implement backward pass for ggml_get_rows and for new operation ggml_get_rows_back

This commit is contained in:
xaedes 2023-04-24 22:49:34 +02:00
parent 488decfdc5
commit 4e1f81d32f
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1
2 changed files with 134 additions and 15 deletions

142
ggml.c
View file

@ -3990,6 +3990,7 @@ static const char * GGML_OP_LABEL[GGML_OP_COUNT] = {
"PERMUTE", "PERMUTE",
"TRANSPOSE", "TRANSPOSE",
"GET_ROWS", "GET_ROWS",
"GET_ROWS_BACK",
"DIAG_MASK_INF", "DIAG_MASK_INF",
"DIAG_MASK_ZERO", "DIAG_MASK_ZERO",
"SOFT_MAX", "SOFT_MAX",
@ -4045,6 +4046,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"permute(x)", "permute(x)",
"transpose(x)", "transpose(x)",
"get_rows(x)", "get_rows(x)",
"get_rows_back(x)",
"diag_mask_inf(x)", "diag_mask_inf(x)",
"diag_mask_zero(x)", "diag_mask_zero(x)",
"soft_max(x)", "soft_max(x)",
@ -6132,7 +6134,6 @@ struct ggml_tensor * ggml_get_rows(
bool is_node = false; bool is_node = false;
if (a->grad || b->grad) { if (a->grad || b->grad) {
GGML_ASSERT(false); // TODO: implement backward
is_node = true; is_node = true;
} }
@ -6148,6 +6149,32 @@ struct ggml_tensor * ggml_get_rows(
return result; return result;
} }
// ggml_get_rows_back
struct ggml_tensor * ggml_get_rows_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b) {
GGML_ASSERT(ggml_is_matrix(a) && ggml_is_vector(b) && b->type == GGML_TYPE_I32);
bool is_node = false;
if (a->grad || b->grad) {
is_node = true;
}
// TODO: implement non F32 return
//struct ggml_tensor * result = ggml_new_tensor_2d(ctx, a->type, a->ne[0], b->ne[0]);
struct ggml_tensor * result = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, a->ne[0], b->ne[0]);
result->op = GGML_OP_GET_ROWS_BACK;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src0 = a;
result->src1 = b;
return result;
}
// ggml_diag_mask_inf // ggml_diag_mask_inf
struct ggml_tensor * ggml_diag_mask_inf_impl( struct ggml_tensor * ggml_diag_mask_inf_impl(
@ -10052,7 +10079,8 @@ static void ggml_compute_forward_get_rows_q(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst,
bool backward) {
assert(params->ith == 0); assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
@ -10068,12 +10096,15 @@ static void ggml_compute_forward_get_rows_q(
assert( dst->ne[1] == nr); assert( dst->ne[1] == nr);
assert(src0->nb[0] == GGML_TYPE_SIZE[type]); assert(src0->nb[0] == GGML_TYPE_SIZE[type]);
const int b = backward ? 1 : 0;
const int f = backward ? 0 : 1;
for (int i = 0; i < nr; ++i) { for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i]; const int r = ((int32_t *) src1->data)[i];
dequantize_row_q( dequantize_row_q(
(const void *) ((char *) src0->data + r*src0->nb[1]), (const void *) ((char *) src0->data + (f*r + b*i)*src0->nb[1]),
(float *) ((char *) dst->data + i*dst->nb[1]), nc); (float *) ((char *) dst->data + (f*i + b*r)*dst->nb[1]), nc);
} }
} }
@ -10081,7 +10112,8 @@ static void ggml_compute_forward_get_rows_f16(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst,
bool backward) {
assert(params->ith == 0); assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
@ -10095,12 +10127,15 @@ static void ggml_compute_forward_get_rows_f16(
assert( dst->ne[1] == nr); assert( dst->ne[1] == nr);
assert(src0->nb[0] == sizeof(ggml_fp16_t)); assert(src0->nb[0] == sizeof(ggml_fp16_t));
const int b = backward ? 1 : 0;
const int f = backward ? 0 : 1;
for (int i = 0; i < nr; ++i) { for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i]; const int r = ((int32_t *) src1->data)[i];
for (int j = 0; j < nc; ++j) { for (int j = 0; j < nc; ++j) {
ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + r*src0->nb[1]))[j]; ggml_fp16_t v = ((ggml_fp16_t *) ((char *) src0->data + (f*r + b*i)*src0->nb[1]))[j];
((float *) ((char *) dst->data + i*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v); ((float *) ((char *) dst->data + (f*i + b*r)*dst->nb[1]))[j] = GGML_FP16_TO_FP32(v);
} }
} }
} }
@ -10109,7 +10144,8 @@ static void ggml_compute_forward_get_rows_f32(
const struct ggml_compute_params * params, const struct ggml_compute_params * params,
const struct ggml_tensor * src0, const struct ggml_tensor * src0,
const struct ggml_tensor * src1, const struct ggml_tensor * src1,
struct ggml_tensor * dst) { struct ggml_tensor * dst,
bool backward) {
assert(params->ith == 0); assert(params->ith == 0);
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
@ -10123,12 +10159,15 @@ static void ggml_compute_forward_get_rows_f32(
assert( dst->ne[1] == nr); assert( dst->ne[1] == nr);
assert(src0->nb[0] == sizeof(float)); assert(src0->nb[0] == sizeof(float));
const int b = backward ? 1 : 0;
const int f = backward ? 0 : 1;
for (int i = 0; i < nr; ++i) { for (int i = 0; i < nr; ++i) {
const int r = ((int32_t *) src1->data)[i]; const int r = ((int32_t *) src1->data)[i];
ggml_vec_cpy_f32(nc, ggml_vec_cpy_f32(nc,
(float *) ((char *) dst->data + i*dst->nb[1]), (float *) ((char *) dst->data + (f*i + b*r)*dst->nb[1]),
(float *) ((char *) src0->data + r*src0->nb[1])); (float *) ((char *) src0->data + (f*r + b*i)*src0->nb[1]));
} }
} }
@ -10146,15 +10185,64 @@ static void ggml_compute_forward_get_rows(
case GGML_TYPE_Q8_0: case GGML_TYPE_Q8_0:
case GGML_TYPE_Q8_1: case GGML_TYPE_Q8_1:
{ {
ggml_compute_forward_get_rows_q(params, src0, src1, dst); ggml_compute_forward_get_rows_q(params, src0, src1, dst, false);
} break; } break;
case GGML_TYPE_F16: case GGML_TYPE_F16:
{ {
ggml_compute_forward_get_rows_f16(params, src0, src1, dst); ggml_compute_forward_get_rows_f16(params, src0, src1, dst, false);
} break; } break;
case GGML_TYPE_F32: case GGML_TYPE_F32:
{ {
ggml_compute_forward_get_rows_f32(params, src0, src1, dst); ggml_compute_forward_get_rows_f32(params, src0, src1, dst, false);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
//static bool first = true;
//printf("ne0 = %d, ne1 = %d, ne2 = %d\n", dst->ne[0], dst->ne[1], dst->ne[2]);
//if (first) {
// first = false;
//} else {
// for (int k = 0; k < dst->ne[1]; ++k) {
// for (int j = 0; j < dst->ne[0]/16; ++j) {
// for (int i = 0; i < 16; ++i) {
// printf("%8.4f ", ((float *) dst->data)[k*dst->ne[0] + j*16 + i]);
// }
// printf("\n");
// }
// printf("\n");
// }
// printf("\n");
// exit(0);
//}
}
// ggml_compute_forward_get_rows_back
static void ggml_compute_forward_get_rows_back(
const struct ggml_compute_params * params,
const struct ggml_tensor * src0,
const struct ggml_tensor * src1,
struct ggml_tensor * dst) {
switch (src0->type) {
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q4_2:
case GGML_TYPE_Q4_3:
case GGML_TYPE_Q8_0:
{
ggml_compute_forward_get_rows_q(params, src0, src1, dst, true);
} break;
case GGML_TYPE_F16:
{
ggml_compute_forward_get_rows_f16(params, src0, src1, dst, true);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_get_rows_f32(params, src0, src1, dst, true);
} break; } break;
default: default:
{ {
@ -12351,6 +12439,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{ {
ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor); ggml_compute_forward_get_rows(params, tensor->src0, tensor->src1, tensor);
} break; } break;
case GGML_OP_GET_ROWS_BACK:
{
ggml_compute_forward_get_rows_back(params, tensor->src0, tensor->src1, tensor);
} break;
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
{ {
ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor); ggml_compute_forward_diag_mask_inf(params, tensor->src0, tensor->src1, tensor);
@ -12787,7 +12879,28 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
case GGML_OP_GET_ROWS: case GGML_OP_GET_ROWS:
{ {
// necessary for llama (only for tokenizer) // necessary for llama (only for tokenizer)
GGML_ASSERT(false); // TODO: not implemented if (src0->grad) {
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_get_rows_back(ctx, tensor->grad, src1),
inplace);
}
if (src1->grad) {
// noop
}
} break;
case GGML_OP_GET_ROWS_BACK:
{
// necessary for llama (only for tokenizer)
if (src0->grad) {
src0->grad =
ggml_add_impl(ctx, src0->grad,
ggml_get_rows(ctx, tensor->grad, src1),
inplace);
}
if (src1->grad) {
// noop
}
} break; } break;
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
{ {
@ -13362,6 +13475,7 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
case GGML_OP_PERMUTE: case GGML_OP_PERMUTE:
case GGML_OP_TRANSPOSE: case GGML_OP_TRANSPOSE:
case GGML_OP_GET_ROWS: case GGML_OP_GET_ROWS:
case GGML_OP_GET_ROWS_BACK:
case GGML_OP_DIAG_MASK_INF: case GGML_OP_DIAG_MASK_INF:
{ {
node->n_tasks = 1; node->n_tasks = 1;

7
ggml.h
View file

@ -284,6 +284,7 @@ extern "C" {
GGML_OP_PERMUTE, GGML_OP_PERMUTE,
GGML_OP_TRANSPOSE, GGML_OP_TRANSPOSE,
GGML_OP_GET_ROWS, GGML_OP_GET_ROWS,
GGML_OP_GET_ROWS_BACK,
GGML_OP_DIAG_MASK_INF, GGML_OP_DIAG_MASK_INF,
GGML_OP_DIAG_MASK_ZERO, GGML_OP_DIAG_MASK_ZERO,
GGML_OP_SOFT_MAX, GGML_OP_SOFT_MAX,
@ -694,6 +695,11 @@ extern "C" {
struct ggml_tensor * a, struct ggml_tensor * a,
struct ggml_tensor * b); struct ggml_tensor * b);
GGML_API struct ggml_tensor * ggml_get_rows_back(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b);
// set elements above the diagonal to -INF // set elements above the diagonal to -INF
GGML_API struct ggml_tensor * ggml_diag_mask_inf( GGML_API struct ggml_tensor * ggml_diag_mask_inf(
struct ggml_context * ctx, struct ggml_context * ctx,
@ -749,7 +755,6 @@ extern "C" {
// rotary position embedding backward, i.e compute dx from dy // rotary position embedding backward, i.e compute dx from dy
GGML_API struct ggml_tensor * ggml_rope_back( GGML_API struct ggml_tensor * ggml_rope_back(
struct ggml_context * ctx, struct ggml_context * ctx,
struct ggml_tensor * x,
struct ggml_tensor * dy, struct ggml_tensor * dy,
int n_past, int n_past,
int n_dims, int n_dims,