Review fixes, persimmon fixes

This commit is contained in:
Galunid 2023-11-01 02:32:49 +01:00
parent 3ec89dcc69
commit 4fdd7cdf2b
2 changed files with 12 additions and 6 deletions

View file

@ -2,7 +2,6 @@ import os
import re
import sys
import json
import gguf
import torch
import contextlib
import numpy as np
@ -11,6 +10,12 @@ from enum import IntEnum
from pathlib import Path
from typing import TypeAlias, Any, Generator
if 'NO_LOCAL_GGUF' not in os.environ:
sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf'))
import gguf
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
@ -160,7 +165,7 @@ class Model:
def set_vocab(self):
self._set_vocab_gpt2()
def get_tensors(self) -> Generator[str, Any]:
def get_tensors(self) -> Generator[str, Any, None]:
for part_name in self.part_names:
print("gguf: loading model part '" + part_name + "'")
if self.is_safetensors:
@ -789,12 +794,13 @@ class PersimmonModel(Model):
self.gguf_writer.add_name('persimmon-8b-chat')
self.gguf_writer.add_embedding_length(hidden_size)
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["ffn_hidden_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(hidden_size // head_count)
self.gguf_writer.add_head_count(head_count)
self.gguf_writer.add_head_count_kv(head_count_kv)
self.gguf_writer.add_rope_freq_base(self.hparams["rotary_emb_base"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layernorm_epsilon"])
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
def set_vocab(self):
self._set_vocab_sentencepiece()

View file

@ -3,7 +3,7 @@ import argparse
from pathlib import Path
def parse_args() -> argparse.Namespace:
parser = argparse.ArgumentParser(description="Convert a stablelm model to a GGML compatible file")
parser = argparse.ArgumentParser(description="Convert a huggingface model to a GGML compatible file")
parser.add_argument(
"--vocab-only", action="store_true",
help="extract only the vocab",