implement backward pass for ggml_get_rows and for new operation ggml_get_rows_back
This commit is contained in:
parent
488decfdc5
commit
4e1f81d32f
2 changed files with 134 additions and 15 deletions
142
ggml.c
142
ggml.c
|
@ -3990,6 +3990,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
|
|||
"PERMUTE",
|
||||
"TRANSPOSE",
|
||||
"GET_ROWS",
|
||||
"GET_ROWS_BACK",
|
||||
"DIAG_MASK_INF",
|
||||
"DIAG_MASK_ZERO",
|
||||
"SOFT_MAX",
|
||||
|
@ -4045,6 +4046,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
|||
"permute(x)",
|
||||
"transpose(x)",
|
||||
"get_rows(x)",
|
||||
"get_rows_back(x)",
|
||||
"diag_mask_inf(x)",
|
||||
"diag_mask_zero(x)",
|
||||
"soft_max(x)",
|
||||
|
@ -6132,7 +6134,6 @@ struct ggml_tensor * ggml_get_rows(
|
|||
bool is_node = false;
|
||||
|
||||
if (a->grad || b->grad) {
|
||||
GGML_ASSERT(false); // TODO: implement backward
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
|
@ -6148,6 +6149,32 @@ struct ggml_tensor * ggml_get_rows(
|
|||
return result;
|
||||
}
|
||||
|
||||
// ggml_get_rows_back
|
||||
|
||||
struct ggml_tensor * ggml_get_rows_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b) {
|
||||
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
|
||||
|
||||
bool is_node = false;
|
||||
|
||||
if (a->grad || b->grad) {
|
||||
is_node = true;
|
||||
}
|
||||
|
||||
// TODO: implement non F32 return
|
||||
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
|
||||
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
|
||||
|
||||
result->op = GGML_OP_GET_ROWS_BACK;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src0 = a;
|
||||
result->src1 = b;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
// ggml_diag_mask_inf
|
||||
|
||||
struct ggml_tensor * ggml_diag_mask_inf_impl(
|
||||
|
@ -10052,7 +10079,8 @@ static void ggml_compute_forward_get_rows_q(
|
|||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
struct ggml_tensor * dst,
|
||||
bool backward) {
|
||||
assert(params->ith == 0);
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
|
@ -10068,12 +10096,15 @@ static void ggml_compute_forward_get_rows_q(
|
|||
assert( dst->ne[1] == nr);
|
||||
assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
|
||||
|
||||
const int b = backward ? 1 : 0;
|
||||
const int f = backward ? 0 : 1;
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
const int r = ((int32_t *) src1->data)[i];
|
||||
|
||||
dequantize_row_q(
|
||||
(const void *) ((char *) src0->data + r*src0->nb[1]),
|
||||
(float *) ((char *) dst->data + i*dst->nb[1]), nc);
|
||||
(const void *) ((char *) src0->data + (f*r + b*i)*src0->nb[1]),
|
||||
(float *) ((char *) dst->data + (f*i + b*r)*dst->nb[1]), nc);
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -10081,7 +10112,8 @@ static void ggml_compute_forward_get_rows_f16(
|
|||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
struct ggml_tensor * dst,
|
||||
bool backward) {
|
||||
assert(params->ith == 0);
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
|
@ -10095,12 +10127,15 @@ static void ggml_compute_forward_get_rows_f16(
|
|||
assert( dst->ne[1] == nr);
|
||||
assert(src0->nb[0] == sizeof(ggml_fp16_t));
|
||||
|
||||
const int b = backward ? 1 : 0;
|
||||
const int f = backward ? 0 : 1;
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
const int r = ((int32_t *) src1->data)[i];
|
||||
|
||||
for (int j = 0; j < nc; ++j) {
|
||||
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j];
|
||||
((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
|
||||
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + (f*r + b*i)*src0->nb[1]))[j];
|
||||
((float *) ((char *) dst->data + (f*i + b*r)*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -10109,7 +10144,8 @@ static void ggml_compute_forward_get_rows_f32(
|
|||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
struct ggml_tensor * dst,
|
||||
bool backward) {
|
||||
assert(params->ith == 0);
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
|
@ -10123,12 +10159,15 @@ static void ggml_compute_forward_get_rows_f32(
|
|||
assert( dst->ne[1] == nr);
|
||||
assert(src0->nb[0] == sizeof(float));
|
||||
|
||||
const int b = backward ? 1 : 0;
|
||||
const int f = backward ? 0 : 1;
|
||||
|
||||
for (int i = 0; i < nr; ++i) {
|
||||
const int r = ((int32_t *) src1->data)[i];
|
||||
|
||||
ggml_vec_cpy_f32(nc,
|
||||
(float *) ((char *) dst->data + i*dst->nb[1]),
|
||||
(float *) ((char *) src0->data + r*src0->nb[1]));
|
||||
(float *) ((char *) dst->data + (f*i + b*r)*dst->nb[1]),
|
||||
(float *) ((char *) src0->data + (f*r + b*i)*src0->nb[1]));
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -10146,15 +10185,64 @@ static void ggml_compute_forward_get_rows(
|
|||
case GGML_TYPE_Q8_0:
|
||||
case GGML_TYPE_Q8_1:
|
||||
{
|
||||
ggml_compute_forward_get_rows_q(params, src0, src1, dst);
|
||||
ggml_compute_forward_get_rows_q(params, src0, src1, dst, false);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_compute_forward_get_rows_f16(params, src0, src1, dst);
|
||||
ggml_compute_forward_get_rows_f16(params, src0, src1, dst, false);
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_get_rows_f32(params, src0, src1, dst);
|
||||
ggml_compute_forward_get_rows_f32(params, src0, src1, dst, false);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
} break;
|
||||
}
|
||||
|
||||
//static bool first = true;
|
||||
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
|
||||
//if (first) {
|
||||
// first = false;
|
||||
//} else {
|
||||
// for (int k = 0; k < dst->ne[1]; ++k) {
|
||||
// for (int j = 0; j < dst->ne[0]/16; ++j) {
|
||||
// for (int i = 0; i < 16; ++i) {
|
||||
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
|
||||
// }
|
||||
// printf("\n");
|
||||
// }
|
||||
// printf("\n");
|
||||
// }
|
||||
// printf("\n");
|
||||
// exit(0);
|
||||
//}
|
||||
}
|
||||
|
||||
// ggml_compute_forward_get_rows_back
|
||||
|
||||
static void ggml_compute_forward_get_rows_back(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_Q4_0:
|
||||
case GGML_TYPE_Q4_1:
|
||||
case GGML_TYPE_Q4_2:
|
||||
case GGML_TYPE_Q4_3:
|
||||
case GGML_TYPE_Q8_0:
|
||||
{
|
||||
ggml_compute_forward_get_rows_q(params, src0, src1, dst, true);
|
||||
} break;
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_compute_forward_get_rows_f16(params, src0, src1, dst, true);
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
ggml_compute_forward_get_rows_f32(params, src0, src1, dst, true);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
|
@ -12351,6 +12439,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
|||
{
|
||||
ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS_BACK:
|
||||
{
|
||||
ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor);
|
||||
} break;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
{
|
||||
ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
|
||||
|
@ -12787,7 +12879,28 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
|||
case GGML_OP_GET_ROWS:
|
||||
{
|
||||
// necessary for llama (only for tokenizer)
|
||||
GGML_ASSERT(false); // TODO: not implemented
|
||||
if (src0->grad) {
|
||||
src0->grad =
|
||||
ggml_add_impl(ctx, src0->grad,
|
||||
ggml_get_rows_back(ctx, tensor->grad, src1),
|
||||
inplace);
|
||||
}
|
||||
if (src1->grad) {
|
||||
// noop
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_GET_ROWS_BACK:
|
||||
{
|
||||
// necessary for llama (only for tokenizer)
|
||||
if (src0->grad) {
|
||||
src0->grad =
|
||||
ggml_add_impl(ctx, src0->grad,
|
||||
ggml_get_rows(ctx, tensor->grad, src1),
|
||||
inplace);
|
||||
}
|
||||
if (src1->grad) {
|
||||
// noop
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
{
|
||||
|
@ -13362,6 +13475,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
|
|||
case GGML_OP_PERMUTE:
|
||||
case GGML_OP_TRANSPOSE:
|
||||
case GGML_OP_GET_ROWS:
|
||||
case GGML_OP_GET_ROWS_BACK:
|
||||
case GGML_OP_DIAG_MASK_INF:
|
||||
{
|
||||
node->n_tasks = 1;
|
||||
|
|
7
ggml.h
7
ggml.h
|
@ -284,6 +284,7 @@ extern "C" {
|
|||
GGML_OP_PERMUTE,
|
||||
GGML_OP_TRANSPOSE,
|
||||
GGML_OP_GET_ROWS,
|
||||
GGML_OP_GET_ROWS_BACK,
|
||||
GGML_OP_DIAG_MASK_INF,
|
||||
GGML_OP_DIAG_MASK_ZERO,
|
||||
GGML_OP_SOFT_MAX,
|
||||
|
@ -694,6 +695,11 @@ extern "C" {
|
|||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_get_rows_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * a,
|
||||
struct ggml_tensor * b);
|
||||
|
||||
// set elements above the diagonal to -INF
|
||||
GGML_API struct ggml_tensor * ggml_diag_mask_inf(
|
||||
struct ggml_context * ctx,
|
||||
|
@ -749,7 +755,6 @@ extern "C" {
|
|||
// rotary position embedding backward, i.e compute dx from dy
|
||||
GGML_API struct ggml_tensor * ggml_rope_back(
|
||||
struct ggml_context * ctx,
|
||||
struct ggml_tensor * x,
|
||||
struct ggml_tensor * dy,
|
||||
int n_past,
|
||||
int n_dims,
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue