if(!(e&&void 0!==e.s||4&this.__$f))return!0;if(3&this.__$f)return!0;for(let _ in n)return!0;for(let _ in t)if("__source"!==_&&t[_]!==this.props[_])return!0;for(let _ in this.props)if(!(_ in t))return!0;return!1};function Zt(t){return Ft(()=>c(t),[])}function tn(t){const n=Dt(t);n.current=t;Jt.__$f|=4;return Ft(()=>v(()=>n.current()),[])}function nn(t){const n=Dt(t);n.current=t;Nt(()=>k(()=>n.current()),[])}var en=function(t,n,e,_){var i;n[0]=0;for(var o=1;o=5&&((i||!t&&5===_)&&(r.push(_,0,i,e),_=6),t&&(r.push(_,t,0,e),_=6)),i=""},l=0;l"===n?(_=1,i=""):i=n+i[0]:o?n===o?o="":i+=n:'"'===n||"'"===n?o=n:">"===n?(u(),_=1):_&&("="===n?(_=5,e=i,i=""):"/"===n&&(_<5||">"===t[l][s+1])?(u(),3===_&&(r=r[0]),_=r,(r=r[0]).push(2,0,_),_=0):" "===n||"\t"===n||"\n"===n||"\r"===n?(u(),_=2):i+=n),3===_&&"!--"===i&&(_=4,r=r[0])}return u(),r}(t)),n),arguments,[])).length>1?n:n[0]}var rn=on.bind(L);export{q as Component,j as Fragment,f as Signal,e as batch,ct as cloneElement,v as computed,ht as createContext,L as createElement,I as createRef,k as effect,L as h,rn as html,ft as hydrate,C as isValidElement,w as options,st as render,c as signal,Y as toChildArray,o as untracked,Vt as useCallback,tn as useComputed,At as useContext,Mt as useDebugValue,Nt as useEffect,Wt as useErrorBoundary,Ot as useId,Tt as useImperativeHandle,$t as useLayoutEffect,Ft as useMemo,Pt as useReducer,Dt as useRef,Zt as useSignal,nn as useSignalEffect,Ht as useState};
+const t=Symbol.for("preact-signals");function n(){if(r>1){r--;return}let t,n=!1;while(void 0!==i){let _=i;i=void 0;u++;while(void 0!==_){const i=_.o;_.o=void 0;_.f&=-3;if(!(8&_.f)&&h(_))try{_.c()}catch(e){if(!n){t=e;n=!0}}_=i}}u=0;r--;if(n)throw t}function e(t){if(r>0)return t();r++;try{return t()}finally{n()}}let _,i;function o(t){const n=_;_=void 0;try{return t()}finally{_=n}}let r=0,u=0,l=0;function s(t){if(void 0===_)return;let n=t.n;if(void 0===n||n.t!==_){n={i:0,S:t,p:_.s,n:void 0,t:_,e:void 0,x:void 0,r:n};if(void 0!==_.s)_.s.n=n;_.s=n;t.n=n;if(32&_.f)t.S(n);return n}else if(-1===n.i){n.i=0;if(void 0!==n.n){n.n.p=n.p;if(void 0!==n.p)n.p.n=n.n;n.p=_.s;n.n=void 0;_.s.n=n;_.s=n}return n}}function f(t){this.v=t;this.i=0;this.n=void 0;this.t=void 0}f.prototype.brand=t;f.prototype.h=function(){return!0};f.prototype.S=function(t){if(this.t!==t&&void 0===t.e){t.x=this.t;if(void 0!==this.t)this.t.e=t;this.t=t}};f.prototype.U=function(t){if(void 0!==this.t){const n=t.e,e=t.x;if(void 0!==n){n.x=e;t.e=void 0}if(void 0!==e){e.e=n;t.x=void 0}if(t===this.t)this.t=e}};f.prototype.subscribe=function(t){return k(()=>{const n=this.value,e=_;_=void 0;try{t(n)}finally{_=e}})};f.prototype.valueOf=function(){return this.value};f.prototype.toString=function(){return this.value+""};f.prototype.toJSON=function(){return this.value};f.prototype.peek=function(){const t=_;_=void 0;try{return this.value}finally{_=t}};Object.defineProperty(f.prototype,"value",{get(){const t=s(this);if(void 0!==t)t.i=this.i;return this.v},set(t){if(t!==this.v){if(u>100)throw new Error("Cycle detected");this.v=t;this.i++;l++;r++;try{for(let t=this.t;void 0!==t;t=t.x)t.t.N()}finally{n()}}}});function c(t){return new f(t)}function h(t){for(let n=t.s;void 0!==n;n=n.n)if(n.S.i!==n.i||!n.S.h()||n.S.i!==n.i)return!0;return!1}function a(t){for(let n=t.s;void 0!==n;n=n.n){const e=n.S.n;if(void 0!==e)n.r=e;n.S.n=n;n.i=-1;if(void 0===n.n){t.s=n;break}}}function p(t){let n,e=t.s;while(void 0!==e){const t=e.p;if(-1===e.i){e.S.U(e);if(void 0!==t)t.n=e.n;if(void 0!==e.n)e.n.p=t}else n=e;e.S.n=e.r;if(void 0!==e.r)e.r=void 0;e=t}t.s=n}function d(t){f.call(this,void 0);this.x=t;this.s=void 0;this.g=l-1;this.f=4}(d.prototype=new f).h=function(){this.f&=-3;if(1&this.f)return!1;if(32==(36&this.f))return!0;this.f&=-5;if(this.g===l)return!0;this.g=l;this.f|=1;if(this.i>0&&!h(this)){this.f&=-2;return!0}const t=_;try{a(this);_=this;const t=this.x();if(16&this.f||this.v!==t||0===this.i){this.v=t;this.f&=-17;this.i++}}catch(t){this.v=t;this.f|=16;this.i++}_=t;p(this);this.f&=-2;return!0};d.prototype.S=function(t){if(void 0===this.t){this.f|=36;for(let t=this.s;void 0!==t;t=t.n)t.S.S(t)}f.prototype.S.call(this,t)};d.prototype.U=function(t){if(void 0!==this.t){f.prototype.U.call(this,t);if(void 0===this.t){this.f&=-33;for(let t=this.s;void 0!==t;t=t.n)t.S.U(t)}}};d.prototype.N=function(){if(!(2&this.f)){this.f|=6;for(let t=this.t;void 0!==t;t=t.x)t.t.N()}};Object.defineProperty(d.prototype,"value",{get(){if(1&this.f)throw new Error("Cycle detected");const t=s(this);this.h();if(void 0!==t)t.i=this.i;if(16&this.f)throw this.v;return this.v}});function v(t){return new d(t)}function y(t){const e=t.u;t.u=void 0;if("function"==typeof e){r++;const i=_;_=void 0;try{e()}catch(n){t.f&=-2;t.f|=8;m(t);throw n}finally{_=i;n()}}}function m(t){for(let n=t.s;void 0!==n;n=n.n)n.S.U(n);t.x=void 0;t.s=void 0;y(t)}function g(t){if(_!==this)throw new Error("Out-of-order effect");p(this);_=t;this.f&=-2;if(8&this.f)m(this);n()}function b(t){this.x=t;this.u=void 0;this.s=void 0;this.o=void 0;this.f=32}b.prototype.c=function(){const t=this.S();try{if(8&this.f)return;if(void 0===this.x)return;const n=this.x();if("function"==typeof n)this.u=n}finally{t()}};b.prototype.S=function(){if(1&this.f)throw new Error("Cycle detected");this.f|=1;this.f&=-9;y(this);a(this);r++;const t=_;_=this;return g.bind(this,t)};b.prototype.N=function(){if(!(2&this.f)){this.f|=2;this.o=i;i=this}};b.prototype.d=function(){this.f|=8;if(!(1&this.f))m(this)};function k(t){const n=new b(t);try{n.c()}catch(t){n.d();throw t}return n.d.bind(n)}var w,S,x,C,U,E,H,P,N,$,D,T,M={},F=[],A=/acit|ex(?:s|g|n|p|$)|rph|grid|ows|mnc|ntw|ine[ch]|zoo|^ord|itera/i,V=Array.isArray;function W(t,n){for(var e in n)t[e]=n[e];return t}function L(t){var n=t.parentNode;n&&n.removeChild(t)}function O(t,n,e){var _,i,o,r={};for(o in n)"key"==o?_=n[o]:"ref"==o?i=n[o]:r[o]=n[o];if(arguments.length>2&&(r.children=arguments.length>3?w.call(arguments,2):e),"function"==typeof t&&null!=t.defaultProps)for(o in t.defaultProps)void 0===r[o]&&(r[o]=t.defaultProps[o]);return R(t,r,_,i,null)}function R(t,n,e,_,i){var o={type:t,props:n,key:e,ref:_,__k:null,__:null,__b:0,__e:null,__d:void 0,__c:null,constructor:void 0,__v:null==i?++x:i,__i:-1,__u:0};return null==i&&null!=S.vnode&&S.vnode(o),o}function I(){return{current:null}}function j(t){return t.children}function q(t,n){this.props=t,this.context=n}function B(t,n){if(null==n)return t.__?B(t.__,t.__i+1):null;for(var e;nn&&U.sort(P));J.__r=0}function K(t,n,e,_,i,o,r,u,l,s,f){var c,h,a,p,d,v=_&&_.__k||F,y=n.length;for(e.__d=l,Q(e,n,v),l=e.__d,c=0;c0?R(i.type,i.props,i.key,i.ref?i.ref:null,i.__v):i)?(i.__=t,i.__b=t.__b+1,u=Z(i,e,r,f),i.__i=u,o=null,-1!==u&&(f--,(o=e[u])&&(o.__u|=131072)),null==o||null===o.__v?(-1==u&&c--,"function"!=typeof i.type&&(i.__u|=65536)):u!==r&&(u===r+1?c++:u>r?f>l-r?c+=u-r:c--:u(null!=l&&0==(131072&l.__u)?1:0))for(;r>=0||u=0){if((l=n[r])&&0==(131072&l.__u)&&i==l.key&&o===l.type)return r;r--}if(u2&&(u.children=arguments.length>3?w.call(arguments,2):e),R(t.type,u,_||t.key,i||t.ref,null)}function ht(t,n){var e={__c:n="__cC"+T++,__:t,Consumer:function(t,n){return t.children(n)},Provider:function(t){var e,_;return this.getChildContext||(e=[],(_={})[n]=this,this.getChildContext=function(){return _},this.shouldComponentUpdate=function(t){this.props.value!==t.value&&e.some((function(t){t.__e=!0,G(t)}))},this.sub=function(t){e.push(t);var n=t.componentWillUnmount;t.componentWillUnmount=function(){e.splice(e.indexOf(t),1),n&&n.call(t)}}),t.children}};return e.Provider.__=e.Consumer.contextType=e}w=F.slice,S={__e:function(t,n,e,_){for(var i,o,r;n=n.__;)if((i=n.__c)&&!i.__)try{if((o=i.constructor)&&null!=o.getDerivedStateFromError&&(i.setState(o.getDerivedStateFromError(t)),r=i.__d),null!=i.componentDidCatch&&(i.componentDidCatch(t,_||{}),r=i.__d),r)return i.__E=i}catch(n){t=n}throw t}},x=0,C=function(t){return null!=t&&null==t.constructor},q.prototype.setState=function(t,n){var e;e=null!=this.__s&&this.__s!==this.state?this.__s:this.__s=W({},this.state),"function"==typeof t&&(t=t(W({},e),this.props)),t&&W(e,t),null!=t&&this.__v&&(n&&this._sb.push(n),G(this))},q.prototype.forceUpdate=function(t){this.__v&&(this.__e=!0,t&&this.__h.push(t),G(this))},q.prototype.render=j,U=[],H="function"==typeof Promise?Promise.prototype.then.bind(Promise.resolve()):setTimeout,P=function(t,n){return t.__v.__b-n.__v.__b},J.__r=0,N=0,$=et(!1),D=et(!0),T=0;var at,pt,dt,vt,yt=0,mt=[],gt=[],bt=S,kt=bt.__b,wt=bt.__r,St=bt.diffed,xt=bt.__c,Ct=bt.unmount,Ut=bt.__;function Et(t,n){bt.__h&&bt.__h(pt,t,yt||n),yt=0;var e=pt.__H||(pt.__H={__:[],__h:[]});return t>=e.__.length&&e.__.push({__V:gt}),e.__[t]}function Ht(t){return yt=1,Pt(zt,t)}function Pt(t,n,e){var _=Et(at++,2);if(_.t=t,!_.__c&&(_.__=[e?e(n):zt(void 0,n),function(t){var n=_.__N?_.__N[0]:_.__[0],e=_.t(n,t);n!==e&&(_.__N=[e,_.__[1]],_.__c.setState({}))}],_.__c=pt,!pt.u)){var i=function(t,n,e){if(!_.__c.__H)return!0;var i=_.__c.__H.__.filter((function(t){return!!t.__c}));if(i.every((function(t){return!t.__N})))return!o||o.call(this,t,n,e);var r=!1;return i.forEach((function(t){if(t.__N){var n=t.__[0];t.__=t.__N,t.__N=void 0,n!==t.__[0]&&(r=!0)}})),!(!r&&_.__c.props===t)&&(!o||o.call(this,t,n,e))};pt.u=!0;var o=pt.shouldComponentUpdate,r=pt.componentWillUpdate;pt.componentWillUpdate=function(t,n,e){if(this.__e){var _=o;o=void 0,i(t,n,e),o=_}r&&r.call(this,t,n,e)},pt.shouldComponentUpdate=i}return _.__N||_.__}function Nt(t,n){var e=Et(at++,3);!bt.__s&&Bt(e.__H,n)&&(e.__=t,e.i=n,pt.__H.__h.push(e))}function $t(t,n){var e=Et(at++,4);!bt.__s&&Bt(e.__H,n)&&(e.__=t,e.i=n,pt.__h.push(e))}function Dt(t){return yt=5,Mt((function(){return{current:t}}),[])}function Tt(t,n,e){yt=6,$t((function(){return"function"==typeof t?(t(n()),function(){return t(null)}):t?(t.current=n(),function(){return t.current=null}):void 0}),null==e?e:e.concat(t))}function Mt(t,n){var e=Et(at++,7);return Bt(e.__H,n)?(e.__V=t(),e.i=n,e.__h=t,e.__V):e.__}function Ft(t,n){return yt=8,Mt((function(){return t}),n)}function At(t){var n=pt.context[t.__c],e=Et(at++,9);return e.c=t,n?(null==e.__&&(e.__=!0,n.sub(pt)),n.props.value):t.__}function Vt(t,n){bt.useDebugValue&&bt.useDebugValue(n?n(t):t)}function Wt(t){var n=Et(at++,10),e=Ht();return n.__=t,pt.componentDidCatch||(pt.componentDidCatch=function(t,_){n.__&&n.__(t,_),e[1](t)}),[e[0],function(){e[1](void 0)}]}function Lt(){var t=Et(at++,11);if(!t.__){for(var n=pt.__v;null!==n&&!n.__m&&null!==n.__;)n=n.__;var e=n.__m||(n.__m=[0,0]);t.__="P"+e[0]+"-"+e[1]++}return t.__}function Ot(){for(var t;t=mt.shift();)if(t.__P&&t.__H)try{t.__H.__h.forEach(jt),t.__H.__h.forEach(qt),t.__H.__h=[]}catch(n){t.__H.__h=[],bt.__e(n,t.__v)}}bt.__b=function(t){pt=null,kt&&kt(t)},bt.__=function(t,n){t&&n.__k&&n.__k.__m&&(t.__m=n.__k.__m),Ut&&Ut(t,n)},bt.__r=function(t){wt&&wt(t),at=0;var n=(pt=t.__c).__H;n&&(dt===pt?(n.__h=[],pt.__h=[],n.__.forEach((function(t){t.__N&&(t.__=t.__N),t.__V=gt,t.__N=t.i=void 0}))):(n.__h.forEach(jt),n.__h.forEach(qt),n.__h=[],at=0)),dt=pt},bt.diffed=function(t){St&&St(t);var n=t.__c;n&&n.__H&&(n.__H.__h.length&&(1!==mt.push(n)&&vt===bt.requestAnimationFrame||((vt=bt.requestAnimationFrame)||It)(Ot)),n.__H.__.forEach((function(t){t.i&&(t.__H=t.i),t.__V!==gt&&(t.__=t.__V),t.i=void 0,t.__V=gt}))),dt=pt=null},bt.__c=function(t,n){n.some((function(t){try{t.__h.forEach(jt),t.__h=t.__h.filter((function(t){return!t.__||qt(t)}))}catch(r){n.some((function(t){t.__h&&(t.__h=[])})),n=[],bt.__e(r,t.__v)}})),xt&&xt(t,n)},bt.unmount=function(t){Ct&&Ct(t);var n,e=t.__c;e&&e.__H&&(e.__H.__.forEach((function(t){try{jt(t)}catch(t){n=t}})),e.__H=void 0,n&&bt.__e(n,e.__v))};var Rt="function"==typeof requestAnimationFrame;function It(t){var n,e=function(){clearTimeout(_),Rt&&cancelAnimationFrame(n),setTimeout(t)},_=setTimeout(e,100);Rt&&(n=requestAnimationFrame(e))}function jt(t){var n=pt,e=t.__c;"function"==typeof e&&(t.__c=void 0,e()),pt=n}function qt(t){var n=pt;t.__c=t.__(),pt=n}function Bt(t,n){return!t||t.length!==n.length||n.some((function(n,e){return n!==t[e]}))}function zt(t,n){return"function"==typeof n?n(t):n}function Gt(t,n){S[t]=n.bind(null,S[t]||(()=>{}))}let Jt,Kt;function Qt(t){if(Kt)Kt();Kt=t&&t.S()}function Xt({data:t}){const n=Zt(t);n.value=t;const e=Mt(()=>{let t=this.__v;while(t=t.__)if(t.__c){t.__c.__$f|=4;break}this.__$u.c=()=>{var t;if(!C(e.peek())&&3===(null==(t=this.base)?void 0:t.nodeType))this.base.data=e.peek();else{this.__$f|=1;this.setState({})}};return v(()=>{let t=n.value.value;return 0===t?0:!0===t?"":t||""})},[]);return e.value}Xt.displayName="_st";Object.defineProperties(f.prototype,{constructor:{configurable:!0,value:void 0},type:{configurable:!0,value:Xt},props:{configurable:!0,get(){return{data:this}}},__b:{configurable:!0,value:1}});Gt("__b",(t,n)=>{if("string"==typeof n.type){let t,e=n.props;for(let _ in e){if("children"===_)continue;let i=e[_];if(i instanceof f){if(!t)n.__np=t={};t[_]=i;e[_]=i.peek()}}}t(n)});Gt("__r",(t,n)=>{Qt();let e,_=n.__c;if(_){_.__$f&=-2;e=_.__$u;if(void 0===e)_.__$u=e=function(t){let n;k((function(){n=this}));n.c=()=>{_.__$f|=1;_.setState({})};return n}()}Jt=_;Qt(e);t(n)});Gt("__e",(t,n,e,_)=>{Qt();Jt=void 0;t(n,e,_)});Gt("diffed",(t,n)=>{Qt();Jt=void 0;let e;if("string"==typeof n.type&&(e=n.__e)){let t=n.__np,_=n.props;if(t){let n=e.U;if(n)for(let e in n){let _=n[e];if(void 0!==_&&!(e in t)){_.d();n[e]=void 0}}else{n={};e.U=n}for(let i in t){let o=n[i],r=t[i];if(void 0===o){o=Yt(e,i,r,_);n[i]=o}else o.o(r,_)}}}t(n)});function Yt(t,n,e,_){const i=n in t&&void 0===t.ownerSVGElement,o=c(e);return{o:(t,n)=>{o.value=t;_=n},d:k(()=>{const e=o.value.value;if(_[n]!==e){_[n]=e;if(i)t[n]=e;else if(e)t.setAttribute(n,e);else t.removeAttribute(n)}})}}Gt("unmount",(t,n)=>{if("string"==typeof n.type){let t=n.__e;if(t){const n=t.U;if(n){t.U=void 0;for(let t in n){let e=n[t];if(e)e.d()}}}}else{let t=n.__c;if(t){const n=t.__$u;if(n){t.__$u=void 0;n.d()}}}t(n)});Gt("__h",(t,n,e,_)=>{if(_<3||9===_)n.__$f|=2;t(n,e,_)});q.prototype.shouldComponentUpdate=function(t,n){const e=this.__$u;if(!(e&&void 0!==e.s||4&this.__$f))return!0;if(3&this.__$f)return!0;for(let _ in n)return!0;for(let _ in t)if("__source"!==_&&t[_]!==this.props[_])return!0;for(let _ in this.props)if(!(_ in t))return!0;return!1};function Zt(t){return Mt(()=>c(t),[])}function tn(t){const n=Dt(t);n.current=t;Jt.__$f|=4;return Mt(()=>v(()=>n.current()),[])}function nn(t){const n=Dt(t);n.current=t;Nt(()=>k(()=>n.current()),[])}var en=function(t,n,e,_){var i;n[0]=0;for(var o=1;o=5&&((i||!t&&5===_)&&(r.push(_,0,i,e),_=6),t&&(r.push(_,t,0,e),_=6)),i=""},l=0;l"===n?(_=1,i=""):i=n+i[0]:o?n===o?o="":i+=n:'"'===n||"'"===n?o=n:">"===n?(u(),_=1):_&&("="===n?(_=5,e=i,i=""):"/"===n&&(_<5||">"===t[l][s+1])?(u(),3===_&&(r=r[0]),_=r,(r=r[0]).push(2,0,_),_=0):" "===n||"\t"===n||"\n"===n||"\r"===n?(u(),_=2):i+=n),3===_&&"!--"===i&&(_=4,r=r[0])}return u(),r}(t)),n),arguments,[])).length>1?n:n[0]}var rn=on.bind(O);export{q as Component,j as Fragment,f as Signal,e as batch,ct as cloneElement,v as computed,ht as createContext,O as createElement,I as createRef,k as effect,O as h,rn as html,ft as hydrate,C as isValidElement,S as options,st as render,c as signal,Y as toChildArray,o as untracked,Ft as useCallback,tn as useComputed,At as useContext,Vt as useDebugValue,Nt as useEffect,Wt as useErrorBoundary,Lt as useId,Tt as useImperativeHandle,$t as useLayoutEffect,Mt as useMemo,Pt as useReducer,Dt as useRef,Zt as useSignal,nn as useSignalEffect,Ht as useState};
diff --git a/ggml-cuda.cu b/ggml-cuda.cu
index 1172f7b2f..daaa0cd6a 100644
--- a/ggml-cuda.cu
+++ b/ggml-cuda.cu
@@ -2905,10 +2905,14 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
#if defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
return op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128;
#else
- if (op->src[0]->ne[0] == 64 || op->src[0]->ne[0] == 128) {
+ if (op->src[0]->ne[0] == 128) {
return true;
}
- return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA;
+ if (op->src[0]->ne[0] == 64 && op->src[1]->type == GGML_TYPE_F16) {
+ return true;
+ }
+ return ggml_cuda_info().devices[cuda_ctx->device].cc >= CC_VOLTA &&
+ op->src[1]->type == GGML_TYPE_F16 && op->src[2]->type == GGML_TYPE_F16;
#endif // defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)
default:
return false;
diff --git a/ggml-cuda/fattn-common.cuh b/ggml-cuda/fattn-common.cuh
index 1dd519bde..4bf03a49f 100644
--- a/ggml-cuda/fattn-common.cuh
+++ b/ggml-cuda/fattn-common.cuh
@@ -1,4 +1,7 @@
+#pragma once
+
#include "common.cuh"
+#include "vecdotq.cuh"
#include
@@ -34,11 +37,523 @@ typedef void (* fattn_kernel_t)(
const int nb11,
const int nb12,
const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
const int ne0,
const int ne1,
const int ne2,
const int ne3);
+typedef half (*vec_dot_KQ_f16_t)(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
+typedef float (*vec_dot_KQ_f32_t)(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds);
+
+template
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_0(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
+#if __CUDA_ARCH__ > MIN_CC_DP4A
+
+ const block_q4_0 * K_q4_0 = (const block_q4_0 *) K_c;
+ GGML_UNUSED(Q_v);
+
+ half sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const int ib = k_KQ / QI8_1;
+ const int iqs4 = k_KQ % QI4_0;
+ const int shift = k_KQ & (QI8_1/2);
+
+ const int v = (get_int_from_uint8(K_q4_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
+ const int u = Q_q8[k_KQ_0/WARP_SIZE];
+
+ const int sumi = __dp4a(v, u, 0);
+
+#if FP16_AVAILABLE
+ if (std::is_same::value) {
+ const half2 * Q_ds = (const half2 *) Q_ds_v;
+
+ const half2 sum2 = __half2half2(K_q4_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
+ sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2) /* *8/QI8_1 == 1 */);
+ } else
+#endif // FP16_AVAILABLE
+ {
+ const float2 * Q_ds = (const float2 *) Q_ds_v;
+
+ sum += (T) (__half2float(K_q4_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (8/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
+ }
+ }
+
+ return sum;
+#else
+ GGML_UNUSED(K_c);
+ GGML_UNUSED(Q_v);
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ > MIN_CC_DP4A
+}
+
+template
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q4_1(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
+#if __CUDA_ARCH__ > MIN_CC_DP4A
+
+ const block_q4_1 * K_q4_1 = (const block_q4_1 *) K_c;
+ GGML_UNUSED(Q_v);
+
+ T sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const int ib = k_KQ / QI8_1;
+ const int iqs4 = k_KQ % QI4_1;
+ const int shift = k_KQ & (QI8_1/2);
+
+ const int v = (get_int_from_uint8_aligned(K_q4_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
+ const int u = Q_q8[k_KQ_0/WARP_SIZE];
+
+ const int sumi = __dp4a(v, u, 0);
+
+#if FP16_AVAILABLE
+ if (std::is_same::value) {
+ const half2 * Q_ds = (const half2 *) Q_ds_v;
+
+ const half2 d4d8_m4s8 = K_q4_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
+ const half2 sumid4d8_m4s8scaled = d4d8_m4s8 * make_half2(sumi, 1.0f/QI8_1);
+ sum += (T) (__low2half(sumid4d8_m4s8scaled) + __high2half(sumid4d8_m4s8scaled));
+ } else
+#endif // FP16_AVAILABLE
+ {
+ const float2 * Q_ds = (const float2 *) Q_ds_v;
+
+ const float sumid4d8 = __low2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
+ const float m4s8scaled = __high2float(K_q4_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
+
+ sum += (T) (sumid4d8 + m4s8scaled);
+ }
+ }
+
+ return sum;
+#else
+ GGML_UNUSED(K_c);
+ GGML_UNUSED(Q_v);
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ > MIN_CC_DP4A
+}
+
+template
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_0(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
+#if __CUDA_ARCH__ > MIN_CC_DP4A
+
+ const block_q5_0 * K_q5_0 = (const block_q5_0 *) K_c;
+ GGML_UNUSED(Q_v);
+
+ T sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const int ib = k_KQ / QI8_1;
+ const int iqs4 = k_KQ % QI5_0;
+ const int iqs8 = k_KQ % QI8_1;
+ const int shift = k_KQ & (QI8_1/2);
+
+ int v = (get_int_from_uint8(K_q5_0[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
+ const int vh = get_int_from_uint8(K_q5_0[ib].qh, 0) >> (iqs8 * QI5_0);
+ v |= (vh << 4) & 0x00000010; // 0 -> 4
+ v |= (vh << 11) & 0x00001000; // 1 -> 12
+ v |= (vh << 18) & 0x00100000; // 2 -> 20
+ v |= (vh << 25) & 0x10000000; // 3 -> 28
+
+ const int u = Q_q8[k_KQ_0/WARP_SIZE];
+
+ const int sumi = __dp4a(v, u, 0);
+
+#if FP16_AVAILABLE
+ if (std::is_same::value) {
+ const half2 * Q_ds = (const half2 *) Q_ds_v;
+
+ const half2 sum2 = __half2half2(K_q5_0[ib].d) * Q_ds[k_KQ_0/WARP_SIZE];
+ sum += (T) (((half) sumi)*__low2half(sum2) - __high2half(sum2)*__float2half(2.0f)) /* *16/QI8_1 == 2 */;
+ } else
+#endif // FP16_AVAILABLE
+ {
+ const float2 * Q_ds = (const float2 *) Q_ds_v;
+
+ sum += (T) (__half2float(K_q5_0[ib].d) * (sumi*Q_ds[k_KQ_0/WARP_SIZE].x - (16/QI8_1)*Q_ds[k_KQ_0/WARP_SIZE].y));
+ }
+ }
+
+ return sum;
+#else
+ GGML_UNUSED(K_c);
+ GGML_UNUSED(Q_v);
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ > MIN_CC_DP4A
+}
+
+template
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q5_1(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
+#if __CUDA_ARCH__ > MIN_CC_DP4A
+
+ const block_q5_1 * K_q5_1 = (const block_q5_1 *) K_c;
+ GGML_UNUSED(Q_v);
+
+ T sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const int ib = k_KQ / QI8_1;
+ const int iqs4 = k_KQ % QI5_1;
+ const int iqs8 = k_KQ % QI8_1;
+ const int shift = k_KQ & (QI8_1/2);
+
+ int v = (get_int_from_uint8(K_q5_1[ib].qs, iqs4) >> shift) & 0x0F0F0F0F;
+ const int vh = get_int_from_uint8(K_q5_1[ib].qh, 0) >> (iqs8 * QI5_1);
+ v |= (vh << 4) & 0x00000010; // 0 -> 4
+ v |= (vh << 11) & 0x00001000; // 1 -> 12
+ v |= (vh << 18) & 0x00100000; // 2 -> 20
+ v |= (vh << 25) & 0x10000000; // 3 -> 28
+
+ const int u = Q_q8[k_KQ_0/WARP_SIZE];
+
+ const int sumi = __dp4a(v, u, 0);
+
+#if FP16_AVAILABLE
+ if (std::is_same::value) {
+ const half2 * Q_ds = (const half2 *) Q_ds_v;
+
+ const half2 d5d8_m5s8 = K_q5_1[ib].dm * Q_ds[k_KQ_0/WARP_SIZE];
+ const half2 sumid5d8_m5s8scaled = d5d8_m5s8 * make_half2(sumi, 1.0f/QI8_1);
+ sum += (T) (__low2half(sumid5d8_m5s8scaled) + __high2half(sumid5d8_m5s8scaled));
+ } else
+#endif // FP16_AVAILABLE
+ {
+ const float2 * Q_ds = (const float2 *) Q_ds_v;
+
+ const float sumid5d8 = __low2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].x * sumi;
+ const float m5s8scaled = __high2float(K_q5_1[ib].dm)*Q_ds[k_KQ_0/WARP_SIZE].y / QI8_1;
+
+ sum += (T) (sumid5d8 + m5s8scaled);
+ }
+ }
+
+ return sum;
+#else
+ GGML_UNUSED(K_c);
+ GGML_UNUSED(Q_v);
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ > MIN_CC_DP4A
+}
+
+template
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_q8_0(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8, const void * __restrict__ Q_ds_v) {
+#if __CUDA_ARCH__ > MIN_CC_DP4A
+
+ const block_q8_0 * K_q8_0 = (const block_q8_0 *) K_c;
+ GGML_UNUSED(Q_v);
+
+ T sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/sizeof(int); k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const int ib = k_KQ / QI8_0;
+ const int iqs = k_KQ % QI8_0;
+
+ const int v = get_int_from_int8(K_q8_0[ib].qs, iqs);
+
+ T Q_d;
+ if (std::is_same::value) {
+ const half2 * Q_ds = (const half2 *) Q_ds_v;
+ Q_d = __low2half(Q_ds[k_KQ_0/WARP_SIZE]);
+ } else {
+ const float2 * Q_ds = (const float2 *) Q_ds_v;
+ Q_d = Q_ds[k_KQ_0/WARP_SIZE].x;
+ }
+
+ sum += vec_dot_q8_0_q8_1_impl(&v, &Q_q8[k_KQ_0/WARP_SIZE], K_q8_0[ib].d, Q_d);
+ }
+
+ return sum;
+#else
+ GGML_UNUSED(K_c);
+ GGML_UNUSED(Q_v);
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+ NO_DEVICE_CODE;
+#endif // __CUDA_ARCH__ > MIN_CC_DP4A
+}
+
+template
+static __device__ __forceinline__ T vec_dot_fattn_vec_KQ_f16(
+ const char * __restrict__ K_c, const void * __restrict__ Q_v, const int * __restrict__ Q_q8 , const void * __restrict__ Q_ds_v) {
+
+ const half2 * K_h2 = (const half2 *) K_c;
+ GGML_UNUSED(Q_q8);
+ GGML_UNUSED(Q_ds_v);
+
+#if FP16_AVAILABLE
+ if (std::is_same::value) {
+ const half2 * Q_h2 = (const half2 *) Q_v;
+
+ half2 sum2 = make_half2(0.0f, 0.0f);
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const half2 K_ik = K_h2[k_KQ];
+ sum2 += K_ik * Q_h2[k_KQ_0/WARP_SIZE];
+ }
+
+ return __low2half(sum2) + __high2half(sum2);
+ }
+#endif // FP16_AVAILABLE
+
+ const float2 * Q_f2 = (const float2 *) Q_v;
+
+ float sum = 0.0f;
+
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
+ const int k_KQ = k_KQ_0 + threadIdx.x;
+
+ const half2 K_ik = K_h2[k_KQ];
+ sum += __low2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].x;
+ sum += __high2float(K_ik) * Q_f2[k_KQ_0/WARP_SIZE].y;
+ }
+
+ return sum;
+}
+
+template
+static __device__ __forceinline__ void quantize_q8_1_to_shared(
+ const float * __restrict__ x, const float scale, int * __restrict__ yq32, void * __restrict__ yds) {
+
+ float vals[sizeof(int)] = {0.0f};
+#pragma unroll
+ for (int l = 0; l < sizeof(int); ++l) {
+ vals[l] = scale * x[4*threadIdx.x + l];
+ }
+
+ float amax = fabsf(vals[0]);
+ float sum = vals[0];
+#pragma unroll
+ for (int l = 1; l < sizeof(int); ++l) {
+ amax = fmaxf(amax, fabsf(vals[l]));
+ sum += vals[l];
+ }
+#pragma unroll
+ for (int mask = QI8_1/2; mask > 0; mask >>= 1) {
+ amax = fmaxf(amax, __shfl_xor_sync(0xFFFFFFFF, amax, mask, 32));
+ sum += __shfl_xor_sync(0xFFFFFFFF, sum, mask, 32);
+ }
+
+ const float d = amax / 127;
+ int q32 = 0;
+ int8_t * q8 = (int8_t *) &q32;
+
+ if (d != 0.0f) {
+#pragma unroll
+ for (int l = 0; l < sizeof(int); ++l) {
+ q8[l] = roundf(vals[l] / d);
+ }
+ }
+
+ yq32[threadIdx.x] = q32;
+ if (threadIdx.x % QI8_1 == 0) {
+ if (std::is_same::value) {
+ ((half2 *) yds)[threadIdx.x/QI8_1] = make_half2(d, sum);
+ } else {
+ ((float2 *) yds)[threadIdx.x/QI8_1] = make_float2(d, sum);
+ }
+ }
+}
+
+typedef half (*dequantize_1_f16_t)(const void *, const int64_t);
+typedef float (*dequantize_1_f32_t)(const void *, const int64_t);
+
+template
+static __device__ __forceinline__ T dequantize_1_q4_0(const void * __restrict__ vx, const int64_t i) {
+ const block_q4_0 * x = (const block_q4_0 *) vx;
+
+ const int64_t ib = i / QK4_0;
+ const int iqs = i % (QK4_0/2);
+ const int shift = (i % QK4_0) / (QK4_0/2);
+
+ const T d = x[ib].d;
+ const int q0 = x[ib].qs[iqs];
+ const int q = ((q0 >> (4*shift)) & 0x0F) - 8;
+
+#if FP16_AVAILABLE
+ if (std::is_same::value) {
+ return ((half) d)*((half) q);
+ }
+#endif // FP16_AVAILABLE
+
+ return ((float) d)*((float) q);
+}
+
+template
+static __device__ __forceinline__ T dequantize_1_q4_1(const void * __restrict__ vx, const int64_t i) {
+ const block_q4_1 * x = (const block_q4_1 *) vx;
+
+ const int64_t ib = i / QK4_1;
+ const int iqs = i % (QK4_1/2);
+ const int shift = (i % QK4_1) / (QK4_1/2);
+
+ const half2 dm = x[ib].dm;
+ const int q0 = x[ib].qs[iqs];
+ const int q = ((q0 >> (4*shift)) & 0x0F);
+
+#if FP16_AVAILABLE
+ if (std::is_same::value) {
+ return __low2half(dm)*((half) q) + __high2half(dm);
+ }
+#endif // FP16_AVAILABLE
+
+ return __low2float(dm)*((float) q) + __high2float(dm);
+}
+
+template
+static __device__ __forceinline__ T dequantize_1_q5_0(const void * __restrict__ vx, const int64_t i) {
+ const block_q5_0 * x = (const block_q5_0 *) vx;
+
+ const int64_t ib = i / QK5_0;
+ const int idq = i % QK5_0;
+ const int iqs = i % (QK5_0/2);
+ const int shift = (i % QK5_0) / (QK5_0/2);
+
+ const T d = x[ib].d;
+ const int ql0 = x[ib].qs[iqs];
+ const int qh0 = get_int_from_uint8(x[ib].qh, 0);
+ const int ql = ((ql0 >> (4*shift)) & 0x0F);
+ const int qh = ((qh0 >> idq) << 4) & 0x10;
+ const int q = (ql | qh) - 16;
+
+#if FP16_AVAILABLE
+ if (std::is_same::value) {
+ return ((half) d)*((half) q);
+ }
+#endif // FP16_AVAILABLE
+
+ return ((float) d)*((float) q);
+}
+
+template
+static __device__ __forceinline__ T dequantize_1_q5_1(const void * __restrict__ vx, const int64_t i) {
+ const block_q5_1 * x = (const block_q5_1 *) vx;
+
+ const int64_t ib = i / QK5_1;
+ const int idq = i % QK5_1;
+ const int iqs = i % (QK5_1/2);
+ const int shift = (i % QK5_1) / (QK5_1/2);
+
+ const half2 dm = x[ib].dm;
+ const int ql0 = x[ib].qs[iqs];
+ const int qh0 = get_int_from_uint8_aligned(x[ib].qh, 0);
+ const int ql = ((ql0 >> (4*shift)) & 0x0F);
+ const int qh = ((qh0 >> idq) << 4) & 0x10;
+ const int q = (ql | qh);
+
+#if FP16_AVAILABLE
+ if (std::is_same::value) {
+ return __low2half(dm)*((half) q) + __high2half(dm);
+ }
+#endif // FP16_AVAILABLE
+
+ return __low2float(dm)*((float) q) + __high2float(dm);
+}
+
+template
+static __device__ __forceinline__ T dequantize_1_q8_0(const void * __restrict__ vx, const int64_t i) {
+ const block_q8_0 * x = (const block_q8_0 *) vx;
+
+ const int64_t ib = i / QK8_0;
+ const int iqs = i % QK8_0;
+
+ const T d = x[ib].d;
+ const int q = x[ib].qs[iqs];
+
+#if FP16_AVAILABLE
+ if (std::is_same::value) {
+ return ((half) d)*((half) q);
+ }
+#endif // FP16_AVAILABLE
+
+ return ((float) d)*((float) q);
+}
+
+template
+static __device__ __forceinline__ T dequantize_1_f16(const void * __restrict__ vx, const int64_t i) {
+ const half * x = (const half *) vx;
+
+ return x[i];
+}
+
+template
+constexpr __device__ vec_dot_KQ_f16_t get_vec_dot_KQ_f16(ggml_type type_K) {
+ return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0 :
+ type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1 :
+ type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0 :
+ type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1 :
+ type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0 :
+ type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16 :
+ nullptr;
+}
+
+template
+constexpr __device__ vec_dot_KQ_f32_t get_vec_dot_KQ_f32(ggml_type type_K) {
+ return type_K == GGML_TYPE_Q4_0 ? vec_dot_fattn_vec_KQ_q4_0 :
+ type_K == GGML_TYPE_Q4_1 ? vec_dot_fattn_vec_KQ_q4_1 :
+ type_K == GGML_TYPE_Q5_0 ? vec_dot_fattn_vec_KQ_q5_0 :
+ type_K == GGML_TYPE_Q5_1 ? vec_dot_fattn_vec_KQ_q5_1 :
+ type_K == GGML_TYPE_Q8_0 ? vec_dot_fattn_vec_KQ_q8_0 :
+ type_K == GGML_TYPE_F16 ? vec_dot_fattn_vec_KQ_f16 :
+ nullptr;
+}
+
+constexpr __device__ dequantize_1_f16_t get_dequantize_1_f16(ggml_type type_V) {
+ return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0 :
+ type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1 :
+ type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0 :
+ type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1 :
+ type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0 :
+ type_V == GGML_TYPE_F16 ? dequantize_1_f16 :
+ nullptr;
+}
+
+constexpr __device__ dequantize_1_f32_t get_dequantize_1_f32(ggml_type type_V) {
+ return type_V == GGML_TYPE_Q4_0 ? dequantize_1_q4_0 :
+ type_V == GGML_TYPE_Q4_1 ? dequantize_1_q4_1 :
+ type_V == GGML_TYPE_Q5_0 ? dequantize_1_q5_0 :
+ type_V == GGML_TYPE_Q5_1 ? dequantize_1_q5_1 :
+ type_V == GGML_TYPE_Q8_0 ? dequantize_1_q8_0 :
+ type_V == GGML_TYPE_F16 ? dequantize_1_f16 :
+ nullptr;
+}
+
template // D == head size
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(D, 1)
@@ -83,6 +598,27 @@ static __global__ void flash_attn_combine_results(
dst[blockIdx.y*D + tid] = VKQ_numerator / VKQ_denominator;
}
+static void on_no_fattn_vec_case(const int D) {
+ if (D == 64) {
+ fprintf(stderr, "Unsupported KV type combination for head_size 64.\n");
+ fprintf(stderr, "By default only f16 KV cache is supported.\n");
+ fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for V cache quantization support.\n");
+ GGML_ASSERT(false);
+ } else if (D == 128) {
+ fprintf(stderr, "Unsupported KV type combination for head_size 128.\n");
+ fprintf(stderr, "Supported combinations:\n");
+ fprintf(stderr, " - K == q4_0, V == q4_0, 4.50 BPV\n");
+ fprintf(stderr, " - K == q8_0, V == q8_0, 8.50 BPV\n");
+ fprintf(stderr, " - K == f16, V == f16, 16.00 BPV\n");
+ fprintf(stderr, "Compile with LLAMA_CUDA_FA_ALL_QUANTS for all combinations of q4_0, q4_1, q5_0, q5_1, q8_0, and f16.\n");
+ GGML_ASSERT(false);
+ } else {
+ fprintf(stderr, "Unsupported KV type combination for head_size 256.\n");
+ fprintf(stderr, "Only f16 is supported.\n");
+ GGML_ASSERT(false);
+ }
+}
+
template
void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kernel_t fattn_kernel, int nwarps, int cols_per_block) {
const ggml_tensor * Q = dst->src[0];
@@ -94,8 +630,6 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern
ggml_tensor * KQV = dst;
GGML_ASSERT(Q->type == GGML_TYPE_F32);
- GGML_ASSERT(K->type == GGML_TYPE_F16);
- GGML_ASSERT(V->type == GGML_TYPE_F16);
GGML_ASSERT(KQV->type == GGML_TYPE_F32);
GGML_ASSERT(!mask || mask->type == GGML_TYPE_F16);
@@ -143,6 +677,7 @@ void launch_fattn(ggml_backend_cuda_context & ctx, ggml_tensor * dst, fattn_kern
mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0,
Q->nb[1], Q->nb[2], Q->nb[3],
K->nb[1], K->nb[2], K->nb[3],
+ V->nb[1], V->nb[2], V->nb[3],
KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3]
);
CUDA_CHECK(cudaGetLastError());
diff --git a/ggml-cuda/fattn-tile-f16.cu b/ggml-cuda/fattn-tile-f16.cu
index cdb5eaff7..3d64a9eba 100644
--- a/ggml-cuda/fattn-tile-f16.cu
+++ b/ggml-cuda/fattn-tile-f16.cu
@@ -36,6 +36,9 @@ static __global__ void flash_attn_tile_ext_f16(
const int nb11,
const int nb12,
const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
const int ne0,
const int ne1,
const int ne2,
diff --git a/ggml-cuda/fattn-tile-f32.cu b/ggml-cuda/fattn-tile-f32.cu
index 5a3de2918..61fce0a7e 100644
--- a/ggml-cuda/fattn-tile-f32.cu
+++ b/ggml-cuda/fattn-tile-f32.cu
@@ -36,6 +36,9 @@ static __global__ void flash_attn_tile_ext_f32(
const int nb11,
const int nb12,
const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
const int ne0,
const int ne1,
const int ne2,
diff --git a/ggml-cuda/fattn-vec-f16.cu b/ggml-cuda/fattn-vec-f16.cu
deleted file mode 100644
index 808e8f362..000000000
--- a/ggml-cuda/fattn-vec-f16.cu
+++ /dev/null
@@ -1,330 +0,0 @@
-#include "common.cuh"
-#include "fattn-common.cuh"
-#include "fattn-vec-f16.cuh"
-
-template // D == head size
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-__launch_bounds__(D, 1)
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-static __global__ void flash_attn_vec_ext_f16(
- const char * __restrict__ Q,
- const char * __restrict__ K,
- const char * __restrict__ V,
- const char * __restrict__ mask,
- float * __restrict__ dst,
- float2 * __restrict__ dst_meta,
- const float scale,
- const float max_bias,
- const float m0,
- const float m1,
- const uint32_t n_head_log2,
- const int ne00,
- const int ne01,
- const int ne02,
- const int ne03,
- const int ne10,
- const int ne11,
- const int ne12,
- const int ne13,
- const int ne31,
- const int nb31,
- const int nb01,
- const int nb02,
- const int nb03,
- const int nb11,
- const int nb12,
- const int nb13,
- const int ne0,
- const int ne1,
- const int ne2,
- const int ne3) {
-#if FP16_AVAILABLE
- //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
-
- const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
-
- const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
- const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
- const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
- const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
- const half * maskh = (const half *) mask + ne11*ic0;
-
- const int stride_KV = nb11 / sizeof(half);
- const int stride_KV2 = nb11 / sizeof(half2);
-
- const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
- const half slopeh = __float2half(slopef);
-
- static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
- constexpr int nwarps = D / WARP_SIZE;
- const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
- __builtin_assume(tid < D);
-
- __shared__ half KQ[ncols*D];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- KQ[j*D + tid] = -HALF_MAX_HALF;
- }
- half2 * KQ2 = (half2 *) KQ;
-
- half kqmax[ncols];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqmax[j] = -HALF_MAX_HALF;
- }
- half kqsum[ncols] = {0.0f};
-
- __shared__ half kqmax_shared[ncols][WARP_SIZE];
- __shared__ half kqsum_shared[ncols][WARP_SIZE];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- if (threadIdx.y == 0) {
- kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
- kqsum_shared[j][threadIdx.x] = 0.0f;
- }
- }
- __syncthreads();
-
- // Convert Q to half2 and store in registers:
- half2 Q_h2[ncols][D/(2*WARP_SIZE)];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
-#pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
-
- const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
- Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
- }
- }
-
- half2 VKQ[ncols] = {{0.0f, 0.0f}};
-
- const int k_start = parallel_blocks == 1 ? 0 : ip*D;
- for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
- // Calculate KQ tile and keep track of new maximum KQ values:
-
- // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
- // see https://github.com/ggerganov/llama.cpp/pull/7061 .
- // Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
- half kqmax_new = kqmax[0];
- half kqmax_new_arr[ncols];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqmax_new_arr[j] = kqmax[j];
- }
-
-#pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
- const int i_KQ = i_KQ_0 + threadIdx.y;
-
- if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
- break;
- }
-
- half2 sum2[ncols] = {{0.0f, 0.0f}};
-#pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
-
- const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- sum2[j] += K_ik * Q_h2[j][k_KQ_0/WARP_SIZE];
- }
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- sum2[j] = warp_reduce_sum(sum2[j]);
- half sum = __low2half(sum2[j]) + __high2half(sum2[j]);
- sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
-
- if (ncols == 1) {
- kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
- } else {
- kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
- }
-
- if (threadIdx.x == 0) {
- KQ[j*D + i_KQ] = sum;
- }
- }
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
-
- kqmax_new_j = warp_reduce_max(kqmax_new_j);
- if (threadIdx.x == 0) {
- kqmax_shared[j][threadIdx.y] = kqmax_new_j;
- }
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- half kqmax_new_j = kqmax_shared[j][threadIdx.x];
- kqmax_new_j = warp_reduce_max(kqmax_new_j);
-
- const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
- kqmax[j] = kqmax_new_j;
-
- const half val = hexp(KQ[j*D + tid] - kqmax[j]);
- kqsum[j] = kqsum[j]*KQ_max_scale + val;
- KQ[j*D + tid] = val;
-
- VKQ[j] *= __half2half2(KQ_max_scale);
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int k0 = 0; k0 < D; k0 += 2) {
- if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
- break;
- }
-
- half2 V_k;
- reinterpret_cast(V_k.x) = V_h[(k_VKQ_0 + k0 + 0)*stride_KV + tid];
- reinterpret_cast(V_k.y) = V_h[(k_VKQ_0 + k0 + 1)*stride_KV + tid];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
- }
- }
-
- __syncthreads();
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqsum[j] = warp_reduce_sum(kqsum[j]);
- if (threadIdx.x == 0) {
- kqsum_shared[j][threadIdx.y] = kqsum[j];
- }
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
- if (ncols > 2 && ic0 + j_VKQ >= ne01) {
- break;
- }
-
- kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
- kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
-
- half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
- if (parallel_blocks == 1) {
- dst_val /= kqsum[j_VKQ];
- }
- const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
- dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
- }
-
- if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
- dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
- }
-#else
- NO_DEVICE_CODE;
-#endif // FP16_AVAILABLE
-}
-
-void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- ggml_tensor * KQV = dst;
- ggml_tensor * Q = dst->src[0];
-
- const int32_t precision = KQV->op_params[2];
- GGML_ASSERT(precision == GGML_PREC_DEFAULT);
-
- constexpr int cols_per_block = 1;
- constexpr int parallel_blocks = 4;
- switch (Q->ne[0]) {
- case 64: {
- constexpr int D = 64;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16;
- launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- case 128: {
- constexpr int D = 128;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16;
- launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- case 256: {
- constexpr int D = 256;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16;
- launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- default:
- GGML_ASSERT(false);
- break;
- }
-}
-
-template
-void launch_fattn_vec_f16_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
- switch (Q->ne[0]) {
- case 64: {
- constexpr int D = 64;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16;
- launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- case 128: {
- constexpr int D = 128;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16;
- launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- default: {
- GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
- } break;
- }
-}
-
-void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * KQV = dst;
- const ggml_tensor * Q = dst->src[0];
-
- const int32_t precision = KQV->op_params[2];
- GGML_ASSERT(precision == GGML_PREC_DEFAULT);
-
- if (Q->ne[1] == 1) {
- ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
- return;
- }
-
- if (Q->ne[1] == 2) {
- constexpr int cols_per_block = 2;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f16_64_128(ctx, dst);
- return;
- }
-
- if (Q->ne[1] <= 4) {
- constexpr int cols_per_block = 4;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f16_64_128(ctx, dst);
- return;
- }
-
- if (Q->ne[1] <= 8) {
- constexpr int cols_per_block = 8;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f16_64_128(ctx, dst);
- return;
- }
-
- constexpr int cols_per_block = 8;
- constexpr int parallel_blocks = 1;
- launch_fattn_vec_f16_64_128(ctx, dst);
-}
diff --git a/ggml-cuda/fattn-vec-f16.cuh b/ggml-cuda/fattn-vec-f16.cuh
index c7023610a..ea4fcc972 100644
--- a/ggml-cuda/fattn-vec-f16.cuh
+++ b/ggml-cuda/fattn-vec-f16.cuh
@@ -1,5 +1,395 @@
#include "common.cuh"
+#include "fattn-common.cuh"
-void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+template // D == head size
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+__launch_bounds__(D, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+static __global__ void flash_attn_vec_ext_f16(
+ const char * __restrict__ Q,
+ const char * __restrict__ K,
+ const char * __restrict__ V,
+ const char * __restrict__ mask,
+ float * __restrict__ dst,
+ float2 * __restrict__ dst_meta,
+ const float scale,
+ const float max_bias,
+ const float m0,
+ const float m1,
+ const uint32_t n_head_log2,
+ const int ne00,
+ const int ne01,
+ const int ne02,
+ const int ne03,
+ const int ne10,
+ const int ne11,
+ const int ne12,
+ const int ne13,
+ const int ne31,
+ const int nb31,
+ const int nb01,
+ const int nb02,
+ const int nb03,
+ const int nb11,
+ const int nb12,
+ const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
+ const int ne0,
+ const int ne1,
+ const int ne2,
+ const int ne3) {
+#if FP16_AVAILABLE
+ //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
-void ggml_cuda_flash_attn_ext_vec_f16_no_mma(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+ constexpr vec_dot_KQ_f16_t vec_dot_KQ = get_vec_dot_KQ_f16(type_K);
+ constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
+ constexpr dequantize_1_f16_t dequantize_1_v = get_dequantize_1_f16(type_V);
+
+ const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
+ const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
+
+ const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
+ Q += nb02* blockIdx.y + nb01*ic0;
+ K += nb12*(blockIdx.y / gqa_ratio);
+ V += nb22*(blockIdx.y / gqa_ratio);
+
+ const half * maskh = (const half *) mask + ne11*ic0;
+
+ const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
+ const half slopeh = __float2half(slopef);
+
+ static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
+ constexpr int nwarps = D / WARP_SIZE;
+ const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
+ __builtin_assume(tid < D);
+
+ __shared__ half KQ[ncols*D];
+ half2 * KQ2 = (half2 *) KQ;
+
+ half kqmax[ncols];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqmax[j] = -HALF_MAX_HALF;
+ }
+ half kqsum[ncols] = {0.0f};
+
+ __shared__ half kqmax_shared[ncols][WARP_SIZE];
+ __shared__ half kqsum_shared[ncols][WARP_SIZE];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ if (threadIdx.y == 0) {
+ kqmax_shared[j][threadIdx.x] = -HALF_MAX_HALF;
+ kqsum_shared[j][threadIdx.x] = 0.0f;
+ }
+ }
+ __syncthreads();
+
+ // Convert Q to half2 (f16 K) or q8_1 (quantized K) and store in registers:
+ half2 Q_h2[ncols][D/(2*WARP_SIZE)];
+ int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D/(sizeof(int)*QK8_1)];
+ half2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
+ if (Q_q8_1) {
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+
+ if (j0 + nwarps > ncols && j >= ncols) {
+ break;
+ }
+
+ // Reuse KQ as temporary storage for converting Q to q8_1:
+ int * tmp_q_i32 = (int *) &KQ[j*D];
+ half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
+
+ // Set memory to zero if out of bounds:
+ if (ncols > 2 && ic0 + j >= ne01) {
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ tmp_q_i32[i] = 0;
+ }
+ if (threadIdx.x < D/QK8_1) {
+ tmp_q_ds[threadIdx.x] = make_half2(0.0f, 0.0f);
+ }
+ continue;
+ }
+
+ const float * Q_f = (const float *) (Q + j*nb01);
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ quantize_q8_1_to_shared(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ int * tmp_q_i32 = (int *) &KQ[j*D];
+ half2 * tmp_q_ds = (half2 *) (tmp_q_i32 + D/sizeof(int));
+
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
+ Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
+ }
+ }
+
+ __syncthreads();
+ } else {
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
+
+#pragma unroll
+ for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
+ Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
+ }
+ }
+ }
+
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ KQ[j*D + tid] = -HALF_MAX_HALF;
+ }
+
+ half2 VKQ[ncols] = {{0.0f, 0.0f}};
+
+ const int k_start = parallel_blocks == 1 ? 0 : ip*D;
+ for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
+ // Calculate KQ tile and keep track of new maximum KQ values:
+
+ // For unknown reasons using a half array of size 1 for kqmax_new causes a performance regression,
+ // see https://github.com/ggerganov/llama.cpp/pull/7061 .
+ // Therefore this variable is defined twice but only used once (so that the compiler can optimize out the unused variable).
+ half kqmax_new = kqmax[0];
+ half kqmax_new_arr[ncols];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqmax_new_arr[j] = kqmax[j];
+ }
+
+#pragma unroll
+ for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
+ const int i_KQ = i_KQ_0 + threadIdx.y;
+
+ if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
+ break;
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ half sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_h2[j], Q_i32[j], Q_ds[j]);
+ sum = warp_reduce_sum(sum);
+ sum += mask ? slopeh*maskh[j*ne11 + k_VKQ_0 + i_KQ] : __float2half(0.0f);
+
+ if (ncols == 1) {
+ kqmax_new = ggml_cuda_hmax(kqmax_new, sum);
+ } else {
+ kqmax_new_arr[j] = ggml_cuda_hmax(kqmax_new_arr[j], sum);
+ }
+
+ if (threadIdx.x == 0) {
+ KQ[j*D + i_KQ] = sum;
+ }
+ }
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ half kqmax_new_j = ncols == 1 ? kqmax_new : kqmax_new_arr[j];
+
+ kqmax_new_j = warp_reduce_max(kqmax_new_j);
+ if (threadIdx.x == 0) {
+ kqmax_shared[j][threadIdx.y] = kqmax_new_j;
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ half kqmax_new_j = kqmax_shared[j][threadIdx.x];
+ kqmax_new_j = warp_reduce_max(kqmax_new_j);
+
+ const half KQ_max_scale = hexp(kqmax[j] - kqmax_new_j);
+ kqmax[j] = kqmax_new_j;
+
+ const half val = hexp(KQ[j*D + tid] - kqmax[j]);
+ kqsum[j] = kqsum[j]*KQ_max_scale + val;
+ KQ[j*D + tid] = val;
+
+ VKQ[j] *= __half2half2(KQ_max_scale);
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int k0 = 0; k0 < D; k0 += 2) {
+ if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k0 >= ne11) {
+ break;
+ }
+
+ half2 V_k;
+ reinterpret_cast(V_k.x) = dequantize_1_v(V + (k_VKQ_0 + k0 + 0)*nb21, tid);
+ reinterpret_cast(V_k.y) = dequantize_1_v(V + (k_VKQ_0 + k0 + 1)*nb21, tid);
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ VKQ[j] += V_k*KQ2[j*(D/2) + k0/2];
+ }
+ }
+
+ __syncthreads();
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqsum[j] = warp_reduce_sum(kqsum[j]);
+ if (threadIdx.x == 0) {
+ kqsum_shared[j][threadIdx.y] = kqsum[j];
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
+ if (ncols > 2 && ic0 + j_VKQ >= ne01) {
+ break;
+ }
+
+ kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
+ kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
+
+ half dst_val = (__low2half(VKQ[j_VKQ]) + __high2half(VKQ[j_VKQ]));
+ if (parallel_blocks == 1) {
+ dst_val /= kqsum[j_VKQ];
+ }
+ const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
+ dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
+ }
+
+ if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
+ dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
+ }
+#else
+ NO_DEVICE_CODE;
+#endif // FP16_AVAILABLE
+}
+
+template
+void ggml_cuda_flash_attn_ext_vec_f16_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f16;
+ launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+}
+
+template
+void ggml_cuda_flash_attn_ext_vec_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_tensor * KQV = dst;
+ ggml_tensor * Q = dst->src[0];
+ ggml_tensor * K = dst->src[1];
+ ggml_tensor * V = dst->src[2];
+
+ const int32_t precision = KQV->op_params[2];
+ GGML_ASSERT(precision == GGML_PREC_DEFAULT);
+
+ GGML_ASSERT(K->type == type_K);
+ GGML_ASSERT(V->type == type_V);
+
+ if (Q->ne[1] == 1) {
+ constexpr int cols_per_block = 1;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] == 2) {
+ constexpr int cols_per_block = 2;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] <= 4) {
+ constexpr int cols_per_block = 4;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] <= 8) {
+ constexpr int cols_per_block = 8;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst);
+ return;
+ }
+
+ constexpr int cols_per_block = 8;
+ constexpr int parallel_blocks = 1;
+ ggml_cuda_flash_attn_ext_vec_f16_case_impl(ctx, dst);
+}
+
+#define DECL_FATTN_VEC_F16_CASE(D, type_K, type_V) \
+ template void ggml_cuda_flash_attn_ext_vec_f16_case \
+ (ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
+
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
+
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
+
+extern DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
diff --git a/ggml-cuda/fattn-vec-f32.cu b/ggml-cuda/fattn-vec-f32.cu
deleted file mode 100644
index b4652301b..000000000
--- a/ggml-cuda/fattn-vec-f32.cu
+++ /dev/null
@@ -1,279 +0,0 @@
-#include "common.cuh"
-#include "fattn-common.cuh"
-#include "fattn-vec-f32.cuh"
-
-template // D == head size
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-__launch_bounds__(D, 1)
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-static __global__ void flash_attn_vec_ext_f32(
- const char * __restrict__ Q,
- const char * __restrict__ K,
- const char * __restrict__ V,
- const char * __restrict__ mask,
- float * __restrict__ dst,
- float2 * __restrict__ dst_meta,
- const float scale,
- const float max_bias,
- const float m0,
- const float m1,
- const uint32_t n_head_log2,
- const int ne00,
- const int ne01,
- const int ne02,
- const int ne03,
- const int ne10,
- const int ne11,
- const int ne12,
- const int ne13,
- const int ne31,
- const int nb31,
- const int nb01,
- const int nb02,
- const int nb03,
- const int nb11,
- const int nb12,
- const int nb13,
- const int ne0,
- const int ne1,
- const int ne2,
- const int ne3) {
- //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
-
- const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
-
- const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
- const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0);
- const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio));
- const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
- const half * maskh = (const half *) mask + ne11*ic0;
-
- const int stride_KV = nb11 / sizeof(half);
- const int stride_KV2 = nb11 / sizeof(half2);
-
- const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
-
- static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
- constexpr int nwarps = D / WARP_SIZE;
- const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
- __builtin_assume(tid < D);
-
- __shared__ float KQ[ncols*D];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- KQ[j*D + tid] = -FLT_MAX/2.0f;
- }
-
- float kqmax[ncols];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqmax[j] = -FLT_MAX/2.0f;
- }
- float kqsum[ncols] = {0.0f};
-
- __shared__ float kqmax_shared[ncols][WARP_SIZE];
- __shared__ float kqsum_shared[ncols][WARP_SIZE];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- if (threadIdx.y == 0) {
- kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
- kqsum_shared[j][threadIdx.x] = 0.0f;
- }
- }
- __syncthreads();
-
- // Convert Q to half2 and store in registers:
- float2 Q_h2[ncols][D/(2*WARP_SIZE)];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
-#pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
-
- Q_h2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
- Q_h2[j][i0/WARP_SIZE].x *= scale;
- Q_h2[j][i0/WARP_SIZE].y *= scale;
- }
- }
-
- float VKQ[ncols] = {0.0f};
-
- const int k_start = parallel_blocks == 1 ? 0 : ip*D;
- for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
- // Calculate KQ tile and keep track of new maximum KQ values:
-
- float kqmax_new_arr[ncols];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqmax_new_arr[j] = kqmax[j];
- }
-
-#pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
- const int i_KQ = i_KQ_0 + threadIdx.y;
-
- if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
- break;
- }
-
- float sum[ncols] = {0.0f};
-#pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) {
- const int k_KQ = k_KQ_0 + threadIdx.x;
-
- const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ];
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x;
- sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y;
- }
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- sum[j] = warp_reduce_sum(sum[j]);
- sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
-
- kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]);
-
- if (threadIdx.x == 0) {
- KQ[j*D + i_KQ] = sum[j];
- }
- }
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- float kqmax_new_j = kqmax_new_arr[j];
-
- kqmax_new_j = warp_reduce_max(kqmax_new_j);
- if (threadIdx.x == 0) {
- kqmax_shared[j][threadIdx.y] = kqmax_new_j;
- }
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- float kqmax_new_j = kqmax_shared[j][threadIdx.x];
- kqmax_new_j = warp_reduce_max(kqmax_new_j);
-
- const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
- kqmax[j] = kqmax_new_j;
-
- const float val = expf(KQ[j*D + tid] - kqmax[j]);
- kqsum[j] = kqsum[j]*KQ_max_scale + val;
- KQ[j*D + tid] = val;
-
- VKQ[j] *= KQ_max_scale;
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int k = 0; k < D; ++k) {
- if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
- break;
- }
-
- const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]);
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- VKQ[j] += V_ki*KQ[j*D + k];
- }
- }
-
- __syncthreads();
- }
-
-#pragma unroll
- for (int j = 0; j < ncols; ++j) {
- kqsum[j] = warp_reduce_sum(kqsum[j]);
- if (threadIdx.x == 0) {
- kqsum_shared[j][threadIdx.y] = kqsum[j];
- }
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
- if (ncols > 2 && ic0 + j_VKQ >= ne01) {
- break;
- }
-
- kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
- kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
-
- float dst_val = VKQ[j_VKQ];
- if (parallel_blocks == 1) {
- dst_val /= kqsum[j_VKQ];
- }
- const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
- dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
- }
-
- if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
- dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
- }
-}
-
-template
-void launch_fattn_vec_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
- switch (Q->ne[0]) {
- case 64: {
- constexpr int D = 64;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32;
- launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- case 128: {
- constexpr int D = 128;
- constexpr int nwarps = D/WARP_SIZE;
- fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32;
- launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- } break;
- default: {
- GGML_ASSERT(false && "FlashAttention without tensor cores only supports head sizes 64 and 128.");
- } break;
- }
-}
-
-void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
-
- if (Q->ne[1] == 1) {
- constexpr int cols_per_block = 1;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128(ctx, dst);
- return;
- }
-
- if (Q->ne[1] == 2) {
- constexpr int cols_per_block = 2;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128(ctx, dst);
- return;
- }
-
- if (Q->ne[1] <= 4) {
- constexpr int cols_per_block = 4;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128(ctx, dst);
- return;
- }
-
- if (Q->ne[1] <= 8) {
- constexpr int cols_per_block = 8;
- constexpr int parallel_blocks = 4;
- launch_fattn_vec_f32_64_128(ctx, dst);
- return;
- }
-
- constexpr int cols_per_block = 8;
- constexpr int parallel_blocks = 1;
- launch_fattn_vec_f32_64_128(ctx, dst);
-}
diff --git a/ggml-cuda/fattn-vec-f32.cuh b/ggml-cuda/fattn-vec-f32.cuh
index 614d54ae3..3009f0f43 100644
--- a/ggml-cuda/fattn-vec-f32.cuh
+++ b/ggml-cuda/fattn-vec-f32.cuh
@@ -1,3 +1,376 @@
#include "common.cuh"
+#include "fattn-common.cuh"
-void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
+template // D == head size
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+__launch_bounds__(D, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+static __global__ void flash_attn_vec_ext_f32(
+ const char * __restrict__ Q,
+ const char * __restrict__ K,
+ const char * __restrict__ V,
+ const char * __restrict__ mask,
+ float * __restrict__ dst,
+ float2 * __restrict__ dst_meta,
+ const float scale,
+ const float max_bias,
+ const float m0,
+ const float m1,
+ const uint32_t n_head_log2,
+ const int ne00,
+ const int ne01,
+ const int ne02,
+ const int ne03,
+ const int ne10,
+ const int ne11,
+ const int ne12,
+ const int ne13,
+ const int ne31,
+ const int nb31,
+ const int nb01,
+ const int nb02,
+ const int nb03,
+ const int nb11,
+ const int nb12,
+ const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
+ const int ne0,
+ const int ne1,
+ const int ne2,
+ const int ne3) {
+ //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
+
+ constexpr vec_dot_KQ_f32_t vec_dot_KQ = get_vec_dot_KQ_f32(type_K);
+ constexpr bool Q_q8_1 = type_K != GGML_TYPE_F16;
+ constexpr dequantize_1_f32_t dequantize_1_v = get_dequantize_1_f32(type_V);
+
+ const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on.
+ const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
+
+ const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
+ Q += nb02* blockIdx.y + nb01*ic0;
+ K += nb12*(blockIdx.y / gqa_ratio);
+ V += nb22*(blockIdx.y / gqa_ratio); // K and V have same shape
+ const half * maskh = (const half *) mask + ne11*ic0;
+
+ const float slope = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
+
+ static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64.");
+ constexpr int nwarps = D / WARP_SIZE;
+ const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
+ __builtin_assume(tid < D);
+
+ __shared__ float KQ[ncols*D];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ KQ[j*D + tid] = -FLT_MAX/2.0f;
+ }
+
+ float kqmax[ncols];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqmax[j] = -FLT_MAX/2.0f;
+ }
+ float kqsum[ncols] = {0.0f};
+
+ __shared__ float kqmax_shared[ncols][WARP_SIZE];
+ __shared__ float kqsum_shared[ncols][WARP_SIZE];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ if (threadIdx.y == 0) {
+ kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f;
+ kqsum_shared[j][threadIdx.x] = 0.0f;
+ }
+ }
+ __syncthreads();
+
+ // Convert Q to float2 (f16 K) or q8_1 (quantized K) and store in registers:
+ float2 Q_f2[ncols][D/(2*WARP_SIZE)];
+ int Q_i32[ncols][D/(sizeof(int)*QK8_1) == 0 ? 1 : D >= D/(sizeof(int)*QK8_1)];
+ float2 Q_ds[ncols][D/QK8_1 == 0 ? 1 : D/QK8_1];
+ if (Q_q8_1) {
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+
+ if (j0 + nwarps > ncols && j >= ncols) {
+ break;
+ }
+
+ // Reuse KQ as temporary storage for converting Q to q8_1:
+ int * tmp_q_i32 = (int *) &KQ[j*D];
+ float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
+
+ // Set memory to zero if out of bounds:
+ if (ncols > 2 && ic0 + j >= ne01) {
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ tmp_q_i32[i] = 0;
+ }
+ if (threadIdx.x < D/QK8_1) {
+ tmp_q_ds[threadIdx.x] = make_float2(0.0f, 0.0f);
+ }
+ continue;
+ }
+
+ const float * Q_f = (const float *) (Q + j*nb01);
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ quantize_q8_1_to_shared(Q_f + 4*i0, scale, tmp_q_i32, tmp_q_ds);
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ int * tmp_q_i32 = (int *) &KQ[j*D];
+ float2 * tmp_q_ds = (float2 *) (tmp_q_i32 + D/sizeof(int));
+
+#pragma unroll
+ for (int i0 = 0; i0 < D/sizeof(int); i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ Q_i32[j][i0/WARP_SIZE] = tmp_q_i32[i];
+ Q_ds[j][i0/WARP_SIZE] = tmp_q_ds[i/QI8_1];
+ }
+ }
+
+ __syncthreads();
+ } else {
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ const float2 * Q_f2_j = (const float2 *) (Q + j*nb01);
+#pragma unroll
+ for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+
+ Q_f2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2_j[i] : make_float2(0.0f, 0.0f);
+ Q_f2[j][i0/WARP_SIZE].x *= scale;
+ Q_f2[j][i0/WARP_SIZE].y *= scale;
+ }
+ }
+ }
+
+ float VKQ[ncols] = {0.0f};
+
+ const int k_start = parallel_blocks == 1 ? 0 : ip*D;
+ for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) {
+ // Calculate KQ tile and keep track of new maximum KQ values:
+
+ float kqmax_new_arr[ncols];
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqmax_new_arr[j] = kqmax[j];
+ }
+
+#pragma unroll
+ for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) {
+ const int i_KQ = i_KQ_0 + threadIdx.y;
+
+ if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) {
+ break;
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ float sum = vec_dot_KQ(K + (k_VKQ_0 + i_KQ)*nb11, Q_f2[j], Q_i32[j], Q_ds[j]);
+ sum = warp_reduce_sum(sum);
+ sum += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f;
+
+ kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum);
+
+ if (threadIdx.x == 0) {
+ KQ[j*D + i_KQ] = sum;
+ }
+ }
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ float kqmax_new_j = kqmax_new_arr[j];
+
+ kqmax_new_j = warp_reduce_max(kqmax_new_j);
+ if (threadIdx.x == 0) {
+ kqmax_shared[j][threadIdx.y] = kqmax_new_j;
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ float kqmax_new_j = kqmax_shared[j][threadIdx.x];
+ kqmax_new_j = warp_reduce_max(kqmax_new_j);
+
+ const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j);
+ kqmax[j] = kqmax_new_j;
+
+ const float val = expf(KQ[j*D + tid] - kqmax[j]);
+ kqsum[j] = kqsum[j]*KQ_max_scale + val;
+ KQ[j*D + tid] = val;
+
+ VKQ[j] *= KQ_max_scale;
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int k = 0; k < D; ++k) {
+ if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) {
+ break;
+ }
+
+ const float V_ki = dequantize_1_v(V + (k_VKQ_0 + k)*nb21, tid);
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ VKQ[j] += V_ki*KQ[j*D + k];
+ }
+ }
+
+ __syncthreads();
+ }
+
+#pragma unroll
+ for (int j = 0; j < ncols; ++j) {
+ kqsum[j] = warp_reduce_sum(kqsum[j]);
+ if (threadIdx.x == 0) {
+ kqsum_shared[j][threadIdx.y] = kqsum[j];
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
+ if (ncols > 2 && ic0 + j_VKQ >= ne01) {
+ break;
+ }
+
+ kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
+ kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
+
+ float dst_val = VKQ[j_VKQ];
+ if (parallel_blocks == 1) {
+ dst_val /= kqsum[j_VKQ];
+ }
+ const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
+ dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
+ }
+
+ if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
+ dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
+ }
+}
+
+template
+void ggml_cuda_flash_attn_ext_vec_f32_case_impl(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ constexpr int nwarps = D/WARP_SIZE;
+ fattn_kernel_t fattn_kernel = flash_attn_vec_ext_f32;
+ launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+}
+
+template
+void ggml_cuda_flash_attn_ext_vec_f32_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_tensor * KQV = dst;
+ ggml_tensor * Q = dst->src[0];
+ ggml_tensor * K = dst->src[1];
+ ggml_tensor * V = dst->src[2];
+
+ const int32_t precision = KQV->op_params[2];
+ GGML_ASSERT(precision == GGML_PREC_DEFAULT);
+
+ GGML_ASSERT(K->type == type_K);
+ GGML_ASSERT(V->type == type_V);
+
+ if (Q->ne[1] == 1) {
+ constexpr int cols_per_block = 1;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f32_case_impl(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] == 2) {
+ constexpr int cols_per_block = 2;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f32_case_impl(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] <= 4) {
+ constexpr int cols_per_block = 4;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f32_case_impl(ctx, dst);
+ return;
+ }
+
+ if (Q->ne[1] <= 8) {
+ constexpr int cols_per_block = 8;
+ constexpr int parallel_blocks = 4;
+ ggml_cuda_flash_attn_ext_vec_f32_case_impl(ctx, dst);
+ return;
+ }
+
+ constexpr int cols_per_block = 8;
+ constexpr int parallel_blocks = 1;
+ ggml_cuda_flash_attn_ext_vec_f32_case_impl(ctx, dst);
+}
+
+#define DECL_FATTN_VEC_F32_CASE(D, type_K, type_V) \
+ template void ggml_cuda_flash_attn_ext_vec_f32_case \
+ (ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
+
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
+
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
+extern DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
+
+extern DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
diff --git a/ggml-cuda/fattn-wmma-f16.cuh b/ggml-cuda/fattn-wmma-f16.cuh
new file mode 100644
index 000000000..65ed31852
--- /dev/null
+++ b/ggml-cuda/fattn-wmma-f16.cuh
@@ -0,0 +1,490 @@
+#include "common.cuh"
+#include "fattn-common.cuh"
+
+#if FP16_MMA_AVAILABLE
+#include
+#endif
+
+// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
+template
+#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+__launch_bounds__(nwarps*WARP_SIZE, 1)
+#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
+static __global__ void flash_attn_ext_f16(
+ const char * __restrict__ Q,
+ const char * __restrict__ K,
+ const char * __restrict__ V,
+ const char * __restrict__ mask,
+ float * __restrict__ dst,
+ float2 * __restrict__ dst_meta,
+ const float scale,
+ const float max_bias,
+ const float m0,
+ const float m1,
+ const uint32_t n_head_log2,
+ const int ne00,
+ const int ne01,
+ const int ne02,
+ const int ne03,
+ const int ne10,
+ const int ne11,
+ const int ne12,
+ const int ne13,
+ const int ne31,
+ const int nb31,
+ const int nb01,
+ const int nb02,
+ const int nb03,
+ const int nb11,
+ const int nb12,
+ const int nb13,
+ const int nb21,
+ const int nb22,
+ const int nb23,
+ const int ne0,
+ const int ne1,
+ const int ne2,
+ const int ne3) {
+#if FP16_MMA_AVAILABLE
+ //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
+
+ const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
+ const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
+
+ static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
+ static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
+ constexpr int frag_m = ncols == 8 ? 32 : 16;
+ constexpr int frag_n = ncols == 8 ? 8 : 16;
+ static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
+ typedef nvcuda::wmma::fragment frag_a_K;
+ typedef nvcuda::wmma::fragment frag_a_V;
+ typedef nvcuda::wmma::fragment frag_b;
+ typedef nvcuda::wmma::fragment frag_c_KQ;
+ typedef nvcuda::wmma::fragment frag_c_VKQ;
+
+ constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
+ constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
+ static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
+
+ // Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
+ constexpr int D_padded = D + 8;
+ constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
+ constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
+
+ const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
+ const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
+ const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
+ const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
+ const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
+ const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
+
+ const int stride_Q = nb01 / sizeof(float);
+ const int stride_KV = nb11 / sizeof(half);
+
+ const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
+ const half slopeh = __float2half(slopef);
+ const half2 slope2 = make_half2(slopef, slopef);
+
+ frag_b Q_b[D/16][ncols/frag_n];
+
+ // A single buffer for temporarily holding tiles of KQ and VKQ parts:
+ constexpr int mem_KQ = ncols*kqs_padded*kqar;
+ constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
+ __shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
+ float * KQ_f = (float *) KQ;
+ half2 * KQ2 = (half2 *) KQ;
+
+ float KQ_rowsum_f[ncols/nwarps] = {0.0f};
+ float KQ_max_f[ncols/nwarps];
+ float KQ_max_scale_f[ncols/nwarps] = {0.0f};
+
+#pragma unroll
+ for (int j = 0; j < ncols/nwarps; ++j) {
+ KQ_max_f[j] = -FLT_MAX/2.0f;
+ }
+
+ half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
+ half2 KQ_max_h2[ncols/nwarps];
+ half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
+
+#pragma unroll
+ for (int j = 0; j < ncols/nwarps; ++j) {
+ KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
+ }
+
+ __shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
+ half2 * VKQ2 = (half2 *) VKQ;
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+#pragma unroll
+ for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+ if (i0 + WARP_SIZE > D/2 && i >= D/2) {
+ break;
+ }
+ VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
+ }
+ }
+
+ // Convert Q to half and apply scale, temporarily store in KQ:
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+#pragma unroll
+ for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+ if (i0 + WARP_SIZE > D && i >= D) {
+ break;
+ }
+ KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
+ }
+ }
+
+ __syncthreads();
+
+ // Load Q into tensor core fragments/registers since it will be used frequently:
+#pragma unroll
+ for (int i0 = 0; i0 < D; i0 += 16) {
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += frag_n) {
+ nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
+ }
+ }
+
+ __syncthreads();
+
+ // Iterate over ne11 == previous tokens:
+ for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
+ // Calculate tile of KQ:
+#pragma unroll
+ for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
+ frag_c_KQ KQ_c[ncols/frag_n];
+#pragma unroll
+ for (int j = 0; j < ncols/frag_n; ++j) {
+ nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
+ }
+#pragma unroll
+ for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
+ frag_a_K K_a;
+ nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
+#pragma unroll
+ for (int j = 0; j < ncols/frag_n; ++j) {
+ nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
+ }
+ }
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += frag_n) {
+ nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
+ }
+ }
+
+ __syncthreads();
+
+ // Calculate softmax for each KQ column using the current max. value.
+ // The divisor is stored in KQ_rowsum and will be applied at the end.
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+
+ if (std::is_same::value) {
+ float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
+ }
+
+ float KQ_max_new = KQ_max_f[j0/nwarps];
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
+ KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
+ }
+ KQ_max_new = warp_reduce_max(KQ_max_new);
+
+ const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
+ KQ_max_scale_f[j0/nwarps] = expf(diff);
+ if (diff <= SOFTMAX_FTZ_THRESHOLD) {
+ KQ_max_scale_f[j0/nwarps] = 0.0f;
+ }
+ KQ_max_f[j0/nwarps] = KQ_max_new;
+
+ float KQ_rowsum_add = 0.0f;
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
+ KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
+ if (diff <= SOFTMAX_FTZ_THRESHOLD) {
+ KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
+ }
+ KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
+ KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
+ }
+ KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
+
+ // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
+ KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
+ } else {
+ half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
+ }
+
+ half2 KQ_max_new = KQ_max_h2[j0/nwarps];
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
+ KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
+ }
+ KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
+ const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
+ KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
+ const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
+ *((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
+ KQ_max_h2[j0/nwarps] = KQ_max_new;
+
+ half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
+ const int k = k0 + threadIdx.x;
+
+ const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
+ KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
+ const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
+ *((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
+ KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
+ KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
+ }
+ KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
+
+ // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
+ KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
+ }
+ }
+
+ __syncthreads();
+
+ frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += frag_n) {
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
+ const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
+ nvcuda::wmma::load_matrix_sync(
+ KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
+ KQ + j0*(kqar*kqs_padded) + k,
+ kqar*kqs_padded);
+ }
+ }
+
+ frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
+#pragma unroll
+ for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
+#pragma unroll
+ for (int j = 0; j < ncols/frag_n; ++j) {
+ nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
+ }
+
+#pragma unroll
+ for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
+ const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
+
+ frag_a_V v_a;
+ nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
+#pragma unroll
+ for (int j = 0; j < ncols/frag_n; ++j) {
+ nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
+ }
+ }
+ }
+
+ __syncthreads();
+
+ const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
+#pragma unroll
+ for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += frag_n) {
+ nvcuda::wmma::store_matrix_sync(
+ KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
+ VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
+ D_padded, nvcuda::wmma::mem_col_major);
+ }
+ }
+
+ __syncthreads();
+
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j = j0 + threadIdx.y;
+
+ half2 VKQ_scale;
+ if (std::is_same::value) {
+ VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
+ } else {
+ VKQ_scale = KQ_max_scale_h2[j0/nwarps];
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+ if (i0 + WARP_SIZE > D/2 && i >= D/2) {
+ break;
+ }
+
+ half2 VKQ_add = make_half2(0.0f, 0.0f);
+#pragma unroll
+ for (int l = 0; l < VKQ_ratio; ++l) {
+ VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
+ }
+ VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
+ }
+ }
+
+ __syncthreads();
+ }
+
+#pragma unroll
+ for (int j0 = 0; j0 < ncols; j0 += nwarps) {
+ const int j_VKQ = j0 + threadIdx.y;
+ if (ic0 + j_VKQ >= ne01) {
+ return;
+ }
+ const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
+
+ float KQ_rowsum_j;
+ if (std::is_same::value) {
+ KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
+ } else {
+ KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
+ }
+
+#pragma unroll
+ for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
+ const int i = i0 + threadIdx.x;
+ if (i0 + WARP_SIZE > D && i >= D) {
+ break;
+ }
+ float dst_val = VKQ[j_VKQ*D_padded + i];
+ if (parallel_blocks == 1) {
+ dst_val /= KQ_rowsum_j;
+ }
+ dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
+ }
+
+ if (parallel_blocks == 1 || threadIdx.x != 0) {
+ continue;
+ }
+
+ float2 dst_meta_val;
+ if (std::is_same::value) {
+ dst_meta_val.x = KQ_max_f[j0/nwarps];
+ } else {
+ dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
+ }
+ dst_meta_val.y = KQ_rowsum_j;
+ dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
+ }
+#else
+ NO_DEVICE_CODE;
+#endif // FP16_MMA_AVAILABLE
+}
+
+constexpr int get_max_power_of_2(int x) {
+ return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
+}
+
+static_assert(get_max_power_of_2(1) == 1, "Test failed.");
+static_assert(get_max_power_of_2(2) == 2, "Test failed.");
+static_assert(get_max_power_of_2(4) == 4, "Test failed.");
+static_assert(get_max_power_of_2(6) == 2, "Test failed.");
+
+// Number of VKQ rows calculated in parallel:
+constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
+ return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
+}
+
+static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
+static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
+static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
+static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
+static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
+static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
+static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
+static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
+static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
+
+template
+void ggml_cuda_flash_attn_ext_wmma_f16_case(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * Q = dst->src[0];
+
+ constexpr int nwarps = 4;
+
+ constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
+ const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
+ const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
+
+ if (4*blocks_num_pb1 < 2*nsm) {
+ constexpr int parallel_blocks = 4;
+ fattn_kernel_t fattn_kernel = flash_attn_ext_f16;
+ launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ return;
+ }
+ if (2*blocks_num_pb1 < 2*nsm) {
+ constexpr int parallel_blocks = 2;
+ fattn_kernel_t fattn_kernel = flash_attn_ext_f16;
+ launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ return;
+ }
+ constexpr int parallel_blocks = 1;
+ fattn_kernel_t fattn_kernel = flash_attn_ext_f16;
+ launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+}
+
+#define DECL_FATTN_WMMA_F16_CASE(D, cols_per_block, KQ_acc_t) \
+ template void ggml_cuda_flash_attn_ext_wmma_f16_case \
+ (ggml_backend_cuda_context & ctx, ggml_tensor * dst) \
+
+extern DECL_FATTN_WMMA_F16_CASE( 64, 16, float);
+extern DECL_FATTN_WMMA_F16_CASE( 80, 16, float);
+extern DECL_FATTN_WMMA_F16_CASE( 96, 16, float);
+extern DECL_FATTN_WMMA_F16_CASE(112, 16, float);
+extern DECL_FATTN_WMMA_F16_CASE(128, 16, float);
+extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
+
+extern DECL_FATTN_WMMA_F16_CASE( 64, 32, float);
+extern DECL_FATTN_WMMA_F16_CASE( 80, 32, float);
+extern DECL_FATTN_WMMA_F16_CASE( 96, 32, float);
+extern DECL_FATTN_WMMA_F16_CASE(112, 32, float);
+extern DECL_FATTN_WMMA_F16_CASE(128, 32, float);
+// extern DECL_FATTN_WMMA_F16_CASE(256, 16, float);
+
+extern DECL_FATTN_WMMA_F16_CASE( 64, 8, half);
+extern DECL_FATTN_WMMA_F16_CASE( 96, 8, half);
+extern DECL_FATTN_WMMA_F16_CASE(128, 8, half);
+extern DECL_FATTN_WMMA_F16_CASE(256, 8, half);
+
+extern DECL_FATTN_WMMA_F16_CASE( 64, 16, half);
+extern DECL_FATTN_WMMA_F16_CASE( 80, 16, half);
+extern DECL_FATTN_WMMA_F16_CASE( 96, 16, half);
+extern DECL_FATTN_WMMA_F16_CASE(112, 16, half);
+extern DECL_FATTN_WMMA_F16_CASE(128, 16, half);
+extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
+
+extern DECL_FATTN_WMMA_F16_CASE( 64, 32, half);
+extern DECL_FATTN_WMMA_F16_CASE( 80, 32, half);
+extern DECL_FATTN_WMMA_F16_CASE( 96, 32, half);
+extern DECL_FATTN_WMMA_F16_CASE(112, 32, half);
+extern DECL_FATTN_WMMA_F16_CASE(128, 32, half);
+extern DECL_FATTN_WMMA_F16_CASE(256, 16, half);
diff --git a/ggml-cuda/fattn.cu b/ggml-cuda/fattn.cu
index af7c95232..b35ab67a8 100644
--- a/ggml-cuda/fattn.cu
+++ b/ggml-cuda/fattn.cu
@@ -4,468 +4,313 @@
#include "fattn-tile-f32.cuh"
#include "fattn-vec-f16.cuh"
#include "fattn-vec-f32.cuh"
+#include "fattn-wmma-f16.cuh"
#include "fattn.cuh"
#include
-#if FP16_MMA_AVAILABLE
-#include
-#endif
+static void ggml_cuda_flash_attn_ext_wmma_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ const ggml_tensor * KQV = dst;
+ const ggml_tensor * Q = dst->src[0];
-// D == head size, VKQ_stride == num VKQ rows calculated in parallel:
-template
-#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-__launch_bounds__(nwarps*WARP_SIZE, 1)
-#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
-static __global__ void flash_attn_ext_f16(
- const char * __restrict__ Q,
- const char * __restrict__ K,
- const char * __restrict__ V,
- const char * __restrict__ mask,
- float * __restrict__ dst,
- float2 * __restrict__ dst_meta,
- const float scale,
- const float max_bias,
- const float m0,
- const float m1,
- const uint32_t n_head_log2,
- const int ne00,
- const int ne01,
- const int ne02,
- const int ne03,
- const int ne10,
- const int ne11,
- const int ne12,
- const int ne13,
- const int ne31,
- const int nb31,
- const int nb01,
- const int nb02,
- const int nb03,
- const int nb11,
- const int nb12,
- const int nb13,
- const int ne0,
- const int ne1,
- const int ne2,
- const int ne3) {
-#if FP16_MMA_AVAILABLE
- //In this kernel Q, K, V are matrices while i, j, k are matrix indices.
+ const int32_t precision = KQV->op_params[2];
- const int ic0 = ncols*(blockIdx.x / parallel_blocks); // Index of the first Q/QKV column to work on.
- const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel.
-
- static_assert(D <= FATTN_KQ_STRIDE, "D must be <= FATTN_KQ_STRIDE.");
- static_assert(ncols == 8 || ncols % 16 == 0, "ncols must be 8 or a multiple of 16.");
- constexpr int frag_m = ncols == 8 ? 32 : 16;
- constexpr int frag_n = ncols == 8 ? 8 : 16;
- static_assert(D % frag_m == 0, "If ncols == 8 then D % frag_m must be 0.");
- typedef nvcuda::wmma::fragment frag_a_K;
- typedef nvcuda::wmma::fragment frag_a_V;
- typedef nvcuda::wmma::fragment frag_b;
- typedef nvcuda::wmma::fragment frag_c_KQ;
- typedef nvcuda::wmma::fragment frag_c_VKQ;
-
- constexpr int KQ_stride_tc = nwarps*frag_m; // Number of KQ rows calculated in parallel.
- constexpr int VKQ_ratio = KQ_stride_tc/VKQ_stride; // Number of parallel VKQ accumulators needed to keep all warps busy.
- static_assert(VKQ_ratio <= nwarps, "VKQ_ratio must be <= nwarps.");
-
- // Pad internal representation of KQ, KQV to reduce shared memory bank conflicts:
- constexpr int D_padded = D + 8;
- constexpr int kqs_padded = FATTN_KQ_STRIDE + 8;
- constexpr int kqar = sizeof(KQ_acc_t)/sizeof(half);
-
- const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix.
- const float * Q_f = (const float *) (Q + nb02* blockIdx.y + nb01*ic0);
- const half * K_h = (const half *) (K + nb12*(blockIdx.y / gqa_ratio));
- const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape
- const half * maskh = (const half *) mask + (nb31/sizeof(half))* ic0;
- const half2 * mask2 = (const half2 *) mask + (nb31/sizeof(half))*(ic0/2);
-
- const int stride_Q = nb01 / sizeof(float);
- const int stride_KV = nb11 / sizeof(half);
-
- const float slopef = get_alibi_slope(max_bias, blockIdx.y, n_head_log2, m0, m1);
- const half slopeh = __float2half(slopef);
- const half2 slope2 = make_half2(slopef, slopef);
-
- frag_b Q_b[D/16][ncols/frag_n];
-
- // A single buffer for temporarily holding tiles of KQ and VKQ parts:
- constexpr int mem_KQ = ncols*kqs_padded*kqar;
- constexpr int mem_VKQ_parts = VKQ_ratio*ncols*D_padded;
- __shared__ half KQ[mem_KQ >= mem_VKQ_parts ? mem_KQ : mem_VKQ_parts];
- float * KQ_f = (float *) KQ;
- half2 * KQ2 = (half2 *) KQ;
-
- float KQ_rowsum_f[ncols/nwarps] = {0.0f};
- float KQ_max_f[ncols/nwarps];
- float KQ_max_scale_f[ncols/nwarps] = {0.0f};
-
-#pragma unroll
- for (int j = 0; j < ncols/nwarps; ++j) {
- KQ_max_f[j] = -FLT_MAX/2.0f;
- }
-
- half2 KQ_rowsum_h2[ncols/nwarps] = {{0.0f, 0.0f}};
- half2 KQ_max_h2[ncols/nwarps];
- half2 KQ_max_scale_h2[ncols/nwarps] = {{0.0f, 0.0f}};
-
-#pragma unroll
- for (int j = 0; j < ncols/nwarps; ++j) {
- KQ_max_h2[j] = make_half2(-HALF_MAX_HALF, -HALF_MAX_HALF);
- }
-
- __shared__ half VKQ[ncols*D_padded]; // Accumulator for final VKQ slice.
- half2 * VKQ2 = (half2 *) VKQ;
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
-#pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D/2 && i >= D/2) {
- break;
- }
- VKQ2[j*(D_padded/2) + i] = make_half2(0.0f, 0.0f);
- }
- }
-
- // Convert Q to half and apply scale, temporarily store in KQ:
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
-#pragma unroll
- for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D && i >= D) {
- break;
- }
- KQ[j*D_padded + i] = ic0 + j < ne01 ? Q_f[j*stride_Q + i] * scale : 0.0f;
- }
- }
-
- __syncthreads();
-
- // Load Q into tensor core fragments/registers since it will be used frequently:
-#pragma unroll
- for (int i0 = 0; i0 < D; i0 += 16) {
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
- nvcuda::wmma::load_matrix_sync(Q_b[i0/16][j0/frag_n], KQ + j0*D_padded + i0, D_padded);
- }
- }
-
- __syncthreads();
-
- // Iterate over ne11 == previous tokens:
- for (int k_VKQ_0 = ip*FATTN_KQ_STRIDE; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*FATTN_KQ_STRIDE) {
- // Calculate tile of KQ:
-#pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < FATTN_KQ_STRIDE; i_KQ_0 += KQ_stride_tc) {
- frag_c_KQ KQ_c[ncols/frag_n];
-#pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::fill_fragment(KQ_c[j], 0.0f);
- }
-#pragma unroll
- for (int k_KQ_0 = 0; k_KQ_0 < D; k_KQ_0 += 16) {
- frag_a_K K_a;
- nvcuda::wmma::load_matrix_sync(K_a, K_h + (k_VKQ_0 + i_KQ_0 + frag_m*threadIdx.y)*stride_KV + k_KQ_0, stride_KV);
-#pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::mma_sync(KQ_c[j], K_a, Q_b[k_KQ_0/16][j], KQ_c[j]);
- }
- }
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
- nvcuda::wmma::store_matrix_sync((KQ_acc_t *) KQ + j0*kqs_padded + i_KQ_0 + frag_m*threadIdx.y, KQ_c[j0/frag_n], kqs_padded, nvcuda::wmma::mem_col_major);
- }
- }
-
- __syncthreads();
-
- // Calculate softmax for each KQ column using the current max. value.
- // The divisor is stored in KQ_rowsum and will be applied at the end.
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
-
- if (std::is_same::value) {
- float KQ_f_tmp[FATTN_KQ_STRIDE / WARP_SIZE];
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- KQ_f_tmp[k0/WARP_SIZE] = KQ_f[j*kqs_padded + k];
- }
-
- float KQ_max_new = KQ_max_f[j0/nwarps];
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- KQ_f_tmp[k0/WARP_SIZE] += mask ? __half2float(slopeh*maskh[j*(nb31/sizeof(half)) + k_VKQ_0 + k]) : 0.0f;
- KQ_max_new = max(KQ_max_new, KQ_f_tmp[k0/WARP_SIZE]);
- }
- KQ_max_new = warp_reduce_max(KQ_max_new);
-
- const float diff = KQ_max_f[j0/nwarps] - KQ_max_new;
- KQ_max_scale_f[j0/nwarps] = expf(diff);
- if (diff <= SOFTMAX_FTZ_THRESHOLD) {
- KQ_max_scale_f[j0/nwarps] = 0.0f;
- }
- KQ_max_f[j0/nwarps] = KQ_max_new;
-
- float KQ_rowsum_add = 0.0f;
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- const float diff = KQ_f_tmp[k0/WARP_SIZE] - KQ_max_f[j0/nwarps];
- KQ_f_tmp[k0/WARP_SIZE] = expf(diff);
- if (diff <= SOFTMAX_FTZ_THRESHOLD) {
- KQ_f_tmp[k0/WARP_SIZE] = 0.0f;
- }
- KQ_rowsum_add += KQ_f_tmp[k0/WARP_SIZE];
- KQ[j*(kqar*kqs_padded) + k] = KQ_f_tmp[k0/WARP_SIZE];
- }
- KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
-
- // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
- KQ_rowsum_f[j0/nwarps] = KQ_max_scale_f[j0/nwarps]*KQ_rowsum_f[j0/nwarps] + KQ_rowsum_add;
- } else {
- half2 KQ2_tmp[FATTN_KQ_STRIDE/(2*WARP_SIZE)];
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- KQ2_tmp[k0/WARP_SIZE] = KQ2[j*(kqs_padded/2) + k];
- }
-
- half2 KQ_max_new = KQ_max_h2[j0/nwarps];
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- KQ2_tmp[k0/WARP_SIZE] += mask ? slope2*mask2[(j*ne11 + k_VKQ_0)/2 + k] : make_half2(0.0f, 0.0f);
- KQ_max_new = ggml_cuda_hmax2(KQ_max_new, KQ2_tmp[k0/WARP_SIZE]);
- }
- KQ_max_new = __half2half2(warp_reduce_max(ggml_cuda_hmax(__low2half(KQ_max_new), __high2half(KQ_max_new))));
- const half2 diff = KQ_max_h2[j0/nwarps] - KQ_max_new;
- KQ_max_scale_h2[j0/nwarps] = h2exp(diff);
- const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
- *((uint32_t *) &KQ_max_scale_h2[j0/nwarps]) &= ftz_mask;
- KQ_max_h2[j0/nwarps] = KQ_max_new;
-
- half2 KQ_rowsum_add = make_half2(0.0f, 0.0f);
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE/2; k0 += WARP_SIZE) {
- const int k = k0 + threadIdx.x;
-
- const half2 diff = KQ2_tmp[k0/WARP_SIZE] - KQ_max_h2[j0/nwarps];
- KQ2_tmp[k0/WARP_SIZE] = h2exp(diff);
- const uint32_t ftz_mask = __hgt2_mask(diff, make_half2(SOFTMAX_FTZ_THRESHOLD, SOFTMAX_FTZ_THRESHOLD));
- *((uint32_t *) &KQ2_tmp[k0/WARP_SIZE]) &= ftz_mask;
- KQ_rowsum_add += KQ2_tmp[k0/WARP_SIZE];
- KQ2[j*(kqs_padded/2) + k] = KQ2_tmp[k0/WARP_SIZE];
- }
- KQ_rowsum_add = warp_reduce_sum(KQ_rowsum_add);
-
- // Scale previous KQ_rowsum to account for a potential increase in KQ_max:
- KQ_rowsum_h2[j0/nwarps] = KQ_max_scale_h2[j0/nwarps]*KQ_rowsum_h2[j0/nwarps] + KQ_rowsum_add;
- }
- }
-
- __syncthreads();
-
- frag_b KQ_b[FATTN_KQ_STRIDE/(VKQ_ratio*16)][ncols/frag_n];
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
- const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
- nvcuda::wmma::load_matrix_sync(
- KQ_b[k0/(VKQ_ratio*16)][j0/frag_n],
- KQ + j0*(kqar*kqs_padded) + k,
- kqar*kqs_padded);
- }
- }
-
- frag_c_VKQ VKQ_c[D/VKQ_stride][ncols/frag_n];
-#pragma unroll
- for (int i_VKQ_0 = 0; i_VKQ_0 < D; i_VKQ_0 += VKQ_stride) {
-#pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::fill_fragment(VKQ_c[i_VKQ_0/VKQ_stride][j], 0.0f);
- }
-
-#pragma unroll
- for (int k0 = 0; k0 < FATTN_KQ_STRIDE; k0 += VKQ_ratio*16) {
- const int k = k0 + (threadIdx.y % VKQ_ratio)*16;
-
- frag_a_V v_a;
- nvcuda::wmma::load_matrix_sync(v_a, V_h + (k_VKQ_0 + k)*stride_KV + i_VKQ_0 + frag_m*(threadIdx.y/VKQ_ratio), stride_KV);
-#pragma unroll
- for (int j = 0; j < ncols/frag_n; ++j) {
- nvcuda::wmma::mma_sync(VKQ_c[i_VKQ_0/VKQ_stride][j], v_a, KQ_b[k0/(VKQ_ratio*16)][j], VKQ_c[i_VKQ_0/VKQ_stride][j]);
- }
- }
- }
-
- __syncthreads();
-
- const int offset_k = (threadIdx.y % VKQ_ratio) * (ncols*D_padded);
-#pragma unroll
- for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += VKQ_stride) {
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += frag_n) {
- nvcuda::wmma::store_matrix_sync(
- KQ + offset_k + j0*D_padded + i_KQ_0 + frag_m*(threadIdx.y/VKQ_ratio),
- VKQ_c[i_KQ_0/VKQ_stride][j0/frag_n],
- D_padded, nvcuda::wmma::mem_col_major);
- }
- }
-
- __syncthreads();
-
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j = j0 + threadIdx.y;
-
- half2 VKQ_scale;
- if (std::is_same::value) {
- VKQ_scale = make_half2(KQ_max_scale_f[j0/nwarps], KQ_max_scale_f[j0/nwarps]);
- } else {
- VKQ_scale = KQ_max_scale_h2[j0/nwarps];
- }
-
-#pragma unroll
- for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D/2 && i >= D/2) {
+ if (precision != GGML_PREC_DEFAULT) {
+ if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
+ constexpr int cols_per_block = 16;
+ switch (Q->ne[0]) {
+ case 64:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
+ break;
+ case 80:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
+ break;
+ case 96:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
+ break;
+ case 112:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
+ break;
+ case 128:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
+ break;
+ case 256:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, float>(ctx, dst);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+ } else {
+ constexpr int cols_per_block = 32;
+ switch (Q->ne[0]) {
+ case 64:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, float>(ctx, dst);
+ break;
+ case 80:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, float>(ctx, dst);
+ break;
+ case 96:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, float>(ctx, dst);
+ break;
+ case 112:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, float>(ctx, dst);
+ break;
+ case 128:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
+ break;
+ // case 256:
+ // ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, float>(ctx, dst);
+ // break;
+ default:
+ GGML_ASSERT(false);
break;
- }
-
- half2 VKQ_add = make_half2(0.0f, 0.0f);
-#pragma unroll
- for (int l = 0; l < VKQ_ratio; ++l) {
- VKQ_add += KQ2[l*(ncols*D_padded/2) + j*(D_padded/2) + i];
- }
- VKQ2[j*(D_padded/2) + i] = VKQ_scale*VKQ2[j*(D_padded/2) + i] + VKQ_add;
}
}
-
- __syncthreads();
+ return;
}
-#pragma unroll
- for (int j0 = 0; j0 < ncols; j0 += nwarps) {
- const int j_VKQ = j0 + threadIdx.y;
- if (ic0 + j_VKQ >= ne01) {
- return;
- }
- const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip;
-
- float KQ_rowsum_j;
- if (std::is_same::value) {
- KQ_rowsum_j = KQ_rowsum_f[j0/nwarps];
- } else {
- KQ_rowsum_j = __low2float(KQ_rowsum_h2[j0/nwarps]) + __high2float(KQ_rowsum_h2[j0/nwarps]);
- }
-
-#pragma unroll
- for (int i0 = 0; i0 < D; i0 += WARP_SIZE) {
- const int i = i0 + threadIdx.x;
- if (i0 + WARP_SIZE > D && i >= D) {
+ if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
+ constexpr int cols_per_block = 8;
+ switch (Q->ne[0]) {
+ case 64:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
+ break;
+ case 96:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
+ break;
+ case 128:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
+ break;
+ case 256:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
+ break;
+ default:
+ GGML_ASSERT(false);
break;
- }
- float dst_val = VKQ[j_VKQ*D_padded + i];
- if (parallel_blocks == 1) {
- dst_val /= KQ_rowsum_j;
- }
- dst[j_dst*gridDim.y*D + blockIdx.y*D + i] = dst_val;
}
-
- if (parallel_blocks == 1 || threadIdx.x != 0) {
- continue;
- }
-
- float2 dst_meta_val;
- if (std::is_same::value) {
- dst_meta_val.x = KQ_max_f[j0/nwarps];
- } else {
- dst_meta_val.x = __low2float(KQ_max_h2[j0/nwarps]);
- }
- dst_meta_val.y = KQ_rowsum_j;
- dst_meta[(ic0 + j_VKQ)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = dst_meta_val;
+ return;
}
+
+ if (Q->ne[1] <= 32) {
+ constexpr int cols_per_block = 16;
+ switch (Q->ne[0]) {
+ case 64:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
+ break;
+ case 80:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
+ break;
+ case 96:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
+ break;
+ case 112:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
+ break;
+ case 128:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
+ break;
+ case 256:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+ return;
+ }
+
+ constexpr int cols_per_block = 32;
+ switch (Q->ne[0]) {
+ case 64:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 64, cols_per_block, half>(ctx, dst);
+ break;
+ case 80:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 80, cols_per_block, half>(ctx, dst);
+ break;
+ case 96:
+ ggml_cuda_flash_attn_ext_wmma_f16_case< 96, cols_per_block, half>(ctx, dst);
+ break;
+ case 112:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<112, cols_per_block, half>(ctx, dst);
+ break;
+ case 128:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<128, cols_per_block, half>(ctx, dst);
+ break;
+ case 256:
+ ggml_cuda_flash_attn_ext_wmma_f16_case<256, cols_per_block, half>(ctx, dst);
+ break;
+ default:
+ GGML_ASSERT(false);
+ break;
+ }
+}
+#define FATTN_VEC_F16_CASE(D, type_K, type_V) \
+ if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
+ ggml_cuda_flash_attn_ext_vec_f16_case(ctx, dst); \
+ return; \
+ } \
+
+static void ggml_cuda_flash_attn_ext_vec_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_tensor * Q = dst->src[1];
+ ggml_tensor * K = dst->src[1];
+ ggml_tensor * V = dst->src[2];
+
+#ifdef GGML_CUDA_FA_ALL_QUANTS
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16 )
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
+
+ FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
#else
- NO_DEVICE_CODE;
-#endif // FP16_MMA_AVAILABLE
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
+
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
+
+ FATTN_VEC_F16_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
+ FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
+#endif // GGML_CUDA_FA_ALL_QUANTS
+
+ on_no_fattn_vec_case(Q->ne[0]);
}
-constexpr int get_max_power_of_2(int x) {
- return x % 2 == 0 ? 2*get_max_power_of_2(x/2) : 1;
-}
+#define FATTN_VEC_F32_CASE(D, type_K, type_V) \
+ if (Q->ne[0] == (D) && K->type == (type_K) && V->type == (type_V)) { \
+ ggml_cuda_flash_attn_ext_vec_f32_case(ctx, dst); \
+ return; \
+ } \
-static_assert(get_max_power_of_2(1) == 1, "Test failed.");
-static_assert(get_max_power_of_2(2) == 2, "Test failed.");
-static_assert(get_max_power_of_2(4) == 4, "Test failed.");
-static_assert(get_max_power_of_2(6) == 2, "Test failed.");
+static void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
+ ggml_tensor * Q = dst->src[1];
+ ggml_tensor * K = dst->src[1];
+ ggml_tensor * V = dst->src[2];
-// Number of VKQ rows calculated in parallel:
-constexpr int get_VKQ_stride(int D, int nwarps, int frag_m) {
- return (get_max_power_of_2(D/frag_m) < nwarps ? get_max_power_of_2(D/frag_m) : nwarps)*frag_m;
-}
+#ifdef GGML_CUDA_FA_ALL_QUANTS
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
-static_assert(get_VKQ_stride(128, 1, 32) == 32, "Test failed.");
-static_assert(get_VKQ_stride(128, 2, 32) == 64, "Test failed.");
-static_assert(get_VKQ_stride(128, 4, 32) == 128, "Test failed.");
-static_assert(get_VKQ_stride( 64, 1, 32) == 32, "Test failed.");
-static_assert(get_VKQ_stride( 64, 2, 32) == 64, "Test failed.");
-static_assert(get_VKQ_stride( 64, 4, 32) == 64, "Test failed.");
-static_assert(get_VKQ_stride( 80, 1, 16) == 16, "Test failed.");
-static_assert(get_VKQ_stride( 80, 2, 16) == 16, "Test failed.");
-static_assert(get_VKQ_stride( 80, 4, 16) == 16, "Test failed.");
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0)
-template
-void launch_fattn_f16(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
- const ggml_tensor * Q = dst->src[0];
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1)
- constexpr int frag_m = cols_per_block == 8 && D % 32 == 0 ? 32 : 16;
- const int blocks_num_pb1 = ((Q->ne[1] + cols_per_block - 1) / cols_per_block)*Q->ne[2]*Q->ne[3];
- const int nsm = ggml_cuda_info().devices[ggml_cuda_get_device()].nsm;
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0)
- if (4*blocks_num_pb1 < 2*nsm) {
- constexpr int parallel_blocks = 4;
- fattn_kernel_t fattn_kernel = flash_attn_ext_f16;
- launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- return;
- }
- if (2*blocks_num_pb1 < 2*nsm) {
- constexpr int parallel_blocks = 2;
- fattn_kernel_t fattn_kernel = flash_attn_ext_f16;
- launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
- return;
- }
- constexpr int parallel_blocks = 1;
- fattn_kernel_t fattn_kernel = flash_attn_ext_f16;
- launch_fattn(ctx, dst, fattn_kernel, nwarps, cols_per_block);
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1)
+
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0)
+
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
+
+ FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
+#else
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0)
+
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0)
+
+ FATTN_VEC_F32_CASE( 64, GGML_TYPE_F16, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16)
+ FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16)
+#endif // GGML_CUDA_FA_ALL_QUANTS
+
+ on_no_fattn_vec_case(Q->ne[0]);
}
void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
+ const ggml_tensor * K = dst->src[1];
+ const ggml_tensor * V = dst->src[2];
ggml_cuda_set_device(ctx.device);
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
const int32_t precision = KQV->op_params[2];
+ const bool quantized_KV = ggml_is_quantized(K->type) || ggml_is_quantized(V->type);
+
// On AMD the tile kernels perform poorly, use the vec kernel instead:
- if (cc >= CC_OFFSET_AMD) {
- if (precision == GGML_PREC_DEFAULT) {
- ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
+ if (cc >= CC_OFFSET_AMD || quantized_KV) {
+ if (precision == GGML_PREC_DEFAULT && fast_fp16_available(cc)) {
+ ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
} else {
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
}
@@ -483,156 +328,22 @@ void ggml_cuda_flash_attn_ext(ggml_backend_cuda_context & ctx, ggml_tensor * dst
if (!fp16_mma_available(cc)) {
if (Q->ne[1] <= 8) {
- ggml_cuda_flash_attn_ext_vec_f16_no_mma(ctx, dst);
+ ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
} else {
ggml_cuda_flash_attn_ext_tile_f16(ctx, dst);
}
return;
}
- if (precision != GGML_PREC_DEFAULT) {
- if (Q->ne[1] == 1 && (Q->ne[0] == 64 || Q->ne[0] == 128)) {
+ if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
+ if (precision == GGML_PREC_DEFAULT) {
+ ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
+ return;
+ } else if(Q->ne[0] <= 128) {
ggml_cuda_flash_attn_ext_vec_f32(ctx, dst);
return;
}
-
- if (Q->ne[1] <= 32 || Q->ne[0] > 128) {
- constexpr int cols_per_block = 16;
- constexpr int nwarps = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
- break;
- case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
- break;
- case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
- break;
- case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
- break;
- case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
- break;
- case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- } else {
- constexpr int cols_per_block = 32;
- constexpr int nwarps = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, float>(ctx, dst);
- break;
- case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, float>(ctx, dst);
- break;
- case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, float>(ctx, dst);
- break;
- case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, float>(ctx, dst);
- break;
- case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, float>(ctx, dst);
- break;
- // case 256:
- // launch_fattn_f16<256, cols_per_block, nwarps, float>(ctx, dst);
- // break;
- default:
- GGML_ASSERT(false);
- break;
- }
- }
- return;
}
- if (Q->ne[1] == 1 && Q->ne[0] % (2*WARP_SIZE) == 0) {
- ggml_cuda_flash_attn_ext_vec_f16(ctx, dst);
- return;
- }
-
- if (Q->ne[1] <= 8 && Q->ne[0] % WARP_SIZE == 0) {
- constexpr int cols_per_block = 8;
- constexpr int nwarps = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- return;
- }
-
- if (Q->ne[1] <= 32) {
- constexpr int cols_per_block = 16;
- constexpr int nwarps = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- return;
- }
-
- constexpr int cols_per_block = 32;
- constexpr int nwarps = 4;
- switch (Q->ne[0]) {
- case 64:
- launch_fattn_f16< 64, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 80:
- launch_fattn_f16< 80, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 96:
- launch_fattn_f16< 96, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 112:
- launch_fattn_f16<112, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 128:
- launch_fattn_f16<128, cols_per_block, nwarps, half>(ctx, dst);
- break;
- case 256:
- launch_fattn_f16<256, cols_per_block, nwarps, half>(ctx, dst);
- break;
- default:
- GGML_ASSERT(false);
- break;
- }
- return;
+ ggml_cuda_flash_attn_ext_wmma_f16(ctx, dst);
}
diff --git a/ggml-cuda/mmq.cu b/ggml-cuda/mmq.cu
index c0a66d9b6..ebe1dc5c8 100644
--- a/ggml-cuda/mmq.cu
+++ b/ggml-cuda/mmq.cu
@@ -386,7 +386,7 @@ static __device__ __forceinline__ float vec_dot_q5_0_q8_1_mul_mat(
u[2*l+1] = y_qs[j * WARP_SIZE + (kyqs + l + QI5_0) % WARP_SIZE];
}
- return vec_dot_q8_0_q8_1_impl
+ return vec_dot_q8_0_q8_1_impl
(&x_ql[i * (2*WARP_SIZE + 1) + 2 * k], u, x_dmf[index_bx], y_df[j * (WARP_SIZE/QI8_1) + (2*k/QI8_1) % (WARP_SIZE/QI8_1)]);
}
@@ -547,7 +547,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1_mul_mat(
const float * x_dmf = (const float *) x_dm;
const float * y_df = (const float *) y_ds;
- return vec_dot_q8_0_q8_1_impl
+ return vec_dot_q8_0_q8_1_impl
(&x_ql[i * (WARP_SIZE + 1) + k], &y_qs[j * WARP_SIZE + k], x_dmf[i * (WARP_SIZE/QI8_0) + i/QI8_0 + k/QI8_0],
y_df[j * (WARP_SIZE/QI8_1) + k/QI8_1]);
}
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu
new file mode 100644
index 000000000..d7f103475
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu
new file mode 100644
index 000000000..f3d8d2eda
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu
new file mode 100644
index 000000000..9beb05ca2
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu
new file mode 100644
index 000000000..0c163dcba
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu
new file mode 100644
index 000000000..3980167b3
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu
new file mode 100644
index 000000000..fe099921d
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-f16-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu
new file mode 100644
index 000000000..d4d5e7999
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu
new file mode 100644
index 000000000..f08b10c4d
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu
new file mode 100644
index 000000000..e8c3f8adc
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu
new file mode 100644
index 000000000..c01416a13
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu
new file mode 100644
index 000000000..46615f281
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu
new file mode 100644
index 000000000..72dcc1a2f
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_0-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu
new file mode 100644
index 000000000..9fa8a377d
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu
new file mode 100644
index 000000000..20ea86c6d
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu
new file mode 100644
index 000000000..ed815957c
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu
new file mode 100644
index 000000000..bbe9e6a1c
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu
new file mode 100644
index 000000000..d12a61699
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu
new file mode 100644
index 000000000..1e901afcb
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q4_1-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu
new file mode 100644
index 000000000..a3f98ce37
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu
new file mode 100644
index 000000000..1bae97243
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu
new file mode 100644
index 000000000..7258e9775
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu
new file mode 100644
index 000000000..08435c005
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu
new file mode 100644
index 000000000..17864e8e9
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu
new file mode 100644
index 000000000..9239138c9
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_0-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu
new file mode 100644
index 000000000..e387d9c1d
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu
new file mode 100644
index 000000000..d69d3bbd6
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu
new file mode 100644
index 000000000..61a478816
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu
new file mode 100644
index 000000000..89995080a
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu
new file mode 100644
index 000000000..9e6a58dff
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu
new file mode 100644
index 000000000..153cbfd86
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q5_1-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu
new file mode 100644
index 000000000..09d576558
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu
new file mode 100644
index 000000000..3e3c91e68
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu
new file mode 100644
index 000000000..7b973058f
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu
new file mode 100644
index 000000000..a43a475d4
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu
new file mode 100644
index 000000000..5b570c0a3
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu
new file mode 100644
index 000000000..bf2cc684e
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs128-q8_0-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu
new file mode 100644
index 000000000..7428e45ea
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs256-f16-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu
new file mode 100644
index 000000000..4aee830de
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu
new file mode 100644
index 000000000..36acb6319
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu
new file mode 100644
index 000000000..a4090c390
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu
new file mode 100644
index 000000000..17b6b2d11
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu
new file mode 100644
index 000000000..549e1cea1
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu
new file mode 100644
index 000000000..66bcd820f
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f16-instance-hs64-f16-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f16.cuh"
+
+DECL_FATTN_VEC_F16_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu
new file mode 100644
index 000000000..15933a299
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu
new file mode 100644
index 000000000..8aa785583
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu
new file mode 100644
index 000000000..bde3924fd
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu
new file mode 100644
index 000000000..1708181c1
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu
new file mode 100644
index 000000000..30fa6fa4c
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu
new file mode 100644
index 000000000..69673d50f
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-f16-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_F16, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu
new file mode 100644
index 000000000..d8b2b2e18
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu
new file mode 100644
index 000000000..01cce7ab5
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu
new file mode 100644
index 000000000..fd5563b39
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu
new file mode 100644
index 000000000..b13cc4a0c
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu
new file mode 100644
index 000000000..86f1fc637
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu
new file mode 100644
index 000000000..26e7df4be
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_0-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_0, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu
new file mode 100644
index 000000000..e4fda8952
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu
new file mode 100644
index 000000000..bd15117b4
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu
new file mode 100644
index 000000000..cb6c6a760
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu
new file mode 100644
index 000000000..201b6641d
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu
new file mode 100644
index 000000000..6da57a44a
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu
new file mode 100644
index 000000000..47623c9bf
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q4_1-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q4_1, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu
new file mode 100644
index 000000000..82c6861d2
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu
new file mode 100644
index 000000000..24a80c2b0
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu
new file mode 100644
index 000000000..b95eaf7e1
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu
new file mode 100644
index 000000000..275f2efcc
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu
new file mode 100644
index 000000000..3673f7fd5
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu
new file mode 100644
index 000000000..2c4d59947
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_0-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_0, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu
new file mode 100644
index 000000000..2457cdf3f
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu
new file mode 100644
index 000000000..b3b411ed3
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu
new file mode 100644
index 000000000..b7f308a4d
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu
new file mode 100644
index 000000000..739686697
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu
new file mode 100644
index 000000000..708d03113
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu
new file mode 100644
index 000000000..df891be60
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q5_1-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q5_1, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu
new file mode 100644
index 000000000..f49b6d1f9
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu
new file mode 100644
index 000000000..1de92148b
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu
new file mode 100644
index 000000000..7a1ba7f8d
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu
new file mode 100644
index 000000000..25493e4ba
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu
new file mode 100644
index 000000000..3cd650c7b
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu
new file mode 100644
index 000000000..88ffa43d6
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs128-q8_0-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(128, GGML_TYPE_Q8_0, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu
new file mode 100644
index 000000000..8c7bac6c2
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs256-f16-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(256, GGML_TYPE_F16, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu
new file mode 100644
index 000000000..a28f62e7b
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-f16.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_F16);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu
new file mode 100644
index 000000000..d39838b96
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu
new file mode 100644
index 000000000..834d40f6c
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q4_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q4_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu
new file mode 100644
index 000000000..f7d54668b
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_0);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu
new file mode 100644
index 000000000..59e00ad83
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q5_1.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q5_1);
diff --git a/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu
new file mode 100644
index 000000000..6e63893de
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-vec-f32-instance-hs64-f16-q8_0.cu
@@ -0,0 +1,5 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-vec-f32.cuh"
+
+DECL_FATTN_VEC_F32_CASE(64, GGML_TYPE_F16, GGML_TYPE_Q8_0);
diff --git a/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu
new file mode 100644
index 000000000..ca356ad6c
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb16.cu
@@ -0,0 +1,10 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+DECL_FATTN_WMMA_F16_CASE(64, 16, float);
+DECL_FATTN_WMMA_F16_CASE(80, 16, float);
+DECL_FATTN_WMMA_F16_CASE(96, 16, float);
+DECL_FATTN_WMMA_F16_CASE(112, 16, float);
+DECL_FATTN_WMMA_F16_CASE(128, 16, float);
+DECL_FATTN_WMMA_F16_CASE(256, 16, float);
diff --git a/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu
new file mode 100644
index 000000000..430ee64eb
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqfloat-cpb32.cu
@@ -0,0 +1,9 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+DECL_FATTN_WMMA_F16_CASE(64, 32, float);
+DECL_FATTN_WMMA_F16_CASE(80, 32, float);
+DECL_FATTN_WMMA_F16_CASE(96, 32, float);
+DECL_FATTN_WMMA_F16_CASE(112, 32, float);
+DECL_FATTN_WMMA_F16_CASE(128, 32, float);
diff --git a/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu
new file mode 100644
index 000000000..d421d17cc
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb16.cu
@@ -0,0 +1,10 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+DECL_FATTN_WMMA_F16_CASE(64, 16, half);
+DECL_FATTN_WMMA_F16_CASE(80, 16, half);
+DECL_FATTN_WMMA_F16_CASE(96, 16, half);
+DECL_FATTN_WMMA_F16_CASE(112, 16, half);
+DECL_FATTN_WMMA_F16_CASE(128, 16, half);
+DECL_FATTN_WMMA_F16_CASE(256, 16, half);
diff --git a/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu
new file mode 100644
index 000000000..deacd5f58
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb32.cu
@@ -0,0 +1,10 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+DECL_FATTN_WMMA_F16_CASE(64, 32, half);
+DECL_FATTN_WMMA_F16_CASE(80, 32, half);
+DECL_FATTN_WMMA_F16_CASE(96, 32, half);
+DECL_FATTN_WMMA_F16_CASE(112, 32, half);
+DECL_FATTN_WMMA_F16_CASE(128, 32, half);
+DECL_FATTN_WMMA_F16_CASE(256, 32, half);
diff --git a/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu
new file mode 100644
index 000000000..282896733
--- /dev/null
+++ b/ggml-cuda/template-instances/fattn-wmma-f16-instance-kqhalf-cpb8.cu
@@ -0,0 +1,8 @@
+// This file has been autogenerated by generate-variants.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+DECL_FATTN_WMMA_F16_CASE(64, 8, half);
+DECL_FATTN_WMMA_F16_CASE(96, 8, half);
+DECL_FATTN_WMMA_F16_CASE(128, 8, half);
+DECL_FATTN_WMMA_F16_CASE(256, 8, half);
diff --git a/ggml-cuda/template-instances/generate_cu_files.py b/ggml-cuda/template-instances/generate_cu_files.py
new file mode 100755
index 000000000..ee5b460e0
--- /dev/null
+++ b/ggml-cuda/template-instances/generate_cu_files.py
@@ -0,0 +1,59 @@
+#!/usr/bin/env python3
+
+from glob import glob
+import os
+
+TYPES_KV = ["GGML_TYPE_Q4_0", "GGML_TYPE_Q4_1", "GGML_TYPE_Q5_0", "GGML_TYPE_Q5_1", "GGML_TYPE_Q8_0", "GGML_TYPE_F16"]
+
+SOURCE_FATTN_VEC = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
+
+#include "../fattn-vec-f{vkq_size}.cuh"
+
+DECL_FATTN_VEC_F{vkq_size}_CASE({head_size}, {type_k}, {type_v});
+"""
+
+SOURCE_FATTN_WMMA_START = """// This file has been autogenerated by generate_cu_files.py, do not edit manually.
+
+#include "../fattn-wmma-f16.cuh"
+
+"""
+
+SOURCE_FATTN_WMMA_CASE = "DECL_FATTN_WMMA_F16_CASE({head_size}, {cols_per_block}, {kq_acc_t});\n"
+
+
+def get_short_name(long_quant_name):
+ return long_quant_name.replace("GGML_TYPE_", "").lower()
+
+
+def get_head_sizes(type_k, type_v):
+ if type_k == "GGML_TYPE_F16" and type_v == "GGML_TYPE_F16":
+ return [64, 128, 256]
+ if type_k == "GGML_TYPE_F16":
+ return [64, 128]
+ return [128]
+
+
+for filename in glob("*.cu"):
+ os.remove(filename)
+
+for vkq_size in [16, 32]:
+ for type_k in TYPES_KV:
+ for type_v in TYPES_KV:
+ for head_size in get_head_sizes(type_k, type_v):
+ with open(f"fattn-vec-f{vkq_size}-instance-hs{head_size}-{get_short_name(type_k)}-{get_short_name(type_v)}.cu", "w") as f:
+ f.write(SOURCE_FATTN_VEC.format(vkq_size=vkq_size, head_size=head_size, type_k=type_k, type_v=type_v))
+
+for kq_acc_t in ["half", "float"]:
+ for cols_per_block in [8, 16, 32]:
+ if kq_acc_t == "float" and cols_per_block == 8:
+ continue
+
+ with open(f"fattn-wmma-f16-instance-kq{kq_acc_t}-cpb{cols_per_block}.cu", "w") as f:
+ f.write(SOURCE_FATTN_WMMA_START)
+
+ for head_size in [64, 80, 96, 112, 128, 256]:
+ if cols_per_block == 8 and head_size % 32 != 0: # wmma fragment is 8x32
+ continue
+ if kq_acc_t == "float" and cols_per_block == 32 and head_size == 256: # register spilling, bad performance
+ continue
+ f.write(SOURCE_FATTN_WMMA_CASE.format(kq_acc_t=kq_acc_t, cols_per_block=cols_per_block, head_size=head_size))
diff --git a/ggml-cuda/vecdotq.cuh b/ggml-cuda/vecdotq.cuh
index 5ebdddcc7..df9752390 100644
--- a/ggml-cuda/vecdotq.cuh
+++ b/ggml-cuda/vecdotq.cuh
@@ -180,8 +180,8 @@ template static __device__ __forceinline__ float vec_dot_q5_1_q8_1_imp
#define VDR_Q8_0_Q8_1_MMVQ 2
#define VDR_Q8_0_Q8_1_MMQ 8
-template static __device__ __forceinline__ float vec_dot_q8_0_q8_1_impl(
- const int * v, const int * u, const float & d8_0, const float & d8_1) {
+template static __device__ __forceinline__ T vec_dot_q8_0_q8_1_impl(
+ const int * v, const int * u, const T & d8_0, const T & d8_1) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
int sumi = 0;
@@ -192,7 +192,7 @@ template static __device__ __forceinline__ float vec_dot_q8_0_q8_1_imp
sumi = __dp4a(v[i], u[i], sumi);
}
- return d8_0*d8_1 * sumi;
+ return d8_0*d8_1 * ((T) sumi);
#else
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
@@ -656,7 +656,7 @@ static __device__ __forceinline__ float vec_dot_q8_0_q8_1(
u[i] = get_int_from_int8_aligned(bq8_1->qs, iqs + i);
}
- return vec_dot_q8_0_q8_1_impl(v, u, bq8_0->d, __low2half(bq8_1->ds));
+ return vec_dot_q8_0_q8_1_impl(v, u, bq8_0->d, __low2half(bq8_1->ds));
}
static __device__ __forceinline__ float vec_dot_q2_K_q8_1(
diff --git a/ggml-metal.m b/ggml-metal.m
index 079912952..fddc44f78 100644
--- a/ggml-metal.m
+++ b/ggml-metal.m
@@ -779,6 +779,12 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
case GGML_OP_LEAKY_RELU:
return true;
case GGML_OP_FLASH_ATTN_EXT:
+ if (op->src[1]->type != GGML_TYPE_F16) {
+ return false;
+ }
+ if (op->src[2]->type != GGML_TYPE_F16) {
+ return false;
+ }
if (op->src[0]->ne[0] == 256) {
return false;
}
diff --git a/ggml-quants.c b/ggml-quants.c
index 1128d66e2..9f864e5c4 100644
--- a/ggml-quants.c
+++ b/ggml-quants.c
@@ -6088,6 +6088,7 @@ void ggml_vec_dot_q2_K_q8_K(int n, float * restrict s, size_t bs, const void * r
const uint8_t * restrict q2 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
+
const __m128i mins_and_scales = __lsx_vld((const __m128i*)x[i].scales, 0);
const __m128i scales8 = __lsx_vand_v(mins_and_scales, m4);
const __m128i mins8 = __lsx_vand_v(__lsx_vsrli_h(mins_and_scales, 4), m4);
@@ -6807,6 +6808,8 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r
for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
+ const uint8_t * restrict q3 = x[i].qs;
+ const int8_t * restrict q8 = y[i].qs;
// Set up scales
memcpy(aux, x[i].scales, 12);
__m128i scales128 = lsx_set_w(
@@ -6830,8 +6833,6 @@ void ggml_vec_dot_q3_K_q8_K(int n, float * restrict s, size_t bs, const void * r
int is = 0;
__m256i xvbit;
- const uint8_t * restrict q3 = x[i].qs;
- const int8_t * restrict q8 = y[i].qs;
for (int j = 0; j < QK_K/128; ++j) {
// load low 2 bits
@@ -7404,6 +7405,9 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r
*s = vec_extract(vsumf0, 0);
#elif defined __loongarch_asx
+ GGML_UNUSED(kmask1);
+ GGML_UNUSED(kmask2);
+ GGML_UNUSED(kmask3);
const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
@@ -7416,6 +7420,11 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
memcpy(utmp, x[i].scales, 12);
+ utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+ const uint32_t uaux = utmp[1] & kmask1;
+ utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+ utmp[2] = uaux;
+ utmp[0] &= kmask1;
const uint8_t * restrict q4 = x[i].qs;
const int8_t * restrict q8 = y[i].qs;
@@ -7455,16 +7464,17 @@ void ggml_vec_dot_q4_K_q8_K(int n, float * restrict s, size_t bs, const void * r
__m256 vd = __lasx_xvreplfr2vr_s(d);
acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
+
}
acc_m = __lsx_vfadd_s(acc_m, (__m128)__lsx_vpermi_w((__m128i)acc_m, (__m128i)acc_m, 0xee));
__m128i tmp1 = __lsx_vinsgr2vr_w(__lsx_vldi(0), __lsx_vpickve2gr_w((__m128i)acc_m, 1), 0);
acc_m = __lsx_vfadd_s(acc_m, (__m128)tmp1);
+
ft_union fi;
fi.i = __lsx_vpickve2gr_w(acc_m, 0);
*s = hsum_float_8(acc) + fi.f ;
-
#else
const uint8_t * scales = (const uint8_t*)&utmp[0];
@@ -8002,6 +8012,9 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r
*s = vec_extract(vsumf0, 0);
#elif defined __loongarch_asx
+ GGML_UNUSED(kmask1);
+ GGML_UNUSED(kmask2);
+ GGML_UNUSED(kmask3);
const __m256i m4 = __lasx_xvreplgr2vr_b(0xF);
const __m128i mzero = __lsx_vldi(0);
@@ -8020,6 +8033,11 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
memcpy(utmp, x[i].scales, 12);
+ utmp[3] = ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4);
+ const uint32_t uaux = utmp[1] & kmask1;
+ utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
+ utmp[2] = uaux;
+ utmp[0] &= kmask1;
const __m256i mins_and_scales = lasx_extu8_16(lsx_set_w(utmp[3], utmp[2], utmp[1], utmp[0]));
@@ -8069,10 +8087,12 @@ void ggml_vec_dot_q5_K_q8_K(int n, float * restrict s, size_t bs, const void * r
p16_1 = lasx_madd_h(scale_1, p16_1);
sumi = __lasx_xvadd_w(sumi, __lasx_xvadd_w(p16_0, p16_1));
+
}
__m256 vd = __lasx_xvreplfr2vr_s(d);
acc = __lasx_xvfmadd_s(vd, __lasx_xvffint_s_w(sumi), acc);
+
}
*s = hsum_float_8(acc) + summs;
diff --git a/ggml.c b/ggml.c
index f3a90ff2c..f479dc3e1 100644
--- a/ggml.c
+++ b/ggml.c
@@ -1576,11 +1576,11 @@ do { \
// F16 arithmetic is not supported by AVX, so we use F32 instead
-#define GGML_F32Cx8 __m256
+#define GGML_F32Cx8 __m256
#define GGML_F32Cx8_ZERO (__m256)__lasx_xvldi(0)
#define GGML_F32Cx8_SET1(x) (__m256)__lasx_xvreplgr2vr_w((x))
-static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t *x) {
+static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t * x) {
float tmp[8];
for (int i = 0; i < 8; i++) {
@@ -1589,13 +1589,14 @@ static inline __m256 __lasx_f32cx8_load(const ggml_fp16_t *x) {
return (__m256)__lasx_xvld(tmp, 0);
}
-static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
+static inline void __lasx_f32cx8_store(ggml_fp16_t * x, __m256 y) {
float arr[8];
__lasx_xvst(y, arr, 0);
- for (int i = 0; i < 8; i++)
+ for (int i = 0; i < 8; i++) {
x[i] = GGML_FP32_TO_FP16(arr[i]);
+ }
}
#define GGML_F32Cx8_LOAD(x) __lasx_f32cx8_load(x)
#define GGML_F32Cx8_STORE(x, y) __lasx_f32cx8_store(x, y)
@@ -1671,7 +1672,7 @@ static inline void __lasx_f32cx8_store(ggml_fp16_t *x, __m256 y) {
#define GGML_F16_STEP 32
#define GGML_F16_EPR 4
-static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
+static inline __m128 __lsx_f16x4_load(const ggml_fp16_t * x) {
float tmp[4];
tmp[0] = GGML_FP16_TO_FP32(x[0]);
@@ -1682,7 +1683,7 @@ static inline __m128 __lsx_f16x4_load(ggml_fp16_t *x) {
return __lsx_vld(tmp, 0);
}
-static inline void __lsx_f16x4_store(ggml_fp16_t *x, __m128 y) {
+static inline void __lsx_f16x4_store(ggml_fp16_t * x, __m128 y) {
float arr[4];
__lsx_vst(y, arr, 0);
@@ -2315,32 +2316,27 @@ inline static __m512 ggml_v_expf(__m512 x) {
const __m512 r = _mm512_set1_ps(0x1.8p23f);
const __m512 z = _mm512_fmadd_ps(x, _mm512_set1_ps(0x1.715476p+0f), r);
const __m512 n = _mm512_sub_ps(z, r);
- const __m512 b = _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
- _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
- const __m512i e = _mm512_slli_epi32(_mm512_castps_si512(z), 23);
- const __m512 k = _mm512_castsi512_ps(_mm512_add_epi32(e, _mm512_castps_si512(_mm512_set1_ps(1))));
- const __mmask16 c = _mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(126), _CMP_GT_OQ);
- const __m512 u = _mm512_mul_ps(b, b);
- const __m512 j = _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
- _mm512_set1_ps(0x1.573e2ep-5f)), u,
- _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
- _mm512_set1_ps(0x1.fffdb6p-2f))),
- u, _mm512_mul_ps(_mm512_set1_ps(0x1.ffffecp-1f), b));
- if (_mm512_kortestz(c, c))
- return _mm512_fmadd_ps(j, k, k);
- const __m512i g = _mm512_and_si512(
- _mm512_movm_epi32(_mm512_cmp_ps_mask(n, _mm512_setzero_ps(), _CMP_LE_OQ)),
- _mm512_set1_epi32(0x82000000u));
- const __m512 s1 =
- _mm512_castsi512_ps(_mm512_add_epi32(g, _mm512_set1_epi32(0x7f000000u)));
- const __m512 s2 = _mm512_castsi512_ps(_mm512_sub_epi32(e, g));
+ const __m512 b =
+ _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.7f7d1cp-20f),
+ _mm512_fnmadd_ps(n, _mm512_set1_ps(0x1.62e4p-1f), x));
const __mmask16 d =
_mm512_cmp_ps_mask(_mm512_abs_ps(n), _mm512_set1_ps(192), _CMP_GT_OQ);
- return _mm512_mask_blend_ps(
- d, _mm512_mask_blend_ps(
- c, _mm512_fmadd_ps(k, j, k),
- _mm512_mul_ps(_mm512_fmadd_ps(s2, j, s2), s1)),
- _mm512_mul_ps(s1, s1));
+ const __m512 u = _mm512_mul_ps(b, b);
+ const __m512 j = _mm512_fmadd_ps(
+ _mm512_fmadd_ps(_mm512_fmadd_ps(_mm512_set1_ps(0x1.0e4020p-7f), b,
+ _mm512_set1_ps(0x1.573e2ep-5f)),
+ u,
+ _mm512_fmadd_ps(_mm512_set1_ps(0x1.555e66p-3f), b,
+ _mm512_set1_ps(0x1.fffdb6p-2f))),
+ u,
+ _mm512_fmadd_ps(_mm512_set1_ps(0x1.ffffecp-1f), b, _mm512_set1_ps(1.0F)));
+ const __m512 res = _mm512_scalef_ps(j, n);
+ if (_mm512_kortestz(d, d))
+ return res;
+ const __m512 zero = _mm512_setzero_ps();
+ const __m512 alt = _mm512_mask_blend_ps(
+ _mm512_cmp_ps_mask(n, zero, _CMP_LE_OQ), _mm512_set1_ps(INFINITY), zero);
+ return _mm512_mask_blend_ps(d, res, alt);
}
// computes silu x/(1+exp(-x)) in single precision vector
diff --git a/gguf-py/gguf/vocab.py b/gguf-py/gguf/vocab.py
index 3ba99be4f..dc5749913 100644
--- a/gguf-py/gguf/vocab.py
+++ b/gguf-py/gguf/vocab.py
@@ -1,10 +1,15 @@
from __future__ import annotations
+import re
import logging
import json
import os
from pathlib import Path
-from typing import Any, Callable, Sequence, Mapping, Iterable
+from typing import Any, Callable, Sequence, Mapping, Iterable, Protocol, ClassVar, runtime_checkable
+
+from sentencepiece import SentencePieceProcessor
+
+import gguf
from .gguf_writer import GGUFWriter
@@ -163,3 +168,298 @@ class SpecialVocab:
for typ in self.special_token_types:
self._set_special_token(typ, config.get(f'{typ}_token_id'))
return True
+
+
+@runtime_checkable
+class BaseVocab(Protocol):
+ tokenizer_model: ClassVar[str]
+ name: ClassVar[str]
+
+
+@runtime_checkable
+class Vocab(BaseVocab, Protocol):
+ vocab_size: int
+ added_tokens_dict: dict[str, int]
+ added_tokens_list: list[str]
+ fname_tokenizer: Path
+
+ def __init__(self, base_path: Path): ...
+ def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: ...
+
+
+class NoVocab(BaseVocab):
+ tokenizer_model = "no_vocab"
+ name = "no_vocab"
+
+ def __repr__(self) -> str:
+ return ""
+
+
+class BpeVocab(Vocab):
+ tokenizer_model = "gpt2"
+ name = "bpe"
+
+ def __init__(self, base_path: Path):
+ added_tokens: dict[str, int] = {}
+
+ if (fname_tokenizer := base_path / 'vocab.json').exists():
+ # "slow" tokenizer
+ with open(fname_tokenizer, encoding="utf-8") as f:
+ self.vocab = json.load(f)
+
+ try:
+ # FIXME: Verify that added tokens here _cannot_ overlap with the main vocab.
+ with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
+ added_tokens = json.load(f)
+ except FileNotFoundError:
+ pass
+ else:
+ # "fast" tokenizer
+ fname_tokenizer = base_path / 'tokenizer.json'
+
+ # if this fails, FileNotFoundError propagates to caller
+ with open(fname_tokenizer, encoding="utf-8") as f:
+ tokenizer_json = json.load(f)
+
+ tokenizer_model: dict[str, Any] = tokenizer_json['model']
+ if (
+ tokenizer_model['type'] != 'BPE' or tokenizer_model.get('byte_fallback', False)
+ or tokenizer_json['decoder']['type'] != 'ByteLevel'
+ ):
+ raise FileNotFoundError('Cannot find GPT-2 BPE tokenizer')
+
+ self.vocab = tokenizer_model["vocab"]
+
+ if (added := tokenizer_json.get('added_tokens')) is not None:
+ # Added tokens here can be duplicates of the main vocabulary.
+ added_tokens = {item['content']: item['id']
+ for item in added
+ if item['content'] not in self.vocab}
+
+ vocab_size = len(self.vocab)
+ expected_ids = list(range(vocab_size, vocab_size + len(added_tokens)))
+ actual_ids = sorted(added_tokens.values())
+ if expected_ids != actual_ids:
+ expected_end_id = vocab_size + len(actual_ids) - 1
+ raise ValueError(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range "
+ f"{vocab_size} - {expected_end_id}; got {actual_ids}")
+
+ items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1])
+ self.added_tokens_dict = added_tokens
+ self.added_tokens_list = [text for (text, idx) in items]
+ self.vocab_size_base = vocab_size
+ self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
+ self.fname_tokenizer = fname_tokenizer
+
+ def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
+ reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()}
+
+ for i, _ in enumerate(self.vocab):
+ yield reverse_vocab[i], 0.0, gguf.TokenType.NORMAL
+
+ def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
+ for text in self.added_tokens_list:
+ score = -1000.0
+ yield text.encode("utf-8"), score, gguf.TokenType.CONTROL
+
+ def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
+ yield from self.bpe_tokens()
+ yield from self.added_tokens()
+
+ def __repr__(self) -> str:
+ return f""
+
+
+class SentencePieceVocab(Vocab):
+ tokenizer_model = "llama"
+ name = "spm"
+
+ def __init__(self, base_path: Path):
+ added_tokens: dict[str, int] = {}
+ if (fname_tokenizer := base_path / 'tokenizer.model').exists():
+ # normal location
+ try:
+ with open(base_path / 'added_tokens.json', encoding="utf-8") as f:
+ added_tokens = json.load(f)
+ except FileNotFoundError:
+ pass
+ elif not (fname_tokenizer := base_path.parent / 'tokenizer.model').exists():
+ # not found in alternate location either
+ raise FileNotFoundError('Cannot find tokenizer.model')
+
+ self.sentencepiece_tokenizer = SentencePieceProcessor()
+ self.sentencepiece_tokenizer.LoadFromFile(str(fname_tokenizer))
+ vocab_size = self.sentencepiece_tokenizer.vocab_size()
+
+ new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size}
+ expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens)))
+ actual_new_ids = sorted(new_tokens.keys())
+
+ if expected_new_ids != actual_new_ids:
+ raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}")
+
+ # Token pieces that were added to the base vocabulary.
+ self.added_tokens_dict = added_tokens
+ self.added_tokens_list = [new_tokens[id] for id in actual_new_ids]
+ self.vocab_size_base = vocab_size
+ self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
+ self.fname_tokenizer = fname_tokenizer
+
+ def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
+ tokenizer = self.sentencepiece_tokenizer
+ for i in range(tokenizer.vocab_size()):
+ piece = tokenizer.IdToPiece(i)
+ text = piece.encode("utf-8")
+ score: float = tokenizer.GetScore(i)
+
+ toktype = gguf.TokenType.NORMAL
+ if tokenizer.IsUnknown(i):
+ toktype = gguf.TokenType.UNKNOWN
+ if tokenizer.IsControl(i):
+ toktype = gguf.TokenType.CONTROL
+
+ # NOTE: I think added_tokens are user defined.
+ # ref: https://github.com/google/sentencepiece/blob/master/src/sentencepiece_model.proto
+ # if tokenizer.is_user_defined(i): toktype = gguf.TokenType.USER_DEFINED
+
+ if tokenizer.IsUnused(i):
+ toktype = gguf.TokenType.UNUSED
+ if tokenizer.IsByte(i):
+ toktype = gguf.TokenType.BYTE
+
+ yield text, score, toktype
+
+ def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
+ for text in self.added_tokens_list:
+ score = -1000.0
+ yield text.encode("utf-8"), score, gguf.TokenType.USER_DEFINED
+
+ def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
+ yield from self.sentencepiece_tokens()
+ yield from self.added_tokens()
+
+ def __repr__(self) -> str:
+ return f""
+
+
+class LlamaHfVocab(Vocab):
+ tokenizer_model = "llama"
+ name = "hfft"
+
+ def __init__(self, base_path: Path):
+ fname_tokenizer = base_path / 'tokenizer.json'
+ # if this fails, FileNotFoundError propagates to caller
+ with open(fname_tokenizer, encoding='utf-8') as f:
+ tokenizer_json = json.load(f)
+
+ # pre-check so we know if we need transformers
+ tokenizer_model: dict[str, Any] = tokenizer_json['model']
+ is_llama3 = (
+ tokenizer_model['type'] == 'BPE' and tokenizer_model.get('ignore_merges', False)
+ and not tokenizer_model.get('byte_fallback', True)
+ )
+ if is_llama3:
+ raise TypeError('Llama 3 must be converted with BpeVocab')
+
+ if not is_llama3 and (
+ tokenizer_model['type'] != 'BPE' or not tokenizer_model.get('byte_fallback', False)
+ or tokenizer_json['decoder']['type'] != 'Sequence'
+ ):
+ raise FileNotFoundError('Cannot find Llama BPE tokenizer')
+
+ try:
+ from transformers import AutoTokenizer
+ except ImportError as e:
+ raise ImportError(
+ "To use LlamaHfVocab, please install the `transformers` package. "
+ "You can install it with `pip install transformers`."
+ ) from e
+
+ # Allow the tokenizer to default to slow or fast versions.
+ # Explicitly set tokenizer to use local paths.
+ self.tokenizer = AutoTokenizer.from_pretrained(
+ base_path,
+ cache_dir=base_path,
+ local_files_only=True,
+ )
+ assert self.tokenizer.is_fast # assume tokenizer.json is used
+
+ # Initialize lists and dictionaries for added tokens
+ self.added_tokens_list = []
+ self.added_tokens_dict = dict()
+ self.added_tokens_ids = set()
+
+ # Process added tokens
+ for tok, tokidx in sorted(
+ self.tokenizer.get_added_vocab().items(), key=lambda x: x[1]
+ ):
+ # Only consider added tokens that are not in the base vocabulary
+ if tokidx >= self.tokenizer.vocab_size:
+ self.added_tokens_list.append(tok)
+ self.added_tokens_dict[tok] = tokidx
+ self.added_tokens_ids.add(tokidx)
+
+ # Store special tokens and their IDs
+ self.specials = {
+ tok: self.tokenizer.get_vocab()[tok]
+ for tok in self.tokenizer.all_special_tokens
+ }
+ self.special_ids = set(self.tokenizer.all_special_ids)
+
+ # Set vocabulary sizes
+ self.vocab_size_base = self.tokenizer.vocab_size
+ self.vocab_size = self.vocab_size_base + len(self.added_tokens_list)
+
+ self.fname_tokenizer = fname_tokenizer
+
+ def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
+ reverse_vocab = {
+ id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()
+ }
+
+ for token_id in range(self.vocab_size_base):
+ # Skip processing added tokens here
+ if token_id in self.added_tokens_ids:
+ continue
+
+ # Convert token text to bytes
+ token_text = reverse_vocab[token_id].encode("utf-8")
+
+ # Yield token text, score, and type
+ yield token_text, self.get_token_score(token_id), self.get_token_type(
+ token_id, token_text, self.special_ids # Reuse already stored special IDs
+ )
+
+ def get_token_type(self, token_id: int, token_text: bytes, special_ids: set[int]) -> gguf.TokenType:
+ # Special case for byte tokens
+ if re.fullmatch(br"<0x[0-9A-Fa-f]{2}>", token_text):
+ return gguf.TokenType.BYTE
+
+ # Determine token type based on whether it's a special token
+ return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL
+
+ def get_token_score(self, token_id: int) -> float:
+ # Placeholder for actual logic to determine the token's score
+ # This needs to be implemented based on specific requirements
+ return -1000.0 # Default score
+
+ def added_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
+ for text in self.added_tokens_list:
+ if text in self.specials:
+ toktype = self.get_token_type(self.specials[text], b'', self.special_ids)
+ score = self.get_token_score(self.specials[text])
+ else:
+ toktype = gguf.TokenType.USER_DEFINED
+ score = -1000.0
+
+ yield text.encode("utf-8"), score, toktype
+
+ def has_newline_token(self):
+ return "<0x0A>" in self.tokenizer.vocab or "\n" in self.tokenizer.vocab
+
+ def all_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
+ yield from self.hf_tokens()
+ yield from self.added_tokens()
+
+ def __repr__(self) -> str:
+ return f""
diff --git a/llama.cpp b/llama.cpp
index e7412de4b..841be1de7 100644
--- a/llama.cpp
+++ b/llama.cpp
@@ -1702,12 +1702,13 @@ struct llama_mlock {
};
using llama_mlocks = std::vector>;
-static std::string llama_token_to_piece(const struct llama_context * ctx, llama_token token, bool special) {
+// NOTE: avoid ever using this except for building the token_to_piece caches
+static std::string llama_token_to_piece(const struct llama_model * model, llama_token token, bool special) {
std::vector result(8, 0);
- const int n_tokens = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
+ const int n_tokens = llama_token_to_piece(model, token, result.data(), result.size(), special);
if (n_tokens < 0) {
result.resize(-n_tokens);
- int check = llama_token_to_piece(llama_get_model(ctx), token, result.data(), result.size(), special);
+ int check = llama_token_to_piece(model, token, result.data(), result.size(), special);
GGML_ASSERT(check == -n_tokens);
}
else {
@@ -2162,7 +2163,9 @@ struct llama_vocab {
std::unordered_map token_to_id;
std::vector id_to_token;
- std::vector special_tokens_cache;
+ std::vector cache_special_tokens;
+ std::vector cache_token_to_piece; // llama_token_to_piece(special = false);
+ std::vector cache_token_to_piece_special; // llama_token_to_piece(special = true);
std::map, int> bpe_ranks;
@@ -4592,20 +4595,14 @@ static void llm_load_vocab(
vocab.special_cls_id = 101;
vocab.special_mask_id = 103;
vocab.add_space_prefix = false;
- } else {
- if (tokenizer_model == "gpt2") {
- vocab.type = LLAMA_VOCAB_TYPE_BPE;
+ } else if (tokenizer_model == "gpt2") {
+ vocab.type = LLAMA_VOCAB_TYPE_BPE;
- const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
- if (add_space_prefix_keyidx != -1) {
- vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
- }
- } else {
- LLAMA_LOG_WARN("%s: unknown tokenizer: '%s'", __func__, tokenizer_model.c_str());
- LLAMA_LOG_WARN("%s: using default tokenizer: 'llama'", __func__);
- vocab.type = LLAMA_VOCAB_TYPE_SPM;
- return;
+ const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
+ if (add_space_prefix_keyidx != -1) {
+ vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
}
+
// read bpe merges and populate bpe ranks
const int merges_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_MERGES).c_str());
if (merges_keyidx == -1) {
@@ -4639,6 +4636,8 @@ static void llm_load_vocab(
vocab.special_pad_id = -1;
vocab.special_cls_id = -1;
vocab.special_mask_id = -1;
+ } else {
+ throw std::runtime_error(format("unknown tokenizer: '%s'", tokenizer_model.c_str()));
}
// for now, only BPE models have pre-tokenizers
@@ -4833,17 +4832,38 @@ static void llm_load_vocab(
{
for (llama_vocab::id id = 0; id < (llama_vocab::id)n_vocab; ++id) {
if (vocab.id_to_token[id].type != LLAMA_TOKEN_TYPE_NORMAL) {
- vocab.special_tokens_cache.push_back(id);
+ vocab.cache_special_tokens.push_back(id);
}
}
- std::sort( vocab.special_tokens_cache.begin(), vocab.special_tokens_cache.end(),
+ std::sort( vocab.cache_special_tokens.begin(), vocab.cache_special_tokens.end(),
[&] (const llama_vocab::id a, const llama_vocab::id b) {
return vocab.id_to_token[a].text.size() > vocab.id_to_token[b].text.size();
}
);
- LLAMA_LOG_INFO("%s: special tokens cache size = %u.\n", __func__, (uint32_t)vocab.special_tokens_cache.size());
+ LLAMA_LOG_INFO("%s: special tokens cache size = %u\n", __func__, (uint32_t)vocab.cache_special_tokens.size());
+ }
+
+ // build token to piece caches
+ {
+ size_t size_cache = 0;
+
+ std::vector cache_token_to_piece (n_vocab);
+ std::vector cache_token_to_piece_special(n_vocab);
+
+ for (uint32_t id = 0; id < n_vocab; ++id) {
+ cache_token_to_piece[id] = llama_token_to_piece(&model, id, false);
+ cache_token_to_piece_special[id] = llama_token_to_piece(&model, id, true);
+
+ size_cache += cache_token_to_piece[id].size();
+ size_cache += cache_token_to_piece_special[id].size();
+ }
+
+ std::swap(vocab.cache_token_to_piece, cache_token_to_piece);
+ std::swap(vocab.cache_token_to_piece_special, cache_token_to_piece_special);
+
+ LLAMA_LOG_INFO("%s: token to piece cache size = %.4f MB\n", __func__, size_cache / 1024.0 / 1024.0);
}
}
@@ -13233,7 +13253,7 @@ struct fragment_buffer_variant {
static void tokenizer_st_partition(const llama_vocab & vocab, std::forward_list & buffer) {
// for each special token
- for (const llama_vocab::id special_id : vocab.special_tokens_cache) {
+ for (const llama_vocab::id special_id : vocab.cache_special_tokens) {
const auto & special_token = vocab.id_to_token[special_id].text;
// for each text fragment
@@ -14392,7 +14412,7 @@ void llama_sample_repetition_penalties(
void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * candidates, const struct llama_grammar * grammar) {
GGML_ASSERT(ctx);
- const int64_t t_start_sample_us = ggml_time_us();
+ int64_t t_start_sample_us = ggml_time_us();
bool allow_eog = false;
for (const auto & stack : grammar->stacks) {
@@ -14404,12 +14424,13 @@ void llama_sample_grammar(struct llama_context * ctx, llama_token_data_array * c
std::vector, llama_partial_utf8>> candidates_decoded;
candidates_decoded.reserve(candidates->size);
- std::vector candidates_grammar;
+
+ std::vector candidates_grammar;
candidates_grammar.reserve(candidates->size);
for (size_t i = 0; i < candidates->size; ++i) {
- const llama_token id = candidates->data[i].id;
- const std::string piece = llama_token_to_piece(ctx, id, false);
+ const llama_token id = candidates->data[i].id;
+ const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(id);
if (llama_token_is_eog(&ctx->model, id)) {
if (!allow_eog) {
@@ -14609,7 +14630,7 @@ void llama_grammar_accept_token(struct llama_context * ctx, struct llama_grammar
GGML_ASSERT(false);
}
- const std::string piece = llama_token_to_piece(ctx, token, false);
+ const std::string & piece = ctx->model.vocab.cache_token_to_piece.at(token);
// Note terminating 0 in decoded string
const auto decoded = decode_utf8(piece, grammar->partial_utf8);
@@ -16200,6 +16221,11 @@ struct llama_context * llama_new_context_with_model(
params.flash_attn = false;
}
+ if (params.type_v != GGML_TYPE_F16 && !params.flash_attn) {
+ LLAMA_LOG_ERROR("%s: V cache quantization requires flash_attn\n", __func__);
+ return nullptr;
+ }
+
llama_context * ctx = new llama_context(*model);
const auto & hparams = model->hparams;
@@ -18292,69 +18318,83 @@ static std::string llama_decode_text(const std::string & text) {
// does not write null-terminator to buf
int32_t llama_token_to_piece(const struct llama_model * model, llama_token token, char * buf, int32_t length, bool special) {
+ // if we have a cache - use it
+ {
+ const auto & cache = special ? model->vocab.cache_token_to_piece_special : model->vocab.cache_token_to_piece;
+
+ if (!cache.empty()) {
+ const auto & res = cache.at(token);
+ if (length < (int) res.size()) {
+ return -(int) res.size();
+ }
+ memcpy(buf, res.c_str(), res.size());
+ return res.size();
+ }
+ }
+
if (0 <= token && token < llama_n_vocab(model)) {
switch (llama_vocab_get_type(model->vocab)) {
- case LLAMA_VOCAB_TYPE_WPM:
- case LLAMA_VOCAB_TYPE_SPM: {
- // NOTE: we accept all unsupported token types,
- // suppressing them like CONTROL tokens.
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- llama_unescape_whitespace(result);
- if (length < (int) result.length()) {
- return -(int) result.length();
+ case LLAMA_VOCAB_TYPE_WPM:
+ case LLAMA_VOCAB_TYPE_SPM: {
+ // NOTE: we accept all unsupported token types,
+ // suppressing them like CONTROL tokens.
+ if (llama_is_normal_token(model->vocab, token)) {
+ std::string result = model->vocab.id_to_token[token].text;
+ llama_unescape_whitespace(result);
+ if (length < (int) result.length()) {
+ return -(int) result.length();
+ }
+ memcpy(buf, result.c_str(), result.length());
+ return result.length();
+ } else if (
+ (llama_is_user_defined_token(model->vocab, token)) ||
+ (llama_is_control_token (model->vocab, token) && special)) {
+ std::string result = model->vocab.id_to_token[token].text;
+ if (length < (int) result.length()) {
+ return -(int) result.length();
+ }
+ memcpy(buf, result.c_str(), result.length());
+ return result.length();
+ } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
+ if (length < 3) {
+ return -3;
+ }
+ memcpy(buf, "\xe2\x96\x85", 3);
+ return 3;
+ } else if (llama_is_byte_token(model->vocab, token)) {
+ if (length < 1) {
+ return -1;
+ }
+ buf[0] = llama_token_to_byte(model->vocab, token);
+ return 1;
}
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (
- (llama_is_user_defined_token(model->vocab, token)) ||
- (llama_is_control_token (model->vocab, token) && special)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (llama_is_unknown_token(model->vocab, token)) { // NOLINT
- if (length < 3) {
- return -3;
- }
- memcpy(buf, "\xe2\x96\x85", 3);
- return 3;
- } else if (llama_is_byte_token(model->vocab, token)) {
- if (length < 1) {
- return -1;
- }
- buf[0] = llama_token_to_byte(model->vocab, token);
- return 1;
+ break;
}
- break;
- }
- case LLAMA_VOCAB_TYPE_BPE: {
- // NOTE: we accept all unsupported token types,
- // suppressing them like CONTROL tokens.
- if (llama_is_normal_token(model->vocab, token)) {
- std::string result = model->vocab.id_to_token[token].text;
- result = llama_decode_text(result);
- if (length < (int) result.length()) {
- return -(int) result.length();
+ case LLAMA_VOCAB_TYPE_BPE: {
+ // NOTE: we accept all unsupported token types,
+ // suppressing them like CONTROL tokens.
+ if (llama_is_normal_token(model->vocab, token)) {
+ std::string result = model->vocab.id_to_token[token].text;
+ result = llama_decode_text(result);
+ if (length < (int) result.length()) {
+ return -(int) result.length();
+ }
+ memcpy(buf, result.c_str(), result.length());
+ return result.length();
+ } else if (
+ (llama_is_user_defined_token(model->vocab, token)) ||
+ (llama_is_control_token (model->vocab, token) && special)) {
+ std::string result = model->vocab.id_to_token[token].text;
+ if (length < (int) result.length()) {
+ return -(int) result.length();
+ }
+ memcpy(buf, result.c_str(), result.length());
+ return result.length();
}
- memcpy(buf, result.c_str(), result.length());
- return result.length();
- } else if (
- (llama_is_user_defined_token(model->vocab, token)) ||
- (llama_is_control_token (model->vocab, token) && special)) {
- std::string result = model->vocab.id_to_token[token].text;
- if (length < (int) result.length()) {
- return -(int) result.length();
- }
- memcpy(buf, result.c_str(), result.length());
- return result.length();
+ break;
}
- break;
- }
- default:
- GGML_ASSERT(false);
+ default:
+ GGML_ASSERT(false);
}
}
return 0;
diff --git a/llama.h b/llama.h
index 3e4474bb9..95105c28e 100644
--- a/llama.h
+++ b/llama.h
@@ -424,8 +424,8 @@ extern "C" {
LLAMA_API enum llama_pooling_type llama_pooling_type(const struct llama_context * ctx);
- LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
- LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
+ LLAMA_API enum llama_vocab_type llama_vocab_type (const struct llama_model * model);
+ LLAMA_API enum llama_rope_type llama_rope_type (const struct llama_model * model);
LLAMA_API int32_t llama_n_vocab (const struct llama_model * model);
LLAMA_API int32_t llama_n_ctx_train(const struct llama_model * model);
diff --git a/requirements.txt b/requirements.txt
index 43f82dc2e..e5cfbf10b 100644
--- a/requirements.txt
+++ b/requirements.txt
@@ -4,7 +4,7 @@
# Package versions must stay compatible across all top-level python scripts.
#
--r ./requirements/requirements-convert.txt
+-r ./requirements/requirements-convert-legacy-llama.txt
-r ./requirements/requirements-convert-hf-to-gguf.txt
-r ./requirements/requirements-convert-hf-to-gguf-update.txt
diff --git a/requirements/requirements-convert-hf-to-gguf-update.txt b/requirements/requirements-convert-hf-to-gguf-update.txt
index 6ac402610..6eacaf429 100644
--- a/requirements/requirements-convert-hf-to-gguf-update.txt
+++ b/requirements/requirements-convert-hf-to-gguf-update.txt
@@ -1,2 +1,2 @@
--r ./requirements-convert.txt
+-r ./requirements-convert-legacy-llama.txt
torch~=2.1.1
diff --git a/requirements/requirements-convert-hf-to-gguf.txt b/requirements/requirements-convert-hf-to-gguf.txt
index 6ac402610..6eacaf429 100644
--- a/requirements/requirements-convert-hf-to-gguf.txt
+++ b/requirements/requirements-convert-hf-to-gguf.txt
@@ -1,2 +1,2 @@
--r ./requirements-convert.txt
+-r ./requirements-convert-legacy-llama.txt
torch~=2.1.1
diff --git a/requirements/requirements-convert.txt b/requirements/requirements-convert-legacy-llama.txt
similarity index 100%
rename from requirements/requirements-convert.txt
rename to requirements/requirements-convert-legacy-llama.txt
diff --git a/requirements/requirements-convert-llama-ggml-to-gguf.txt b/requirements/requirements-convert-llama-ggml-to-gguf.txt
index a0f37cd1c..e80c29012 100644
--- a/requirements/requirements-convert-llama-ggml-to-gguf.txt
+++ b/requirements/requirements-convert-llama-ggml-to-gguf.txt
@@ -1 +1 @@
--r ./requirements-convert.txt
+-r ./requirements-convert-legacy-llama.txt
diff --git a/scripts/check-requirements.sh b/scripts/check-requirements.sh
index 6a7400d3c..0c6afdd59 100755
--- a/scripts/check-requirements.sh
+++ b/scripts/check-requirements.sh
@@ -166,7 +166,7 @@ if (( do_cleanup )); then
rm -rf -- "$all_venv"
fi
-check_convert_script convert.py
+check_convert_script examples/convert-legacy-llama.py
for py in convert-*.py; do
# skip convert-hf-to-gguf-update.py
# TODO: the check is failing for some reason:
diff --git a/scripts/compare-llama-bench.py b/scripts/compare-llama-bench.py
index 0ede9e67c..6016eb2c0 100755
--- a/scripts/compare-llama-bench.py
+++ b/scripts/compare-llama-bench.py
@@ -19,22 +19,22 @@ logger = logging.getLogger("compare-llama-bench")
# Properties by which to differentiate results per commit:
KEY_PROPERTIES = [
- "cpu_info", "gpu_info", "n_gpu_layers", "main_gpu", "cuda", "opencl", "metal", "gpu_blas",
- "blas", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_threads",
- "type_k", "type_v", "no_kv_offload", "tensor_split", "n_prompt", "n_gen"
+ "cpu_info", "gpu_info", "n_gpu_layers", "cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "rpc", "gpu_blas",
+ "blas", "model_filename", "model_type", "model_size", "model_n_params", "n_batch", "n_ubatch", "embeddings", "n_threads",
+ "type_k", "type_v", "use_mmap", "no_kv_offload", "split_mode", "main_gpu", "tensor_split", "flash_attn", "n_prompt", "n_gen"
]
# Properties that are boolean and are converted to Yes/No for the table:
-BOOL_PROPERTIES = ["cuda", "opencl", "metal", "gpu_blas", "blas"]
+BOOL_PROPERTIES = ["cuda", "opencl", "vulkan", "kompute", "metal", "sycl", "gpu_blas", "blas", "embeddings", "use_mmap", "no_kv_offload", "flash_attn"]
# Header names for the table:
PRETTY_NAMES = {
- "cuda": "CUDA", "opencl": "OpenCL", "metal": "Metal", "gpu_blas": "GPU BLAS", "blas": "BLAS",
- "cpu_info": "CPU", "gpu_info": "GPU", "model_filename": "File", "model_type": "Model",
- "model_size": "Model Size [GiB]", "model_n_params": "Num. of Parameters",
- "n_batch": "Batch size", "n_threads": "Threads", "type_k": "K type", "type_v": "V type",
- "n_gpu_layers": "GPU layers", "main_gpu": "Main GPU", "no_kv_offload": "NKVO",
- "tensor_split": "Tensor split"
+ "cuda": "CUDA", "opencl": "OpenCL", "vulkan": "Vulkan", "kompute": "Kompute", "metal": "Metal", "sycl": "SYCL", "rpc": "RPC",
+ "gpu_blas": "GPU BLAS", "blas": "BLAS", "cpu_info": "CPU", "gpu_info": "GPU", "model_filename": "File", "model_type": "Model",
+ "model_size": "Model Size [GiB]", "model_n_params": "Num. of Par.", "n_batch": "Batch size", "n_ubatch": "Microbatch size",
+ "n_threads": "Threads", "type_k": "K type", "type_v": "V type", "n_gpu_layers": "GPU layers", "split_mode": "Split mode",
+ "main_gpu": "Main GPU", "no_kv_offload": "NKVO", "flash_attn": "FlashAttention", "tensor_split": "Tensor split",
+ "use_mmap": "Use mmap", "embeddings": "Embeddings",
}
DEFAULT_SHOW = ["model_type"] # Always show these properties by default.
diff --git a/scripts/convert-gg.sh b/scripts/convert-gg.sh
index 01fda16fd..8a0168432 100755
--- a/scripts/convert-gg.sh
+++ b/scripts/convert-gg.sh
@@ -3,20 +3,20 @@
set -e
# LLaMA v1
-python3 convert.py ../llama1/7B --outfile models/llama-7b/ggml-model-f16.gguf --outtype f16
-python3 convert.py ../llama1/13B --outfile models/llama-13b/ggml-model-f16.gguf --outtype f16
-python3 convert.py ../llama1/30B --outfile models/llama-30b/ggml-model-f16.gguf --outtype f16
-python3 convert.py ../llama1/65B --outfile models/llama-65b/ggml-model-f16.gguf --outtype f16
+python3 examples/convert-legacy-llama.py ../llama1/7B --outfile models/llama-7b/ggml-model-f16.gguf --outtype f16
+python3 examples/convert-legacy-llama.py ../llama1/13B --outfile models/llama-13b/ggml-model-f16.gguf --outtype f16
+python3 examples/convert-legacy-llama.py ../llama1/30B --outfile models/llama-30b/ggml-model-f16.gguf --outtype f16
+python3 examples/convert-legacy-llama.py ../llama1/65B --outfile models/llama-65b/ggml-model-f16.gguf --outtype f16
# LLaMA v2
-python3 convert.py ../llama2/llama-2-7b --outfile models/llama-7b-v2/ggml-model-f16.gguf --outtype f16
-python3 convert.py ../llama2/llama-2-13b --outfile models/llama-13b-v2/ggml-model-f16.gguf --outtype f16
-python3 convert.py ../llama2/llama-2-70b --outfile models/llama-70b-v2/ggml-model-f16.gguf --outtype f16
+python3 examples/convert-legacy-llama.py ../llama2/llama-2-7b --outfile models/llama-7b-v2/ggml-model-f16.gguf --outtype f16
+python3 examples/convert-legacy-llama.py ../llama2/llama-2-13b --outfile models/llama-13b-v2/ggml-model-f16.gguf --outtype f16
+python3 examples/convert-legacy-llama.py ../llama2/llama-2-70b --outfile models/llama-70b-v2/ggml-model-f16.gguf --outtype f16
# Code Llama
-python3 convert.py ../codellama/CodeLlama-7b/ --outfile models/codellama-7b/ggml-model-f16.gguf --outtype f16
-python3 convert.py ../codellama/CodeLlama-13b/ --outfile models/codellama-13b/ggml-model-f16.gguf --outtype f16
-python3 convert.py ../codellama/CodeLlama-34b/ --outfile models/codellama-34b/ggml-model-f16.gguf --outtype f16
+python3 examples/convert-legacy-llama.py ../codellama/CodeLlama-7b/ --outfile models/codellama-7b/ggml-model-f16.gguf --outtype f16
+python3 examples/convert-legacy-llama.py ../codellama/CodeLlama-13b/ --outfile models/codellama-13b/ggml-model-f16.gguf --outtype f16
+python3 examples/convert-legacy-llama.py ../codellama/CodeLlama-34b/ --outfile models/codellama-34b/ggml-model-f16.gguf --outtype f16
# Falcon
python3 convert-falcon-hf-to-gguf.py ../falcon/falcon-7b 1
diff --git a/scripts/pod-llama.sh b/scripts/pod-llama.sh
index 2058ceabf..5dabbf60e 100644
--- a/scripts/pod-llama.sh
+++ b/scripts/pod-llama.sh
@@ -75,7 +75,7 @@ if [ "$1" -eq "1" ]; then
cd /workspace/llama.cpp
- python3 convert.py ./models/tinyllama-1b --outfile ./models/tinyllama-1b/ggml-model-f16.gguf --outtype f16
+ python3 examples/convert-legacy-llama.py ./models/tinyllama-1b --outfile ./models/tinyllama-1b/ggml-model-f16.gguf --outtype f16
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_0.gguf q4_0
./quantize ./models/tinyllama-1b/ggml-model-f16.gguf ./models/tinyllama-1b/ggml-model-q4_k.gguf q4_k
@@ -90,7 +90,7 @@ if [ "$1" -eq "2" ]; then
cd /workspace/llama.cpp
- python3 convert.py ./models/codellama-7b --outfile ./models/codellama-7b/ggml-model-f16.gguf --outtype f16
+ python3 examples/convert-legacy-llama.py ./models/codellama-7b --outfile ./models/codellama-7b/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-7b/ggml-model-f16.gguf ./models/codellama-7b/ggml-model-q4_k.gguf q4_k
@@ -105,7 +105,7 @@ if [ "$1" -eq "3" ]; then
cd /workspace/llama.cpp
- python3 convert.py ./models/codellama-13b --outfile ./models/codellama-13b/ggml-model-f16.gguf --outtype f16
+ python3 examples/convert-legacy-llama.py ./models/codellama-13b --outfile ./models/codellama-13b/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-13b/ggml-model-f16.gguf ./models/codellama-13b/ggml-model-q4_k.gguf q4_k
@@ -120,7 +120,7 @@ if [ "$1" -eq "4" ]; then
cd /workspace/llama.cpp
- python3 convert.py ./models/codellama-34b --outfile ./models/codellama-34b/ggml-model-f16.gguf --outtype f16
+ python3 examples/convert-legacy-llama.py ./models/codellama-34b --outfile ./models/codellama-34b/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-34b/ggml-model-f16.gguf ./models/codellama-34b/ggml-model-q4_k.gguf q4_k
@@ -135,7 +135,7 @@ if [ "$1" -eq "5" ]; then
cd /workspace/llama.cpp
- python3 convert.py ./models/codellama-7b-instruct --outfile ./models/codellama-7b-instruct/ggml-model-f16.gguf --outtype f16
+ python3 examples/convert-legacy-llama.py ./models/codellama-7b-instruct --outfile ./models/codellama-7b-instruct/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-7b-instruct/ggml-model-f16.gguf ./models/codellama-7b-instruct/ggml-model-q4_k.gguf q4_k
@@ -150,7 +150,7 @@ if [ "$1" -eq "6" ]; then
cd /workspace/llama.cpp
- python3 convert.py ./models/codellama-13b-instruct --outfile ./models/codellama-13b-instruct/ggml-model-f16.gguf --outtype f16
+ python3 examples/convert-legacy-llama.py ./models/codellama-13b-instruct --outfile ./models/codellama-13b-instruct/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-13b-instruct/ggml-model-f16.gguf ./models/codellama-13b-instruct/ggml-model-q4_k.gguf q4_k
@@ -165,7 +165,7 @@ if [ "$1" -eq "7" ]; then
cd /workspace/llama.cpp
- python3 convert.py ./models/codellama-34b-instruct --outfile ./models/codellama-34b-instruct/ggml-model-f16.gguf --outtype f16
+ python3 examples/convert-legacy-llama.py ./models/codellama-34b-instruct --outfile ./models/codellama-34b-instruct/ggml-model-f16.gguf --outtype f16
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_0.gguf q4_0
./quantize ./models/codellama-34b-instruct/ggml-model-f16.gguf ./models/codellama-34b-instruct/ggml-model-q4_k.gguf q4_k
diff --git a/tests/CMakeLists.txt b/tests/CMakeLists.txt
index 766a01752..cfa707315 100644
--- a/tests/CMakeLists.txt
+++ b/tests/CMakeLists.txt
@@ -129,8 +129,11 @@ llama_target_and_test(test-rope.cpp)
llama_target_and_test(test-model-load-cancel.cpp LABEL "model")
llama_target_and_test(test-autorelease.cpp LABEL "model")
-llama_target_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..)
-target_include_directories(test-json-schema-to-grammar PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../examples/server)
+# TODO: disabled on loongarch64 because the ggml-ci node lacks Python 3.8
+if (NOT ${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
+ llama_target_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..)
+ target_include_directories(test-json-schema-to-grammar PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../examples/server)
+endif()
# dummy executable - not installed
get_filename_component(TEST_TARGET test-c.c NAME_WE)
diff --git a/tests/test-backend-ops.cpp b/tests/test-backend-ops.cpp
index 72edc64a7..777230127 100644
--- a/tests/test-backend-ops.cpp
+++ b/tests/test-backend-ops.cpp
@@ -1570,21 +1570,23 @@ struct test_flash_attn_ext : public test_case {
const float max_bias; // ALiBi
+ const ggml_type type_KV;
+
std::string vars() override {
- return VARS_TO_STR6(hs, nh, kv, nb, mask, max_bias);
+ return VARS_TO_STR7(hs, nh, kv, nb, mask, max_bias, type_KV);
}
double max_nmse_err() override {
return 5e-4;
}
- test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f)
- : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias) {}
+ test_flash_attn_ext(int64_t hs = 128, int64_t nh = 32, int64_t kv = 96, int64_t nb = 8, bool mask = true, float max_bias = 0.0f, ggml_type type_KV = GGML_TYPE_F16)
+ : hs(hs), nh(nh), kv(kv), nb(nb), mask(mask), max_bias(max_bias), type_KV(type_KV) {}
ggml_tensor * build_graph(ggml_context * ctx) override {
ggml_tensor * q = ggml_new_tensor_4d(ctx, GGML_TYPE_F32, hs, nb, nh, 1);
- ggml_tensor * k = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
- ggml_tensor * v = ggml_new_tensor_4d(ctx, GGML_TYPE_F16, hs, kv, nh, 1);
+ ggml_tensor * k = ggml_new_tensor_4d(ctx, type_KV, hs, kv, nh, 1);
+ ggml_tensor * v = ggml_new_tensor_4d(ctx, type_KV, hs, kv, nh, 1);
ggml_tensor * m = mask ? ggml_new_tensor_4d(ctx, GGML_TYPE_F16, kv, GGML_PAD(nb, GGML_KQ_MASK_PAD), 1, 1) : nullptr;
ggml_tensor * out = ggml_flash_attn_ext(ctx, q, k, v, m, 1.0f/sqrtf(hs), max_bias);
return out;
@@ -2290,7 +2292,9 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
for (int nh : { 32, }) {
for (int kv : { 512, 1024, }) {
for (int nb : { 1, 2, 4, 8, }) {
- test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias));
+ for (ggml_type type_KV : {GGML_TYPE_F16, GGML_TYPE_Q8_0, GGML_TYPE_Q4_0}) {
+ test_cases.emplace_back(new test_flash_attn_ext(hs, nh, kv, nb, mask, max_bias, type_KV));
+ }
}
}
}