Squashed commit of the following:
commitb617f2847b
Merge:73cc5b8
92f44ff
Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Fri Jun 9 16:10:35 2023 +0800 Merge branch 'master' into concedo_experimental commit73cc5b88fb
Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Fri Jun 9 16:09:23 2023 +0800 added warning message for unsupported K quants commit92f44ff7f7
Author: AT <manyoso@users.noreply.github.com> Date: Fri Jun 9 04:00:51 2023 -0400 metal : add GELU implementation (#1770) Co-authored-by: Adam Treat <adam@nomic.ai> commit245fc3c37d
Author: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Fri Jun 9 10:39:59 2023 +0300 metal : faster q4_0 (#1775) * metal : 8% faster q4_0 Avoid copying into local uchar4 anf float4. * metal : 17% faster Q4_0 Use 64 threads in a thread group. --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> commit01dc509038
Merge:0833845
72ff528
Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Fri Jun 9 14:53:35 2023 +0800 Merge branch 'master' into concedo_experimental commit0833845268
Author: Concedo <39025047+LostRuins@users.noreply.github.com> Date: Fri Jun 9 14:38:31 2023 +0800 merged metal patch directly into the file commit72ff5282bf
Author: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Thu Jun 8 22:28:21 2023 +0300 metal : add Q2_K implementation (#1762) * metal : add Q2_K implementation 27.1 ms / token on M2 Max 30-core GPU, so about the same speed as Q4_0. Memory throughput is ~156 GB/s. The access pattern used in the Q2_K CUDA implementation resulted in significantly lower performance (~31 ms/token). * Fixing merge conflicts --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> commit0bf7cf1b29
Author: Georgi Gerganov <ggerganov@gmail.com> Date: Thu Jun 8 20:48:14 2023 +0300 Revert "ggml : load data into int8x16x4_t using vld4q_s8 on arm64 (#1738)" This reverts commit8432d4d9f7
. commit8432d4d9f7
Author: le.chang <cljs118@126.com> Date: Fri Jun 9 00:47:56 2023 +0800 ggml : load data into int8x16x4_t using vld4q_s8 on arm64 (#1738) commit6fa1613f15
Author: Hyun-joo KIM <bebopkim@gmail.com> Date: Fri Jun 9 01:47:36 2023 +0900 Metal inference enhancement - put hard-wired relative path of ggml-model.model file using a patch file due to lack of NSBundle environment commit0f291e1f65
Author: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Thu Jun 8 19:46:22 2023 +0300 metal : Q6_K implementation (#1752) * Metal implementation for Q4_K Very slow for now: 42 ms / token, Q4_0 runs in 28 ms/token on my 30-core M2 Max GPU. * Optimizing Q4_K on metal The first token always takes longer, I guess because the metal kernel is being jit-compiled. So, using n = 128 to measure time. At this point Q4_K takes 29.5 ms / token compared to 27.2 ms / token for Q4_0. Quite a bit better than the initial attempt, but still not good enough. * Optimizing q4_K metal dot some more For n = 256 it is now 28.1 ms/token compared to 27 ms/token for q4_0. * Fix after merge with master * Metal implementation for Q6_K Similar to the CUDA implementation. No idea if this is the optimum for Metal, but the few alternative variants I tried all had a lower performance. We get 36.5 ms / token on M2 Max with 30 GPU cores. This corresponds to ~200 GB/second throughput. * clang-tidy : add config back * Much better Q6_K implementation for metal 28.3 ms / token for 7B. Subtracting ~9 ms that is spent in other compute graph operations, we are left with ~19 ms for the matrix multiplications. The model is ~5.5 GB, so we are getting 1000 / 19 * 5.5 = 290 GB/s! --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> commit7f181600c7
Author: Hyun-joo KIM <bebopkim@gmail.com> Date: Fri Jun 9 01:24:22 2023 +0900 Metal inference enhancement - put hard-wired relative path of ggml-model.model file due to lack of NSBundle environment commit8fc8179919
Author: qingfengfenga <41416092+qingfengfenga@users.noreply.github.com> Date: Thu Jun 8 15:58:53 2023 +0800 Add llama.cpp docker support for non-latin languages (#1673) * Modify Dockerfile default character set to improve compatibility (#1673) commitb50b570ed9
Author: Steven Roussey <sroussey@gmail.com> Date: Thu Jun 8 00:12:28 2023 -0700 ggml : fix fprintf warnings (#1720) commit53aba3f393
Author: Georgi Gerganov <ggerganov@gmail.com> Date: Thu Jun 8 10:09:08 2023 +0300 clang-tidy : restore dot file from accidental deletion commit4161bdc04d
Author: Kawrakow <48489457+ikawrakow@users.noreply.github.com> Date: Thu Jun 8 10:08:23 2023 +0300 metal : add Q4_K implementation (#1733) * Metal implementation for Q4_K Very slow for now: 42 ms / token, Q4_0 runs in 28 ms/token on my 30-core M2 Max GPU. * Optimizing Q4_K on metal The first token always takes longer, I guess because the metal kernel is being jit-compiled. So, using n = 128 to measure time. At this point Q4_K takes 29.5 ms / token compared to 27.2 ms / token for Q4_0. Quite a bit better than the initial attempt, but still not good enough. * Optimizing q4_K metal dot some more For n = 256 it is now 28.1 ms/token compared to 27 ms/token for q4_0. * Fix after merge with master --------- Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com> commit0035858273
Author: johnson442 <56517414+johnson442@users.noreply.github.com> Date: Thu Jun 8 08:02:48 2023 +0100 k-quants : add missing compile definition to CMakeLists (#1748)
This commit is contained in:
parent
dee692a63e
commit
4f665cd63d
4 changed files with 620 additions and 36 deletions
77
ggml-metal.m
77
ggml-metal.m
|
@ -45,13 +45,20 @@ struct ggml_metal_context {
|
|||
GGML_METAL_DECL_KERNEL(scale);
|
||||
GGML_METAL_DECL_KERNEL(silu);
|
||||
GGML_METAL_DECL_KERNEL(relu);
|
||||
GGML_METAL_DECL_KERNEL(gelu);
|
||||
GGML_METAL_DECL_KERNEL(soft_max);
|
||||
GGML_METAL_DECL_KERNEL(diag_mask_inf);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q2_k);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_k);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q6_k);
|
||||
GGML_METAL_DECL_KERNEL(rms_norm);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q2_k_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_k_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q6_k_f32);
|
||||
GGML_METAL_DECL_KERNEL(rope);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_DECL_KERNEL(cpy_f32_f32);
|
||||
|
@ -99,7 +106,7 @@ struct ggml_metal_context * ggml_metal_init(void) {
|
|||
NSError * error = nil;
|
||||
|
||||
//NSString * path = [[NSBundle mainBundle] pathForResource:@"../../examples/metal/metal" ofType:@"metal"];
|
||||
NSString * path = [[NSBundle mainBundle] pathForResource:@"ggml-metal" ofType:@"metal"];
|
||||
NSString * path = @"./ggml-metal.metal";
|
||||
fprintf(stderr, "%s: loading '%s'\n", __func__, [path UTF8String]);
|
||||
|
||||
NSString * src = [NSString stringWithContentsOfFile:path encoding:NSUTF8StringEncoding error:&error];
|
||||
|
@ -129,13 +136,20 @@ struct ggml_metal_context * ggml_metal_init(void) {
|
|||
GGML_METAL_ADD_KERNEL(scale);
|
||||
GGML_METAL_ADD_KERNEL(silu);
|
||||
GGML_METAL_ADD_KERNEL(relu);
|
||||
GGML_METAL_ADD_KERNEL(gelu);
|
||||
GGML_METAL_ADD_KERNEL(soft_max);
|
||||
GGML_METAL_ADD_KERNEL(diag_mask_inf);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q2_k);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_k);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q6_k);
|
||||
GGML_METAL_ADD_KERNEL(rms_norm);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q2_k_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_k_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q6_k_f32);
|
||||
GGML_METAL_ADD_KERNEL(rope);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_f16);
|
||||
GGML_METAL_ADD_KERNEL(cpy_f32_f32);
|
||||
|
@ -408,6 +422,20 @@ void ggml_metal_graph_compute(
|
|||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_GELU:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
encoder = [command_buffer computeCommandEncoder];
|
||||
}
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_gelu];
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
case GGML_OP_SOFT_MAX:
|
||||
{
|
||||
if (encoder == nil) {
|
||||
|
@ -514,10 +542,41 @@ void ggml_metal_graph_compute(
|
|||
GGML_ASSERT(ne12 == 1);
|
||||
|
||||
nth0 = 8;
|
||||
nth1 = 4;
|
||||
nth1 = 8;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_0_f32];
|
||||
} break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
case GGML_TYPE_Q2_K:
|
||||
{
|
||||
GGML_ASSERT(ne02 == 1);
|
||||
GGML_ASSERT(ne12 == 1);
|
||||
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q2_k_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q4_K:
|
||||
{
|
||||
GGML_ASSERT(ne02 == 1);
|
||||
GGML_ASSERT(ne12 == 1);
|
||||
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q4_k_f32];
|
||||
} break;
|
||||
case GGML_TYPE_Q6_K:
|
||||
{
|
||||
GGML_ASSERT(ne02 == 1);
|
||||
GGML_ASSERT(ne12 == 1);
|
||||
|
||||
nth0 = 4;
|
||||
nth1 = 16;
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_q6_k_f32];
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
fprintf(stderr, "Asserting on type %d\n",(int)src0t);
|
||||
GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
|
@ -540,6 +599,15 @@ void ggml_metal_graph_compute(
|
|||
if (src0t == GGML_TYPE_Q4_0) {
|
||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else if (src0t == GGML_TYPE_Q2_K) {
|
||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, 1, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else if (src0t == GGML_TYPE_Q4_K) {
|
||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else if (src0t == GGML_TYPE_Q6_K) {
|
||||
[encoder setThreadgroupMemoryLength:nth0*nth1*sizeof(float) atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, 1) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
[encoder setThreadgroupMemoryLength:nth0*sizeof(float) atIndex:0];
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
|
@ -555,6 +623,9 @@ void ggml_metal_graph_compute(
|
|||
switch (src0->type) {
|
||||
case GGML_TYPE_F16: [encoder setComputePipelineState:ctx->pipeline_get_rows_f16]; break;
|
||||
case GGML_TYPE_Q4_0: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_0]; break;
|
||||
case GGML_TYPE_Q2_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q2_k]; break;
|
||||
case GGML_TYPE_Q4_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q4_k]; break;
|
||||
case GGML_TYPE_Q6_K: [encoder setComputePipelineState:ctx->pipeline_get_rows_q6_k]; break;
|
||||
default: GGML_ASSERT(false && "not implemented");
|
||||
}
|
||||
|
||||
|
|
549
ggml-metal.metal
549
ggml-metal.metal
|
@ -81,6 +81,17 @@ kernel void kernel_relu(
|
|||
dst[tpig] = max(0.0f, src0[tpig]);
|
||||
}
|
||||
|
||||
constant float GELU_COEF_A = 0.044715f;
|
||||
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
|
||||
kernel void kernel_gelu(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
float x = src0[tpig];
|
||||
dst[tpig] = 0.5f*x*(1.0f + tanhf(SQRT_2_OVER_PI*x*(1.0f + GELU_COEF_A*x*x)));
|
||||
}
|
||||
|
||||
kernel void kernel_soft_max(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
|
@ -267,6 +278,8 @@ kernel void kernel_mul_mat_q4_0_f32(
|
|||
uint2 tptg[[threads_per_threadgroup]]) {
|
||||
const int nb = ne00/QK4_0;
|
||||
|
||||
const int8_t m8 = 8;
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t r1 = tgpig.y;
|
||||
|
||||
|
@ -276,45 +289,65 @@ kernel void kernel_mul_mat_q4_0_f32(
|
|||
const uint nth = tptg.x*tptg.y;
|
||||
const uint ith = tptg.y*tpitg.x + tpitg.y;
|
||||
|
||||
sum[ith] = 0.0f;
|
||||
const int ix = tpitg.y/4; // 0 or 1
|
||||
const int iy = tpitg.y - 4*ix; // 0...3
|
||||
|
||||
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
||||
device const uchar4 * x0p = (device const uchar4 *) (x + i)->qs;
|
||||
device const float4 * y0p = (device const float4 *) (y + i*QK4_0);
|
||||
const int first = 4 * iy;
|
||||
|
||||
const float d = (float)((x + i)->d);
|
||||
float sumf = 0;
|
||||
|
||||
const uchar4 x0v = *(x0p + tpitg.y);
|
||||
const float4 y0v = *(y0p + tpitg.y + 0);
|
||||
const float4 y1v = *(y0p + tpitg.y + 4);
|
||||
for (int i = 2*tpitg.x + ix; i < nb; i += 2*tptg.x) {
|
||||
|
||||
float acc = 0.0f;
|
||||
const float d = (float)x[i].d;
|
||||
|
||||
device const uint8_t * xl = x[i].qs + first;
|
||||
device const float * yl = y + i * QK4_0 + first;
|
||||
|
||||
float2 acc = {0.0f, 0.0f};
|
||||
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
const int x0 = x0v[j] & 0x0F;
|
||||
const int x1 = x0v[j] >> 4;
|
||||
|
||||
const float y0 = y0v[j];
|
||||
const float y1 = y1v[j];
|
||||
acc[0] += yl[j+ 0] * ((int8_t)(xl[j] & 0xF) - m8);
|
||||
acc[1] += yl[j+16] * ((int8_t)(xl[j] >> 4) - m8);
|
||||
|
||||
acc += (x0 - 8)*y0 + (x1 - 8)*y1;
|
||||
}
|
||||
|
||||
sum[ith] += acc*d;
|
||||
sumf += d * (acc[0] + acc[1]);
|
||||
}
|
||||
|
||||
// accumulate the sum from all threads in the threadgroup
|
||||
sum[ith] = sumf;
|
||||
|
||||
//
|
||||
// Accumulate the sum from all threads in the threadgroup
|
||||
// This version is slightly faster than the commented out one below,
|
||||
// which I copy-pasted from ggerganov's q4_0 dot product for metal.
|
||||
//
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
for (uint i = nth/2; i > 0; i /= 2) {
|
||||
if (ith < i) {
|
||||
sum[ith] += sum[ith + i];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith%4 == 0) {
|
||||
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
||||
}
|
||||
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith%16 == 0) {
|
||||
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith == 0) {
|
||||
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
||||
dst[r1*ne0 + r0] = sum[0];
|
||||
}
|
||||
|
||||
//// accumulate the sum from all threads in the threadgroup
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
//for (uint i = nth/2; i > 0; i /= 2) {
|
||||
// if (ith < i) {
|
||||
// sum[ith] += sum[ith + i];
|
||||
// }
|
||||
// threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
//}
|
||||
|
||||
//if (ith == 0) {
|
||||
// dst[r1*ne0 + r0] = sum[0];
|
||||
//}
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mat_f16_f32(
|
||||
|
@ -338,6 +371,7 @@ kernel void kernel_mul_mat_f16_f32(
|
|||
uint3 tpig[[thread_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 tptg[[threads_per_threadgroup]]) {
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t r1 = tgpig.y;
|
||||
const int64_t im = tgpig.z;
|
||||
|
@ -503,3 +537,474 @@ kernel void kernel_cpy_f32_f32(
|
|||
dst_data[i00] = src[0];
|
||||
}
|
||||
}
|
||||
|
||||
//============================================ k-quants ======================================================
|
||||
|
||||
#define QK_K 256
|
||||
|
||||
typedef struct {
|
||||
uint8_t scales[QK_K/16]; // scales and mins, quantized with 4 bits
|
||||
uint8_t qs[QK_K/4]; // quants
|
||||
half d; // super-block scale for quantized scales
|
||||
half dmin; // super-block scale for quantized mins
|
||||
} block_q2_k;
|
||||
|
||||
typedef struct {
|
||||
half d; // super-block scale for quantized scales
|
||||
half dmin; // super-block scale for quantized mins
|
||||
uint8_t scales[3*QK_K/64]; // scales and mins, quantized with 6 bits
|
||||
uint8_t qs[QK_K/2]; // 4--bit quants
|
||||
} block_q4_k;
|
||||
|
||||
typedef struct {
|
||||
uint8_t ql[QK_K/2]; // quants, lower 4 bits
|
||||
uint8_t qh[QK_K/4]; // quants, upper 2 bits
|
||||
int8_t scales[QK_K/16]; // scales, quantized with 8 bits
|
||||
half d; // super-block scale
|
||||
} block_q6_k;
|
||||
|
||||
static inline uchar4 get_scale_min_k4(int j, device const uint8_t * q) {
|
||||
uchar4 r;
|
||||
if (j < 4) {
|
||||
r[0] = q[j+0] & 63; r[1] = q[j+4] & 63;
|
||||
r[2] = q[j+1] & 63; r[3] = q[j+5] & 63;
|
||||
} else {
|
||||
r[0] = (q[j+4] & 0xF) | ((q[j-4] >> 6) << 4);
|
||||
r[1] = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
|
||||
r[2] = (q[j+5] & 0xF) | ((q[j-3] >> 6) << 4);
|
||||
r[3] = (q[j+5] >> 4) | ((q[j+1] >> 6) << 4);
|
||||
}
|
||||
return r;
|
||||
}
|
||||
|
||||
//========================================== dequantization =============================
|
||||
|
||||
static void dequantize_row_q2_k(device const block_q2_k * x, device float * y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
const int nb = k / QK_K;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const float d = x[i].d;
|
||||
const float min = x[i].dmin;
|
||||
|
||||
device const uint8_t * q = x[i].qs;
|
||||
|
||||
int is = 0;
|
||||
float dl, ml;
|
||||
for (int n = 0; n < QK_K; n += 128) {
|
||||
int shift = 0;
|
||||
for (int j = 0; j < 4; ++j) {
|
||||
|
||||
uint8_t sc = x[i].scales[is++];
|
||||
dl = d * (sc & 0xF); ml = min * (sc >> 4);
|
||||
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l] >> shift) & 3)) - ml;
|
||||
|
||||
sc = x[i].scales[is++];
|
||||
dl = d * (sc & 0xF); ml = min * (sc >> 4);
|
||||
for (int l = 0; l < 16; ++l) *y++ = dl * ((int8_t)((q[l+16] >> shift) & 3)) - ml;
|
||||
|
||||
shift += 2;
|
||||
}
|
||||
q += 32;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
static void dequantize_row_q4_k(device const block_q4_k * x, device float * y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
const int nb = k / QK_K;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
const float d = x[i].d;
|
||||
const float min = x[i].dmin;
|
||||
|
||||
device const uint8_t * q = x[i].qs;
|
||||
device const uint8_t * scales = x[i].scales;
|
||||
|
||||
int is = 0;
|
||||
for (int j = 0; j < QK_K; j += 64) {
|
||||
const uchar4 sc = get_scale_min_k4(is, scales);
|
||||
const float d1 = d * sc[0]; const float m1 = min * sc[1];
|
||||
const float d2 = d * sc[2]; const float m2 = min * sc[3];
|
||||
for (int l = 0; l < 32; ++l) *y++ = d1 * (q[l] & 0xF) - m1;
|
||||
for (int l = 0; l < 32; ++l) *y++ = d2 * (q[l] >> 4) - m2;
|
||||
q += 32; is += 2;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
static void dequantize_row_q6_k(device const block_q6_k * x, device float * y, int k) {
|
||||
assert(k % QK_K == 0);
|
||||
const int nb = k / QK_K;
|
||||
|
||||
for (int i = 0; i < nb; i++) {
|
||||
|
||||
device const uint8_t * ql = x[i].ql;
|
||||
device const uint8_t * qh = x[i].qh;
|
||||
device const int8_t * sc = x[i].scales;
|
||||
|
||||
const float d = x[i].d;
|
||||
|
||||
for (int n = 0; n < QK_K; n += 128) {
|
||||
for (int l = 0; l < 32; ++l) {
|
||||
int is = l/16;
|
||||
const int8_t q1 = (int8_t)((ql[l + 0] & 0xF) | (((qh[l] >> 0) & 3) << 4)) - 32;
|
||||
const int8_t q2 = (int8_t)((ql[l + 32] & 0xF) | (((qh[l] >> 2) & 3) << 4)) - 32;
|
||||
const int8_t q3 = (int8_t)((ql[l + 0] >> 4) | (((qh[l] >> 4) & 3) << 4)) - 32;
|
||||
const int8_t q4 = (int8_t)((ql[l + 32] >> 4) | (((qh[l] >> 6) & 3) << 4)) - 32;
|
||||
y[l + 0] = d * sc[is + 0] * q1;
|
||||
y[l + 32] = d * sc[is + 2] * q2;
|
||||
y[l + 64] = d * sc[is + 4] * q3;
|
||||
y[l + 96] = d * sc[is + 6] * q4;
|
||||
}
|
||||
y += 128;
|
||||
ql += 64;
|
||||
qh += 32;
|
||||
sc += 8;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_get_rows_q2_k(
|
||||
device const void * src0,
|
||||
device const int * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb1,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
const int i = tpig;
|
||||
const int r = ((device int32_t *) src1)[i];
|
||||
|
||||
dequantize_row_q2_k(
|
||||
(device const block_q2_k *) ((device char *) src0 + r*nb01),
|
||||
(device float *) ((device char *) dst + i*nb1), ne00);
|
||||
}
|
||||
|
||||
kernel void kernel_get_rows_q4_k(
|
||||
device const void * src0,
|
||||
device const int * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb1,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
const int i = tpig;
|
||||
const int r = ((device int32_t *) src1)[i];
|
||||
|
||||
dequantize_row_q4_k(
|
||||
(device const block_q4_k *) ((device char *) src0 + r*nb01),
|
||||
(device float *) ((device char *) dst + i*nb1), ne00);
|
||||
}
|
||||
|
||||
kernel void kernel_get_rows_q6_k(
|
||||
device const void * src0,
|
||||
device const int * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb1,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
const int i = tpig;
|
||||
const int r = ((device int32_t *) src1)[i];
|
||||
|
||||
dequantize_row_q6_k(
|
||||
(device const block_q6_k *) ((device char *) src0 + r*nb01),
|
||||
(device float *) ((device char *) dst + i*nb1), ne00);
|
||||
}
|
||||
|
||||
//====================================== dot products =========================
|
||||
|
||||
kernel void kernel_mul_mat_q2_k_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
threadgroup float * sum [[threadgroup(0)]],
|
||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
|
||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
||||
uint2 tptg[[threads_per_threadgroup]]) {
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t r1 = tgpig.y;
|
||||
|
||||
device const block_q2_k * x = (device const block_q2_k *) src0 + r0*nb;
|
||||
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||
|
||||
const int nth = tptg.x*tptg.y;
|
||||
const int ith = tptg.y*tpitg.x + tpitg.y;
|
||||
|
||||
|
||||
const int tid = tpitg.y; // 0...16
|
||||
const int il = tid/4; // 0...3
|
||||
const int ir = tid%4; // 0...3
|
||||
const int ip = il/2; // 0 or 1
|
||||
const int shift1 = 4*(il%2);// 0 or 4
|
||||
const int shift2 = shift1+2;// 2 or 6
|
||||
const int n = 8;
|
||||
const int is = 4*il + (n*ir)/16;
|
||||
|
||||
sum[ith] = 0.0f;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
||||
|
||||
device const uint8_t * q = x[i].qs + 32*ip + n*ir;
|
||||
device const uint8_t * scales = x[i].scales + is;
|
||||
|
||||
uint8_t d1 = scales[0] & 0xF;
|
||||
uint8_t m1 = scales[0] >> 4;
|
||||
uint8_t d2 = scales[2] & 0xF;
|
||||
uint8_t m2 = scales[2] >> 4;
|
||||
|
||||
device const float * y = yy + i*QK_K + 64*il + n*ir;
|
||||
|
||||
const float dall = (float)x[i].d;
|
||||
const float dmin = (float)x[i].dmin;
|
||||
|
||||
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int l = 0; l < n; ++l) {
|
||||
s[0] += y[l+ 0] * ((q[l] >> shift1) & 3); s[1] += y[l+ 0];
|
||||
s[2] += y[l+32] * ((q[l] >> shift2) & 3); s[3] += y[l+32];
|
||||
}
|
||||
sumf += dall * (s[0] * d1 + s[2] * d2) - dmin * (s[1] * m1 + s[3] * m2);
|
||||
|
||||
|
||||
}
|
||||
sum[ith] = sumf;
|
||||
|
||||
//
|
||||
// Accumulate the sum from all threads in the threadgroup
|
||||
// This version is slightly faster than the commented out one below,
|
||||
// which I copy-pasted from ggerganov's q4_0 dot product for metal.
|
||||
//
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith%4 == 0) {
|
||||
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith%16 == 0) {
|
||||
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith == 0) {
|
||||
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
||||
dst[r1*ne0 + r0] = sum[0];
|
||||
}
|
||||
|
||||
//// accumulate the sum from all threads in the threadgroup
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
//for (uint i = nth/2; i > 0; i /= 2) {
|
||||
// if (ith < i) {
|
||||
// sum[ith] += sum[ith + i];
|
||||
// }
|
||||
// threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
//}
|
||||
|
||||
//if (ith == 0) {
|
||||
// dst[r1*ne0 + r0] = sum[0];
|
||||
//}
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mat_q4_k_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
threadgroup float * sum [[threadgroup(0)]],
|
||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
|
||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
||||
uint2 tptg[[threads_per_threadgroup]]) {
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t r1 = tgpig.y;
|
||||
|
||||
device const block_q4_k * x = (device const block_q4_k *) src0 + r0*nb;
|
||||
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||
|
||||
const uint nth = tptg.x*tptg.y;
|
||||
const uint ith = tptg.y*tpitg.x + tpitg.y;
|
||||
|
||||
const int tid = tpitg.y; // 0...16
|
||||
const int il = tid/4; // 0...3
|
||||
const int ir = tid%4; // 0...3
|
||||
const int n = 8;
|
||||
const int is = 2*il;
|
||||
|
||||
sum[ith] = 0.0f;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
||||
|
||||
device const uint8_t * q = (x + i)->qs + 32*il + n*ir;
|
||||
device const float * y = yy + i*QK_K + 64*il + n*ir;
|
||||
device const uint8_t * scales = (x + i)->scales;
|
||||
|
||||
const float dall = (float)((x + i)->d);
|
||||
const float dmin = (float)((x + i)->dmin);
|
||||
|
||||
const uchar4 sc = get_scale_min_k4(is, scales);
|
||||
|
||||
float4 s = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int l = 0; l < n; ++l) {
|
||||
s[0] += y[l+ 0] * (q[l] & 0xF); s[1] += y[l+ 0];
|
||||
s[2] += y[l+32] * (q[l] >> 4); s[3] += y[l+32];
|
||||
}
|
||||
sumf += dall * (s[0] * sc[0] + s[2] * sc[2]) - dmin * (s[1] * sc[1] + s[3] * sc[3]);
|
||||
|
||||
}
|
||||
sum[ith] = sumf;
|
||||
|
||||
//
|
||||
// Accumulate the sum from all threads in the threadgroup
|
||||
// This version is slightly faster than the commented out one below,
|
||||
// which I copy-pasted from ggerganov's q4_0 dot product for metal.
|
||||
//
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith%4 == 0) {
|
||||
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith%16 == 0) {
|
||||
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith == 0) {
|
||||
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
||||
dst[r1*ne0 + r0] = sum[0];
|
||||
}
|
||||
|
||||
//// accumulate the sum from all threads in the threadgroup
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
//for (uint i = nth/2; i > 0; i /= 2) {
|
||||
// if (ith < i) {
|
||||
// sum[ith] += sum[ith + i];
|
||||
// }
|
||||
// threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
//}
|
||||
|
||||
//if (ith == 0) {
|
||||
// dst[r1*ne0 + r0] = sum[0];
|
||||
//}
|
||||
}
|
||||
|
||||
kernel void kernel_mul_mat_q6_k_f32(
|
||||
device const void * src0,
|
||||
device const float * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
threadgroup float * sum [[threadgroup(0)]],
|
||||
uint2 tgpig[[threadgroup_position_in_grid]],
|
||||
uint2 tpig[[thread_position_in_grid]], // we don't use this for now
|
||||
uint2 tpitg[[thread_position_in_threadgroup]],
|
||||
uint2 tptg[[threads_per_threadgroup]]) {
|
||||
|
||||
const uint8_t kmask1 = 0x03;
|
||||
const uint8_t kmask2 = 0x0C;
|
||||
const uint8_t kmask3 = 0x30;
|
||||
const uint8_t kmask4 = 0xC0;
|
||||
|
||||
const int nb = ne00/QK_K;
|
||||
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t r1 = tgpig.y;
|
||||
|
||||
device const block_q6_k * x = (device const block_q6_k *) src0 + r0*nb;
|
||||
device const float * yy = (device const float *) src1 + r1*ne10;
|
||||
|
||||
const uint nth = tptg.x*tptg.y;
|
||||
const uint ith = tptg.y*tpitg.x + tpitg.y;
|
||||
|
||||
const int step = QK_K / tptg.y; // we expect this to be 16
|
||||
const int iqs = step * tpitg.y; // 0...240 in steps of 16
|
||||
const int ip = iqs / 128; // 0 or 1
|
||||
const int il = (iqs - 128*ip)/16; // 0...7
|
||||
const int n = 4;
|
||||
const int is = 8*ip + (n*il)/16;
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tpitg.x; i < nb; i += tptg.x) {
|
||||
|
||||
device const uint8_t * ql = x[i].ql + 64*ip + n*il;
|
||||
device const uint8_t * qh = x[i].qh + 32*ip + n*il;
|
||||
device const int8_t * sc = x[i].scales + is;
|
||||
|
||||
device const float * y = yy + i * QK_K + 128*ip + n*il;
|
||||
|
||||
const float dall = x[i].d;
|
||||
|
||||
float4 sums = {0.f, 0.f, 0.f, 0.f};
|
||||
for (int l = 0; l < n; ++l) {
|
||||
sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
|
||||
sums[1] += y[l+32] * ((int8_t)((ql[l+32] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
|
||||
sums[2] += y[l+64] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) << 0)) - 32);
|
||||
sums[3] += y[l+96] * ((int8_t)((ql[l+32] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
|
||||
}
|
||||
|
||||
sumf += dall * (sums[0] * sc[0] + sums[1] * sc[2] + sums[2] * sc[4] + sums[3] * sc[6]);
|
||||
|
||||
}
|
||||
|
||||
sum[ith] = sumf;
|
||||
|
||||
//
|
||||
// Accumulate the sum from all threads in the threadgroup
|
||||
//
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith%4 == 0) {
|
||||
for (int i = 1; i < 4; ++i) sum[ith] += sum[ith + i];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith%16 == 0) {
|
||||
for (int i = 4; i < 16; i += 4) sum[ith] += sum[ith + i];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
if (ith == 0) {
|
||||
for (int i = 16; i < nth; i += 16) sum[0] += sum[i];
|
||||
dst[r1*ne0 + r0] = sum[0];
|
||||
}
|
||||
|
||||
}
|
||||
|
|
22
ggml.c
22
ggml.c
|
@ -14729,12 +14729,12 @@ static void ggml_graph_export_leaf(const struct ggml_tensor * tensor, FILE * fou
|
|||
const int64_t * ne = tensor->ne;
|
||||
const size_t * nb = tensor->nb;
|
||||
|
||||
fprintf(fout, "%-6s %-12s %8d %8d %d %d %d %16zu %16zu %16zu %16zu %16p %32s\n",
|
||||
fprintf(fout, "%-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %16p %32s\n",
|
||||
ggml_type_name(tensor->type),
|
||||
ggml_op_name (tensor->op),
|
||||
tensor->n_dims,
|
||||
(int) ne[0], (int) ne[1], (int) ne[2], (int) ne[3],
|
||||
nb[0], nb[1], nb[2], nb[3],
|
||||
ne[0], ne[1], ne[2], ne[3],
|
||||
nb[0], nb[1], nb[2], nb[3],
|
||||
tensor->data,
|
||||
tensor->name);
|
||||
}
|
||||
|
@ -14743,13 +14743,13 @@ static void ggml_graph_export_node(const struct ggml_tensor * tensor, const char
|
|||
const int64_t * ne = tensor->ne;
|
||||
const size_t * nb = tensor->nb;
|
||||
|
||||
fprintf(fout, "%-6s %-6s %-12s %8d %d %d %d %d %16zu %16zu %16zu %16zu %8d %16p %32s\n",
|
||||
fprintf(fout, "%-6s %-6s %-12s %8d %" PRId64 " %" PRId64 " %" PRId64 " %" PRId64 " %16zu %16zu %16zu %16zu %8d %16p %32s\n",
|
||||
arg,
|
||||
ggml_type_name(tensor->type),
|
||||
ggml_op_name (tensor->op),
|
||||
tensor->n_dims,
|
||||
(int) ne[0], (int) ne[1], (int) ne[2], (int) ne[3],
|
||||
nb[0], nb[1], nb[2], nb[3],
|
||||
ne[0], ne[1], ne[2], ne[3],
|
||||
nb[0], nb[1], nb[2], nb[3],
|
||||
tensor->n_tasks,
|
||||
tensor->data,
|
||||
tensor->name);
|
||||
|
@ -14772,11 +14772,11 @@ void ggml_graph_export(const struct ggml_cgraph * cgraph, const char * fname) {
|
|||
FILE * fout = stdout;
|
||||
|
||||
fprintf(fout, "\n");
|
||||
fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
|
||||
fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
|
||||
fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
|
||||
fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
|
||||
fprintf(fout, "%-16s %8d\n", "eval", (int) size_eval);
|
||||
fprintf(fout, "%-16s %8x\n", "magic", GGML_FILE_MAGIC);
|
||||
fprintf(fout, "%-16s %8d\n", "version", GGML_FILE_VERSION);
|
||||
fprintf(fout, "%-16s %8d\n", "leafs", cgraph->n_leafs);
|
||||
fprintf(fout, "%-16s %8d\n", "nodes", cgraph->n_nodes);
|
||||
fprintf(fout, "%-16s %" PRIu64 "\n", "eval", size_eval);
|
||||
|
||||
// header
|
||||
fprintf(fout, "\n");
|
||||
|
|
|
@ -1028,6 +1028,14 @@ static void llama_model_load_internal(
|
|||
}
|
||||
}
|
||||
|
||||
#if defined(GGML_USE_CLBLAST)
|
||||
if (file_version == LLAMA_FILE_VERSION_GGJT_V3) {
|
||||
if (hparams.ftype >= LLAMA_FTYPE_MOSTLY_Q2_K && hparams.ftype <= LLAMA_FTYPE_MOSTLY_Q6_K) {
|
||||
printf("\n===\nK-Quants are currently not supported with CLBlast!!!\nPlease select a q4_0, q4_0, q5_0 or q5_1 format instead!\n=====\n");
|
||||
}
|
||||
}
|
||||
#endif
|
||||
|
||||
if (vocab_only) {
|
||||
return;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue