Tensor parallelism

This commit is contained in:
JohannesGaessler 2023-05-24 14:29:21 +02:00
parent 971920e935
commit 4f9640b8fe
10 changed files with 598 additions and 411 deletions

View file

@ -9,6 +9,7 @@
#include <algorithm> #include <algorithm>
#include <sstream> #include <sstream>
#include <unordered_set> #include <unordered_set>
#include <regex>
#if defined(__APPLE__) && defined(__MACH__) #if defined(__APPLE__) && defined(__MACH__)
#include <sys/types.h> #include <sys/types.h>
@ -295,6 +296,30 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif #endif
} else if (arg == "--tensor-split" || arg == "-ts") {
if (++i >= argc) {
invalid_param = true;
break;
}
#ifdef GGML_USE_CUBLAS
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
if (i < split_arg.size()) {
params.tensor_split[i] = std::stof(split_arg[i]);
} else {
params.tensor_split[i] = 0.0f;
}
}
#else
fprintf(stderr, "WARNING: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
#endif // GGML_USE_CUBLAS
} else if (arg == "--no-mmap") { } else if (arg == "--no-mmap") {
params.use_mmap = false; params.use_mmap = false;
} else if (arg == "--mtest") { } else if (arg == "--mtest") {
@ -438,6 +463,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, " -ngl N, --n-gpu-layers N\n"); fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
fprintf(stderr, " number of layers to store in VRAM\n"); fprintf(stderr, " number of layers to store in VRAM\n");
fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n");
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
#endif #endif
fprintf(stderr, " --mtest compute maximum memory usage\n"); fprintf(stderr, " --mtest compute maximum memory usage\n");
fprintf(stderr, " --export export the computation graph to 'llama.ggml'\n"); fprintf(stderr, " --export export the computation graph to 'llama.ggml'\n");
@ -484,6 +511,7 @@ struct llama_context * llama_init_from_gpt_params(const gpt_params & params) {
lparams.n_ctx = params.n_ctx; lparams.n_ctx = params.n_ctx;
lparams.n_gpu_layers = params.n_gpu_layers; lparams.n_gpu_layers = params.n_gpu_layers;
memcpy(lparams.tensor_split, params.tensor_split, LLAMA_MAX_DEVICES*sizeof(float));
lparams.seed = params.seed; lparams.seed = params.seed;
lparams.f16_kv = params.memory_f16; lparams.f16_kv = params.memory_f16;
lparams.use_mmap = params.use_mmap; lparams.use_mmap = params.use_mmap;

View file

@ -21,13 +21,14 @@
int32_t get_num_physical_cores(); int32_t get_num_physical_cores();
struct gpt_params { struct gpt_params {
int32_t seed = -1; // RNG seed int32_t seed = -1; // RNG seed
int32_t n_threads = get_num_physical_cores(); int32_t n_threads = get_num_physical_cores();
int32_t n_predict = -1; // new tokens to predict int32_t n_predict = -1; // new tokens to predict
int32_t n_ctx = 512; // context size int32_t n_ctx = 512; // context size
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS) int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
int32_t n_keep = 0; // number of tokens to keep from initial prompt int32_t n_keep = 0; // number of tokens to keep from initial prompt
int32_t n_gpu_layers = 0; // number of layers to store in VRAM int32_t n_gpu_layers = 0; // number of layers to store in VRAM
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
// sampling parameters // sampling parameters
std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens std::unordered_map<llama_token, float> logit_bias; // logit bias for specific tokens

View file

@ -401,6 +401,8 @@ void server_print_usage(int /*argc*/, char **argv, const gpt_params &params)
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD #ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
fprintf(stderr, " -ngl N, --n-gpu-layers N\n"); fprintf(stderr, " -ngl N, --n-gpu-layers N\n");
fprintf(stderr, " number of layers to store in VRAM\n"); fprintf(stderr, " number of layers to store in VRAM\n");
fprintf(stderr, " -ts SPLIT --tensor-split SPLIT\n");
fprintf(stderr, " how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
#endif #endif
fprintf(stderr, " -m FNAME, --model FNAME\n"); fprintf(stderr, " -m FNAME, --model FNAME\n");
fprintf(stderr, " model path (default: %s)\n", params.model.c_str()); fprintf(stderr, " model path (default: %s)\n", params.model.c_str());
@ -503,6 +505,37 @@ bool server_params_parse(int argc, char **argv, server_params &sparams, gpt_para
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n"); fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n"); fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
#endif #endif
}
else if (arg == "--tensor-split" || arg == "-ts")
{
if (++i >= argc)
{
invalid_param = true;
break;
}
#ifdef GGML_USE_CUBLAS
std::string arg_next = argv[i];
// split string by , and /
const std::regex regex{R"([,/]+)"};
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
std::vector<std::string> split_arg{it, {}};
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i)
{
if (i < split_arg.size())
{
params.tensor_split[i] = std::stof(split_arg[i]);
}
else
{
params.tensor_split[i] = 0.0f;
}
}
#else
fprintf(stderr, "WARNING: llama.cpp was compiled without cuBLAS. It is not possible to set a tensor split.\n");
#endif // GGML_USE_CUBLAS
} }
else else
{ {

File diff suppressed because it is too large Load diff

View file

@ -1,10 +1,21 @@
#pragma once
#include "ggml.h" #include "ggml.h"
#ifdef __cplusplus #ifdef __cplusplus
extern "C" { extern "C" {
#endif #endif
#define GGML_CUDA_MAX_DEVICES 16
struct ggml_tensor_extra_gpu {
int layer; // which layer the tensor is on
int i_device; // which device the data is on
void * data_device[GGML_CUDA_MAX_DEVICES]; // 1 pointer for each device for split tensors
};
void ggml_init_cublas(void); void ggml_init_cublas(void);
void ggml_cuda_set_tensor_split(float * tensor_split);
void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); void ggml_cuda_mul(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst); bool ggml_cuda_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tensor * src1, struct ggml_tensor * dst);
@ -15,7 +26,8 @@ void ggml_cuda_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
void * ggml_cuda_host_malloc(size_t size); void * ggml_cuda_host_malloc(size_t size);
void ggml_cuda_host_free(void * ptr); void ggml_cuda_host_free(void * ptr);
void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset); void ggml_cuda_load_data(const char * fname, struct ggml_tensor * tensors, size_t offset, int n_layer);
void ggml_cuda_free_data(struct ggml_tensor * tensor);
bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor); bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_tensor * tensor);
#ifdef __cplusplus #ifdef __cplusplus

View file

@ -676,7 +676,7 @@ static cl_int ggml_cl_h2d_tensor_2d(cl_command_queue queue, cl_mem dst, size_t o
} }
static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) { static void ggml_cl_mul_f32(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
GGML_ASSERT(src1->backend == GGML_BACKEND_CL); GGML_ASSERT(src1->backend == GGML_BACKEND_GPU);
const int64_t ne00 = src0->ne[0]; const int64_t ne00 = src0->ne[0];
const int64_t ne01 = src0->ne[1]; const int64_t ne01 = src0->ne[1];
const int64_t ne02 = src0->ne[2]; const int64_t ne02 = src0->ne[2];
@ -789,7 +789,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
size_t y_size; size_t y_size;
size_t d_size; size_t d_size;
cl_mem d_X; cl_mem d_X;
if (src0->backend == GGML_BACKEND_CL) { if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
d_X = (cl_mem) src0->data; d_X = (cl_mem) src0->data;
} else { } else {
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY); d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
@ -800,7 +800,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
// copy data to device // copy data to device
if (src0->backend != GGML_BACKEND_CL) { if (src0->backend != GGML_BACKEND_GPU) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
} }
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
@ -829,7 +829,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
} }
} }
if (src0->backend != GGML_BACKEND_CL) { if (src0->backend != GGML_BACKEND_GPU) {
ggml_cl_pool_free(d_X, x_size); ggml_cl_pool_free(d_X, x_size);
} }
ggml_cl_pool_free(d_Y, y_size); ggml_cl_pool_free(d_Y, y_size);
@ -865,7 +865,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
size_t y_size; size_t y_size;
size_t d_size; size_t d_size;
cl_mem d_X; cl_mem d_X;
if (src0->backend == GGML_BACKEND_CL) { if (src0->backend == GGML_BACKEND_GPU) { // NOLINT
d_X = (cl_mem) src0->data; d_X = (cl_mem) src0->data;
} else { } else {
d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY); d_X = ggml_cl_pool_malloc(sizeof(ggml_fp16_t) * x_ne, &x_size, CL_MEM_READ_ONLY);
@ -879,7 +879,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
for (int64_t i03 = 0; i03 < ne03; i03++) { for (int64_t i03 = 0; i03 < ne03; i03++) {
for (int64_t i02 = 0; i02 < ne02; i02++) { for (int64_t i02 = 0; i02 < ne02; i02++) {
// copy src0 to device // copy src0 to device
if (src0->backend != GGML_BACKEND_CL) { if (src0->backend != GGML_BACKEND_GPU) {
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
} }
@ -936,7 +936,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
} }
} }
if (src0->backend != GGML_BACKEND_CL) { if (src0->backend != GGML_BACKEND_GPU) {
ggml_cl_pool_free(d_X, x_size); ggml_cl_pool_free(d_X, x_size);
} }
ggml_cl_pool_free(d_Y, y_size); ggml_cl_pool_free(d_Y, y_size);
@ -992,7 +992,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
if (src0->backend == GGML_BACKEND_CPU) { if (src0->backend == GGML_BACKEND_CPU) {
events.emplace_back(); events.emplace_back();
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++)); CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
} else if (src0->backend == GGML_BACKEND_CL) { } else if (src0->backend == GGML_BACKEND_GPU) {
d_Q = (cl_mem) src0->data; d_Q = (cl_mem) src0->data;
} else { } else {
GGML_ASSERT(false); GGML_ASSERT(false);
@ -1077,7 +1077,7 @@ bool ggml_cl_can_mul_mat(const struct ggml_tensor * src0, const struct ggml_tens
if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) && if ((src0->type == GGML_TYPE_F32 || src0->type == GGML_TYPE_F16 || ggml_is_quantized(src0->type)) &&
src1->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 &&
dst->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32 &&
((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_CL)) { ((ne0 >= 32 && ne1 >= 32 && ne10 >= 32) || src0->backend == GGML_BACKEND_GPU)) {
return true; return true;
} }
@ -1156,7 +1156,7 @@ void ggml_cl_transform_tensor(ggml_tensor * tensor) {
CL_CHECK(clFinish(queue)); CL_CHECK(clFinish(queue));
tensor->data = dst; tensor->data = dst;
tensor->backend = GGML_BACKEND_CL; tensor->backend = GGML_BACKEND_GPU;
} }
void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) { void ggml_cl_load_data(const char * fname, struct ggml_tensor * tensor, const size_t offset) {

14
ggml.c
View file

@ -3722,6 +3722,12 @@ size_t ggml_nbytes(const struct ggml_tensor * tensor) {
return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]); return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
} }
size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
return (nrows_split*tensor->ne[0]*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type];
}
int ggml_blck_size(enum ggml_type type) { int ggml_blck_size(enum ggml_type type) {
return GGML_BLCK_SIZE[type]; return GGML_BLCK_SIZE[type];
} }
@ -4144,6 +4150,7 @@ struct ggml_tensor * ggml_new_tensor_impl(
/*.perf_time_us =*/ 0, /*.perf_time_us =*/ 0,
/*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data, /*.data =*/ (data == NULL && !ctx->no_alloc) ? (void *)(result + 1) : data,
/*.name =*/ { 0 }, /*.name =*/ { 0 },
/*.extra =*/ NULL,
/*.pad =*/ { 0 }, /*.pad =*/ { 0 },
}; };
@ -8147,7 +8154,7 @@ static void ggml_compute_forward_mul_f32(
const int nth = params->nth; const int nth = params->nth;
#ifdef GGML_USE_CLBLAST #ifdef GGML_USE_CLBLAST
if (src1->backend == GGML_BACKEND_CL) { if (src1->backend == GGML_BACKEND_GPU) {
if (ith == 0) { if (ith == 0) {
ggml_cl_mul(src0, src1, dst); ggml_cl_mul(src0, src1, dst);
} }
@ -12884,8 +12891,8 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
GGML_ASSERT(params); GGML_ASSERT(params);
#ifdef GGML_USE_CUBLAS #ifdef GGML_USE_CUBLAS
bool used_cuda = ggml_cuda_compute_forward(params, tensor); bool skip_cpu = ggml_cuda_compute_forward(params, tensor);
if (used_cuda) { if (skip_cpu) {
return; return;
} }
#endif // GGML_USE_CUBLAS #endif // GGML_USE_CUBLAS
@ -14196,7 +14203,6 @@ void ggml_graph_compute(struct ggml_context * ctx, struct ggml_cgraph * cgraph)
if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) { if (ggml_cuda_can_mul_mat(node->src0, node->src1, node)) {
node->n_tasks = 1; // TODO: this actually is doing nothing node->n_tasks = 1; // TODO: this actually is doing nothing
// the threads are still spinning // the threads are still spinning
cur = ggml_cuda_mul_mat_get_wsize(node->src0, node->src1, node);
} }
else else
#elif defined(GGML_USE_CLBLAST) #elif defined(GGML_USE_CLBLAST)

16
ggml.h
View file

@ -249,8 +249,8 @@ extern "C" {
enum ggml_backend { enum ggml_backend {
GGML_BACKEND_CPU = 0, GGML_BACKEND_CPU = 0,
GGML_BACKEND_CUDA = 1, GGML_BACKEND_GPU = 10,
GGML_BACKEND_CL = 2, GGML_BACKEND_GPU_SPLIT = 20,
}; };
// model file types // model file types
@ -375,7 +375,9 @@ extern "C" {
char name[GGML_MAX_NAME]; char name[GGML_MAX_NAME];
char padding[16]; void * extra; // extra things e.g. for ggml-cuda.cu
char padding[4];
}; };
static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor); static const size_t GGML_TENSOR_SIZE = sizeof(struct ggml_tensor);
@ -424,6 +426,7 @@ extern "C" {
struct ggml_compute_params { struct ggml_compute_params {
enum ggml_task_type type; enum ggml_task_type type;
// ith = thread index, nth = number of threads
int ith, nth; int ith, nth;
// work buffer for all threads // work buffer for all threads
@ -442,9 +445,10 @@ extern "C" {
GGML_API void ggml_print_object (const struct ggml_object * obj); GGML_API void ggml_print_object (const struct ggml_object * obj);
GGML_API void ggml_print_objects(const struct ggml_context * ctx); GGML_API void ggml_print_objects(const struct ggml_context * ctx);
GGML_API int64_t ggml_nelements(const struct ggml_tensor * tensor); GGML_API int64_t ggml_nelements (const struct ggml_tensor * tensor);
GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor); GGML_API int64_t ggml_nrows (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor); GGML_API size_t ggml_nbytes (const struct ggml_tensor * tensor);
GGML_API size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split);
GGML_API int ggml_blck_size (enum ggml_type type); GGML_API int ggml_blck_size (enum ggml_type type);
GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block GGML_API size_t ggml_type_size (enum ggml_type type); // size in bytes for all elements in a block

View file

@ -199,6 +199,12 @@ struct llama_model {
if (ctx) { if (ctx) {
ggml_free(ctx); ggml_free(ctx);
} }
#ifdef GGML_USE_CUBLAS
for (size_t i = 0; i < tensors_by_name.size(); ++i) {
ggml_cuda_free_data(tensors_by_name[i].second);
}
#endif // GGML_USE_CUBLAS
} }
}; };
@ -665,7 +671,7 @@ struct llama_model_loader {
} }
} }
struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, ggml_backend backend) { struct ggml_tensor * get_tensor(const std::string & name, const std::vector<uint32_t> & ne, int layer, ggml_backend backend) {
auto it = tensors_map.name_to_idx.find(name); auto it = tensors_map.name_to_idx.find(name);
if (it == tensors_map.name_to_idx.end()) { if (it == tensors_map.name_to_idx.end()) {
throw format("llama.cpp: tensor '%s' is missing from model", name.c_str()); throw format("llama.cpp: tensor '%s' is missing from model", name.c_str());
@ -676,10 +682,10 @@ struct llama_model_loader {
name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str()); name.c_str(), llama_format_tensor_shape(ne).c_str(), llama_format_tensor_shape(lt.ne).c_str());
} }
return get_tensor_for(lt, backend); return get_tensor_for(lt, layer, backend);
} }
struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, ggml_backend backend) { struct ggml_tensor * get_tensor_for(llama_load_tensor & lt, int layer, ggml_backend backend) {
struct ggml_tensor * tensor; struct ggml_tensor * tensor;
if (lt.ne.size() == 2) { if (lt.ne.size() == 2) {
tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1)); tensor = ggml_new_tensor_2d(ggml_ctx, lt.type, lt.ne.at(0), lt.ne.at(1));
@ -689,6 +695,17 @@ struct llama_model_loader {
} }
ggml_set_name(tensor, lt.name.c_str()); ggml_set_name(tensor, lt.name.c_str());
LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor LLAMA_ASSERT(lt.ggml_tensor == NULL); // if this fails, we called get_tensor twice on the same tensor
#ifdef GGML_USE_CUBLAS
if (backend == GGML_BACKEND_GPU || backend == GGML_BACKEND_GPU_SPLIT) {
struct ggml_tensor_extra_gpu * extra = new struct ggml_tensor_extra_gpu;
extra->layer = layer;
tensor->extra = extra;
}
#else
(void) layer;
#endif // GGML_USE_CUBLAS
tensor->backend = backend; tensor->backend = backend;
lt.ggml_tensor = tensor; lt.ggml_tensor = tensor;
num_ggml_tensors_created++; num_ggml_tensors_created++;
@ -842,6 +859,7 @@ struct llama_context_params llama_context_default_params() {
struct llama_context_params result = { struct llama_context_params result = {
/*.n_ctx =*/ 512, /*.n_ctx =*/ 512,
/*.gpu_layers =*/ 0, /*.gpu_layers =*/ 0,
/*.tensor_split =*/ {0},
/*.seed =*/ -1, /*.seed =*/ -1,
/*.f16_kv =*/ true, /*.f16_kv =*/ true,
/*.logits_all =*/ false, /*.logits_all =*/ false,
@ -926,6 +944,7 @@ static void llama_model_load_internal(
llama_context & lctx, llama_context & lctx,
int n_ctx, int n_ctx,
int n_gpu_layers, int n_gpu_layers,
float * tensor_split,
ggml_type memory_type, ggml_type memory_type,
bool use_mmap, bool use_mmap,
bool use_mlock, bool use_mlock,
@ -1019,13 +1038,16 @@ static void llama_model_load_internal(
} }
#if defined(GGML_USE_CUBLAS) #if defined(GGML_USE_CUBLAS)
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CUDA
fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__); fprintf(stderr, "%s: using CUDA for GPU acceleration\n", __func__);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU_SPLIT
#elif defined(GGML_USE_CLBLAST) #elif defined(GGML_USE_CLBLAST)
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CL
fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__); fprintf(stderr, "%s: using OpenCL for GPU acceleration\n", __func__);
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_GPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_GPU
#else #else
#define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU #define LLAMA_BACKEND_OFFLOAD GGML_BACKEND_CPU
#define LLAMA_BACKEND_OFFLOAD_SPLIT GGML_BACKEND_CPU
#endif #endif
// prepare memory for the weights // prepare memory for the weights
@ -1037,45 +1059,46 @@ static void llama_model_load_internal(
ml->ggml_ctx = ctx; ml->ggml_ctx = ctx;
model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, GGML_BACKEND_CPU); model.tok_embeddings = ml->get_tensor("tok_embeddings.weight", {n_embd, n_vocab}, -1, GGML_BACKEND_CPU);
model.norm = ml->get_tensor("norm.weight", {n_embd}, GGML_BACKEND_CPU); model.norm = ml->get_tensor("norm.weight", {n_embd}, -1, GGML_BACKEND_CPU);
// "output" tensor // "output" tensor
{ {
ggml_backend backend_output; ggml_backend backend_output;
if (n_gpu_layers > int(n_layer)) { // NOLINT if (n_gpu_layers > int(n_layer)) { // NOLINT
backend_output = LLAMA_BACKEND_OFFLOAD; backend_output = LLAMA_BACKEND_OFFLOAD_SPLIT;
} else { } else {
backend_output = GGML_BACKEND_CPU; backend_output = GGML_BACKEND_CPU;
} }
model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, backend_output); model.output = ml->get_tensor("output.weight", {n_embd, n_vocab}, -1, backend_output);
} }
const int i_gpu_start = n_layer - n_gpu_layers; const int i_gpu_start = n_layer - n_gpu_layers;
model.layers.resize(n_layer); model.layers.resize(n_layer);
for (uint32_t i = 0; i < n_layer; ++i) { for (uint32_t i = 0; i < n_layer; ++i) {
const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; const ggml_backend backend = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD; // NOLINT
const ggml_backend backend_split = int(i) < i_gpu_start ? GGML_BACKEND_CPU : LLAMA_BACKEND_OFFLOAD_SPLIT; // NOLINT
auto & layer = model.layers[i]; auto & layer = model.layers[i];
std::string layers_i = "layers." + std::to_string(i); std::string layers_i = "layers." + std::to_string(i);
layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, backend); layer.attention_norm = ml->get_tensor(layers_i + ".attention_norm.weight", {n_embd}, i, backend);
layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, backend); layer.wq = ml->get_tensor(layers_i + ".attention.wq.weight", {n_embd, n_embd}, i, backend_split);
layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, backend); layer.wk = ml->get_tensor(layers_i + ".attention.wk.weight", {n_embd, n_embd}, i, backend_split);
layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, backend); layer.wv = ml->get_tensor(layers_i + ".attention.wv.weight", {n_embd, n_embd}, i, backend_split);
layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, backend); layer.wo = ml->get_tensor(layers_i + ".attention.wo.weight", {n_embd, n_embd}, i, backend_split);
layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, backend); layer.ffn_norm = ml->get_tensor(layers_i + ".ffn_norm.weight", {n_embd}, i, backend);
layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, backend); layer.w1 = ml->get_tensor(layers_i + ".feed_forward.w1.weight", {n_embd, n_ff}, i, backend_split);
layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, backend); layer.w2 = ml->get_tensor(layers_i + ".feed_forward.w2.weight", { n_ff, n_embd}, i, backend_split);
layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, backend); layer.w3 = ml->get_tensor(layers_i + ".feed_forward.w3.weight", {n_embd, n_ff}, i, backend_split);
if (backend == LLAMA_BACKEND_OFFLOAD) { if (backend == GGML_BACKEND_GPU) {
vram_total += vram_total +=
ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) + ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wq) + ggml_nbytes(layer.wk) +
ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) + ggml_nbytes(layer.wv) + ggml_nbytes(layer.wo) + ggml_nbytes(layer.attention_norm) +
@ -1127,6 +1150,8 @@ static void llama_model_load_internal(
#if defined(GGML_USE_CUBLAS) #if defined(GGML_USE_CUBLAS)
{ {
ggml_cuda_set_tensor_split(tensor_split);
size_t done_size = 0; size_t done_size = 0;
size_t data_size = 0; size_t data_size = 0;
for (llama_load_tensor & lt : ml->tensors_map.tensors) { for (llama_load_tensor & lt : ml->tensors_map.tensors) {
@ -1136,13 +1161,14 @@ static void llama_model_load_internal(
} }
} }
for (llama_load_tensor & lt : ml->tensors_map.tensors) { for (llama_load_tensor & lt : ml->tensors_map.tensors) {
if (lt.ggml_tensor->backend != GGML_BACKEND_CUDA) { ggml_backend backend = lt.ggml_tensor->backend;
if (backend != GGML_BACKEND_GPU && backend != GGML_BACKEND_GPU_SPLIT) {
continue; continue;
} }
if (progress_callback) { if (progress_callback) {
progress_callback((float) done_size / data_size, progress_callback_user_data); progress_callback((float) done_size / data_size, progress_callback_user_data);
} }
ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off); ggml_cuda_load_data(fname.c_str(), lt.ggml_tensor, lt.shards.at(0).file_off, hparams.n_layer);
done_size += lt.size; done_size += lt.size;
} }
} }
@ -1157,7 +1183,7 @@ static void llama_model_load_internal(
} }
} }
for (llama_load_tensor & lt : ml->tensors_map.tensors) { for (llama_load_tensor & lt : ml->tensors_map.tensors) {
if (lt.ggml_tensor->backend != GGML_BACKEND_CL) { if (lt.ggml_tensor->backend != GGML_BACKEND_GPU) {
continue; continue;
} }
if (progress_callback) { if (progress_callback) {
@ -1167,6 +1193,8 @@ static void llama_model_load_internal(
done_size += lt.size; done_size += lt.size;
} }
} }
#else
(void) tensor_split;
#endif #endif
if (progress_callback) { if (progress_callback) {
@ -1185,6 +1213,7 @@ static bool llama_model_load(
llama_context & lctx, llama_context & lctx,
int n_ctx, int n_ctx,
int n_gpu_layers, int n_gpu_layers,
float * tensor_split,
ggml_type memory_type, ggml_type memory_type,
bool use_mmap, bool use_mmap,
bool use_mlock, bool use_mlock,
@ -1192,8 +1221,8 @@ static bool llama_model_load(
llama_progress_callback progress_callback, llama_progress_callback progress_callback,
void *progress_callback_user_data) { void *progress_callback_user_data) {
try { try {
llama_model_load_internal(fname, lctx, n_ctx, n_gpu_layers, memory_type, use_mmap, use_mlock, llama_model_load_internal(fname, lctx, n_ctx, n_gpu_layers, tensor_split, memory_type, use_mmap,
vocab_only, progress_callback, progress_callback_user_data); use_mlock, vocab_only, progress_callback, progress_callback_user_data);
return true; return true;
} catch (const std::string & err) { } catch (const std::string & err) {
fprintf(stderr, "error loading model: %s\n", err.c_str()); fprintf(stderr, "error loading model: %s\n", err.c_str());
@ -2293,8 +2322,8 @@ struct llama_context * llama_init_from_file(
ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32; ggml_type memory_type = params.f16_kv ? GGML_TYPE_F16 : GGML_TYPE_F32;
if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_gpu_layers, memory_type, if (!llama_model_load(path_model, *ctx, params.n_ctx, params.n_gpu_layers, params.tensor_split,
params.use_mmap, params.use_mlock, params.vocab_only, memory_type, params.use_mmap, params.use_mlock, params.vocab_only,
params.progress_callback, params.progress_callback_user_data)) { params.progress_callback, params.progress_callback_user_data)) {
fprintf(stderr, "%s: failed to load model\n", __func__); fprintf(stderr, "%s: failed to load model\n", __func__);
llama_free(ctx); llama_free(ctx);
@ -2547,7 +2576,7 @@ int llama_apply_lora_from_file_internal(struct llama_context * ctx, const char *
} }
size_t idx = model_loader->tensors_map.name_to_idx[base_name]; size_t idx = model_loader->tensors_map.name_to_idx[base_name];
llama_load_tensor & lt = model_loader->tensors_map.tensors[idx]; llama_load_tensor & lt = model_loader->tensors_map.tensors[idx];
base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, GGML_BACKEND_CPU); base_t = model_loader->get_tensor(base_name, { (uint32_t)dest_t->ne[0], (uint32_t)dest_t->ne[1] }, -1, GGML_BACKEND_CPU);
lt.data = (uint8_t *) lt.ggml_tensor->data; lt.data = (uint8_t *) lt.ggml_tensor->data;
model_loader->load_data_for(lt); model_loader->load_data_for(lt);
lt.ggml_tensor->data = lt.data; lt.ggml_tensor->data = lt.data;

14
llama.h
View file

@ -1,6 +1,13 @@
#ifndef LLAMA_H #ifndef LLAMA_H
#define LLAMA_H #define LLAMA_H
#include "ggml.h"
#ifdef GGML_USE_CUBLAS
#include "ggml-cuda.h"
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
#else
#define LLAMA_MAX_DEVICES 1
#endif // GGML_USE_CUBLAS
#include <stddef.h> #include <stddef.h>
#include <stdint.h> #include <stdint.h>
#include <stdbool.h> #include <stdbool.h>
@ -65,9 +72,10 @@ extern "C" {
typedef void (*llama_progress_callback)(float progress, void *ctx); typedef void (*llama_progress_callback)(float progress, void *ctx);
struct llama_context_params { struct llama_context_params {
int n_ctx; // text context int n_ctx; // text context
int n_gpu_layers; // number of layers to store in VRAM int n_gpu_layers; // number of layers to store in VRAM
int seed; // RNG seed, -1 for random float tensor_split[LLAMA_MAX_DEVICES]; // how to split layers across multiple GPUs
int seed; // RNG seed, -1 for random
bool f16_kv; // use fp16 for KV cache bool f16_kv; // use fp16 for KV cache
bool logits_all; // the llama_eval() call computes all logits, not just the last one bool logits_all; // the llama_eval() call computes all logits, not just the last one