Merge branch 'ggerganov:master' into master

This commit is contained in:
hsnmkls 2024-02-09 10:23:31 +08:00 committed by GitHub
commit 504ee68716
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
11 changed files with 249 additions and 83 deletions

View file

@ -184,6 +184,47 @@ jobs:
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx ..
cmake --build . --config Release -j $(nproc)
ubuntu-22-cmake-sycl-fp16:
runs-on: ubuntu-22.04
continue-on-error: true
steps:
- uses: actions/checkout@v2
- name: add oneAPI to apt
shell: bash
run: |
cd /tmp
wget https://apt.repos.intel.com/intel-gpg-keys/GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo apt-key add GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
rm GPG-PUB-KEY-INTEL-SW-PRODUCTS.PUB
sudo add-apt-repository "deb https://apt.repos.intel.com/oneapi all main"
- name: install oneAPI dpcpp compiler
shell: bash
run: |
sudo apt update
sudo apt install intel-oneapi-compiler-dpcpp-cpp
- name: install oneAPI MKL library
shell: bash
run: |
sudo apt install intel-oneapi-mkl-devel
- name: Clone
id: checkout
uses: actions/checkout@v3
- name: Build
id: cmake_build
run: |
source /opt/intel/oneapi/setvars.sh
mkdir build
cd build
cmake -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icpx -DLLAMA_SYCL_F16=ON ..
cmake --build . --config Release -j $(nproc)
# TODO: build with LLAMA_NO_METAL because test-backend-ops fail on "Apple Paravirtual device" and I don't know
# how to debug it.
# ref: https://github.com/ggerganov/llama.cpp/actions/runs/7131777249/job/19420981052#step:5:1124

View file

@ -850,7 +850,9 @@ endif()
set(ARCH_FLAGS "")
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64"))
if (CMAKE_OSX_ARCHITECTURES STREQUAL "arm64" OR CMAKE_GENERATOR_PLATFORM_LWR STREQUAL "arm64" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(aarch64|arm.*|ARM64)$"))
message(STATUS "ARM detected")
if (MSVC)
add_compile_definitions(__ARM_NEON)
@ -876,7 +878,9 @@ if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATC
list(APPEND ARCH_FLAGS -mno-unaligned-access)
endif()
endif()
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "^(x86_64|i686|amd64|x64)$" )
elseif (CMAKE_OSX_ARCHITECTURES STREQUAL "x86_64" OR CMAKE_GENERATOR_PLATFORM_LWR MATCHES "^(x86_64|i686|amd64|x64|win32)$" OR
(NOT CMAKE_OSX_ARCHITECTURES AND NOT CMAKE_GENERATOR_PLATFORM_LWR AND
CMAKE_SYSTEM_PROCESSOR MATCHES "^(x86_64|i686|AMD64)$"))
message(STATUS "x86 detected")
if (MSVC)
# instruction set detection for MSVC only

View file

@ -150,6 +150,7 @@ Unless otherwise noted these projects are open-source with permissive licensing:
- [ollama/ollama](https://github.com/ollama/ollama)
- [oobabooga/text-generation-webui](https://github.com/oobabooga/text-generation-webui) (AGPL)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
- [cztomsik/ava](https://github.com/cztomsik/ava) (MIT)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
- [pythops/tenere](https://github.com/pythops/tenere) (AGPL)
- [semperai/amica](https://github.com/semperai/amica)
@ -679,7 +680,7 @@ python3 -m pip install -r requirements.txt
python3 convert.py models/mymodel/
# [Optional] for models using BPE tokenizers
python convert.py models/mymodel/ --vocabtype bpe
python convert.py models/mymodel/ --vocab-type bpe
# quantize the model to 4-bits (using Q4_K_M method)
./quantize ./models/mymodel/ggml-model-f16.gguf ./models/mymodel/ggml-model-Q4_K_M.gguf Q4_K_M

View file

@ -132,7 +132,7 @@ static void sampler_queue(
const float temp = params.temp;
const float dynatemp_range = params.dynatemp_range;
const float dynatemp_exponent = params.dynatemp_exponent;
const int32_t top_k = params.top_k <= 0 ? n_vocab : params.top_k;
const int32_t top_k = params.top_k;
const float top_p = params.top_p;
const float min_p = params.min_p;
const float tfs_z = params.tfs_z;

View file

@ -1078,17 +1078,76 @@ class MiniCPMModel(Model):
self.gguf_writer.add_name("MiniCPM")
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_block_count(block_count)
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
self.gguf_writer.add_file_type(self.ftype)
self.gguf_writer.add_rope_dimension_count(self.hparams["hidden_size"] // self.hparams["num_attention_heads"])
def set_vocab(self):
self._set_vocab_hf()
def _reverse_hf_permute(self, weights: Tensor, n_head: int, n_kv_head: int | None = None) -> Tensor:
if n_kv_head is not None and n_head != n_kv_head:
n_head //= n_kv_head
return (
weights.reshape(n_head, 2, weights.shape[0] // n_head // 2, *weights.shape[1:])
.swapaxes(1, 2)
.reshape(weights.shape)
)
def write_tensors(self):
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
n_head = self.hparams.get("num_attention_heads")
n_kv_head = self.hparams.get("num_key_value_heads")
for name, data_torch in self.get_tensors():
# we don't need these
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
continue
old_dtype = data_torch.dtype
# convert any unsupported data types to float32
if data_torch.dtype not in (torch.float16, torch.float32):
data_torch = data_torch.to(torch.float32)
# HF models permute some of the tensors, so we need to undo that
if name.endswith(("q_proj.weight")):
data_torch = self._reverse_hf_permute(data_torch, n_head, n_head)
if name.endswith(("k_proj.weight")):
data_torch = self._reverse_hf_permute(data_torch, n_head, n_kv_head)
data = data_torch.squeeze().numpy()
# map tensor names
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None:
print(f"Can not map tensor {name!r}")
sys.exit()
n_dims = len(data.shape)
data_dtype = data.dtype
# if f32 desired, convert any float16 to float32
if self.ftype == 0 and data_dtype == np.float16:
data = data.astype(np.float32)
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
data = data.astype(np.float32)
# if f16 desired, convert any float32 2-dim weight tensors to float16
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
data = data.astype(np.float16)
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
self.gguf_writer.add_tensor(new_name, data)
class QwenModel(Model):
@staticmethod

View file

@ -14,14 +14,14 @@ Build with cmake or run `make llava-cli` to build it.
After building, run: `./llava-cli` to see the usage. For example:
```sh
./llava-cli -m llava-v1.5-7b/ggml-model-q5_k.gguf --mmproj llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
./llava-cli -m ../llava-v1.5-7b/ggml-model-f16.gguf --mmproj ../llava-v1.5-7b/mmproj-model-f16.gguf --image path/to/an/image.jpg
```
**note**: A lower temperature like 0.1 is recommended for better quality. add `--temp 0.1` to the command to do so.
## Model conversion
- Clone `llava-v15-7b`` and `clip-vit-large-patch14-336`` locally:
- Clone `llava-v15-7b` and `clip-vit-large-patch14-336` locally:
```sh
git clone https://huggingface.co/liuhaotian/llava-v1.5-7b
@ -38,7 +38,7 @@ python ./examples/llava/llava-surgery.py -m ../llava-v1.5-7b
3. Use `convert-image-encoder-to-gguf.py` to convert the LLaVA image encoder to GGUF:
```sh
python ./examples/llava/convert-image-encoder-to-gguf -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
python ./examples/llava/convert-image-encoder-to-gguf.py -m ../clip-vit-large-patch14-336 --llava-projector ../llava-v1.5-7b/llava.projector --output-dir ../llava-v1.5-7b
```
4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF:

View file

@ -5310,22 +5310,26 @@ template <bool need_check> static __global__ void
#endif // __CUDA_ARCH__ >= CC_VOLTA
}
template <int ncols_y_template, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
#define MMVQ_NWARPS_NVIDIA 4
#define MMVQ_NWARPS_AMD_RDNA2 1
#define MMVQ_NWARPS_AMD_OLD 4
template <int nwarps, int ncols_y_template, int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot_q_cuda>
#if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
__launch_bounds__(nwarps*WARP_SIZE, 1) // tells the compiler to use as many registers as it wants
#endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__))
static __global__ void mul_mat_vec_q(
const void * __restrict__ vx, const void * __restrict__ vy, float * __restrict__ dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y_par) {
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y_par, const int nrows_dst) {
const int ncols_y = ncols_y_template != 0 ? ncols_y_template : ncols_y_par;
const int row = blockIdx.x*blockDim.y + threadIdx.y;
if (row >= nrows_x) {
return;
}
const int tid = WARP_SIZE*threadIdx.y + threadIdx.x;
const int row = blockIdx.x;
const int blocks_per_row_x = ncols_x / qk;
const int blocks_per_col_y = nrows_y / QK8_1;
const int blocks_per_warp = vdr * WARP_SIZE / qi;
const int blocks_per_iter = vdr * nwarps*WARP_SIZE / qi;
// partial sum for each thread
float tmp[ncols_y_template != 0 ? ncols_y_template : 8] = {0.0f};
@ -5333,12 +5337,12 @@ static __global__ void mul_mat_vec_q(
const block_q_t * x = (const block_q_t *) vx;
const block_q8_1 * y = (const block_q8_1 *) vy;
for (int i = threadIdx.x / (qi/vdr); i < blocks_per_row_x; i += blocks_per_warp) {
for (int i = tid / (qi/vdr); i < blocks_per_row_x; i += blocks_per_iter) {
const int ibx = row*blocks_per_row_x + i; // x block index
const int iby = i * (qk/QK8_1); // y block index that aligns with ibx
const int iqs = vdr * (threadIdx.x % (qi/vdr)); // x block quant index when casting the quants to int
const int iqs = vdr * (tid % (qi/vdr)); // x block quant index when casting the quants to int
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
@ -5346,13 +5350,29 @@ static __global__ void mul_mat_vec_q(
}
}
__shared__ float tmp_shared[nwarps-1 > 0 ? nwarps-1 : 1][ncols_y_template != 0 ? ncols_y_template : 8][WARP_SIZE];
if (threadIdx.y > 0) {
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
tmp_shared[threadIdx.y-1][j][threadIdx.x] = tmp[j];
}
}
__syncthreads();
if (threadIdx.y > 0) {
return;
}
// sum up partial sums and write back result
#pragma unroll
for (int j = 0; j < ncols_y; ++j) {
#pragma unroll
for (int i = 0; i < nwarps-1; ++i) {
tmp[j] += tmp_shared[i][j][threadIdx.x];
}
tmp[j] = warp_reduce_sum(tmp[j]);
if (threadIdx.x == 0) {
dst[j*nrows_x + row] = tmp[j];
dst[j*nrows_dst + row] = tmp[j];
}
}
}
@ -6828,51 +6848,70 @@ static void convert_mul_mat_vec_f16_cuda(const void * vx, const dfloat * y, floa
template <int qk, int qi, typename block_q_t, int vdr, vec_dot_q_cuda_t vec_dot>
static void mul_mat_vec_q_cuda(
const void * vx, const void * vy, float * dst,
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, cudaStream_t stream) {
const int ncols_x, const int nrows_x, const int nrows_y, const int ncols_y, const int nrows_dst, cudaStream_t stream) {
GGML_ASSERT(ncols_x % qk == 0);
GGML_ASSERT(ncols_y <= 4);
const int block_num_y = (nrows_x + GGML_CUDA_MMV_Y - 1) / GGML_CUDA_MMV_Y;
const dim3 block_nums(block_num_y, 1, 1);
const dim3 block_dims(WARP_SIZE, GGML_CUDA_MMV_Y, 1);
switch (ncols_y) {
case 1:
mul_mat_vec_q<1, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y);
break;
case 2:
mul_mat_vec_q<2, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y);
break;
case 3:
mul_mat_vec_q<3, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y);
break;
case 4:
mul_mat_vec_q<4, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y);
break;
// case 5:
// mul_mat_vec_q<5, qk, qi, block_q_t, vdr, vec_dot>
// <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y);
// break;
// case 6:
// mul_mat_vec_q<6, qk, qi, block_q_t, vdr, vec_dot>
// <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y);
// break;
// case 7:
// mul_mat_vec_q<7, qk, qi, block_q_t, vdr, vec_dot>
// <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y);
// break;
// case 8:
// mul_mat_vec_q<8, qk, qi, block_q_t, vdr, vec_dot>
// <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y);
// break;
int id;
CUDA_CHECK(cudaGetDevice(&id));
int nwarps;
if (g_device_caps[id].cc >= CC_OFFSET_AMD) {
nwarps = g_device_caps[id].cc >= CC_RDNA2 ? MMVQ_NWARPS_AMD_RDNA2 : MMVQ_NWARPS_AMD_OLD;
} else {
nwarps = MMVQ_NWARPS_NVIDIA;
}
const dim3 block_nums(nrows_x, 1, 1);
const dim3 block_dims(WARP_SIZE, nwarps, 1);
switch (nwarps) {
case 1: switch(ncols_y) {
case 1:
mul_mat_vec_q<1, 1, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst);
break;
case 2:
mul_mat_vec_q<1, 2, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst);
break;
case 3:
mul_mat_vec_q<1, 3, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst);
break;
case 4:
mul_mat_vec_q<1, 4, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst);
break;
default:
GGML_ASSERT(false);
break;
} break;
case 4: switch(ncols_y) {
case 1:
mul_mat_vec_q<4, 1, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst);
break;
case 2:
mul_mat_vec_q<4, 2, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst);
break;
case 3:
mul_mat_vec_q<4, 3, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst);
break;
case 4:
mul_mat_vec_q<4, 4, qk, qi, block_q_t, vdr, vec_dot>
<<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y, nrows_dst);
break;
default:
GGML_ASSERT(false);
break;
} break;
default:
GGML_ASSERT(false);
// mul_mat_vec_q<0, qk, qi, block_q_t, vdr, vec_dot>
// <<<block_nums, block_dims, 0, stream>>>(vx, vy, dst, ncols_x, nrows_x, nrows_y, ncols_y);
break;
}
}
@ -8391,7 +8430,7 @@ static void ggml_cuda_op_mul_mat_q(
CUDA_CHECK(cudaGetDevice(&id));
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the dequantize_mul_mat kernel writes into
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
switch (src0->type) {
@ -8525,58 +8564,70 @@ static void ggml_cuda_op_mul_mat_vec_q(
const int64_t ne00 = src0->ne[0];
const int64_t row_diff = row_high - row_low;
const int64_t ne10 = src1->ne[0];
GGML_ASSERT(ne10 % QK8_1 == 0);
const int64_t ne0 = dst->ne[0];
int id;
CUDA_CHECK(cudaGetDevice(&id));
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = dst->backend == GGML_BACKEND_GPU && id == g_main_device ? ne0 : row_diff;
switch (src0->type) {
case GGML_TYPE_Q4_0:
mul_mat_vec_q_cuda<QK4_0, QI4_0, block_q4_0, VDR_Q4_0_Q8_1_MMVQ, vec_dot_q4_0_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q4_1:
mul_mat_vec_q_cuda<QK4_1, QI4_1, block_q4_1, VDR_Q4_1_Q8_1_MMVQ, vec_dot_q4_1_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q5_0:
mul_mat_vec_q_cuda<QK5_0, QI5_0, block_q5_0, VDR_Q5_0_Q8_1_MMVQ, vec_dot_q5_0_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q5_1:
mul_mat_vec_q_cuda<QK5_1, QI5_1, block_q5_1, VDR_Q5_1_Q8_1_MMVQ, vec_dot_q5_1_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q8_0:
mul_mat_vec_q_cuda<QK8_0, QI8_0, block_q8_0, VDR_Q8_0_Q8_1_MMVQ, vec_dot_q8_0_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q2_K:
mul_mat_vec_q_cuda<QK_K, QI2_K, block_q2_K, VDR_Q2_K_Q8_1_MMVQ, vec_dot_q2_K_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q3_K:
mul_mat_vec_q_cuda<QK_K, QI3_K, block_q3_K, VDR_Q3_K_Q8_1_MMVQ, vec_dot_q3_K_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q4_K:
mul_mat_vec_q_cuda<QK_K, QI4_K, block_q4_K, VDR_Q4_K_Q8_1_MMVQ, vec_dot_q4_K_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q5_K:
mul_mat_vec_q_cuda<QK_K, QI5_K, block_q5_K, VDR_Q5_K_Q8_1_MMVQ, vec_dot_q5_K_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_Q6_K:
mul_mat_vec_q_cuda<QK_K, QI6_K, block_q6_K, VDR_Q6_K_Q8_1_MMVQ, vec_dot_q6_K_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ2_XXS:
mul_mat_vec_q_cuda<QK_K, QI2_XXS, block_iq2_xxs, 1, vec_dot_iq2_xxs_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ2_XS:
mul_mat_vec_q_cuda<QK_K, QI2_XS, block_iq2_xs, 1, vec_dot_iq2_xs_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
case GGML_TYPE_IQ3_XXS:
mul_mat_vec_q_cuda<QK_K, QI3_XXS, block_iq3_xxs, 1, vec_dot_iq3_xxs_q8_1>
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, stream);
(src0_dd_i, src1_ddq_i, dst_dd_i, ne00, row_diff, src1_padded_row_size, src1_ncols, nrows_dst, stream);
break;
default:
GGML_ASSERT(false);
@ -9909,7 +9960,7 @@ static void ggml_cuda_mul_mat(const ggml_tensor * src0, const ggml_tensor * src1
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_dequantize_mul_mat_vec, false);
}
} else {
if (src1->ne[1] <= 4 && min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type)) {
if (src1->ne[1] <= 4 && min_compute_capability >= MIN_CC_DP4A && ggml_is_quantized(src0->type) && src1->type == GGML_TYPE_F32) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, true);
} else if (use_mul_mat_q) {
ggml_cuda_op_mul_mat(src0, src1, dst, ggml_cuda_op_mul_mat_q, true);

View file

@ -12148,7 +12148,8 @@ inline void ggml_sycl_op_dequantize_mul_mat_vec(
const int64_t src1_ncols, const int64_t src1_padded_row_size,
const dpct::queue_ptr &stream) {
const int64_t ne00 = src0->ne[0];
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t row_diff = row_high - row_low;
// on some GPUs it is faster to convert src1 to half and to use half precision intrinsics
@ -12167,8 +12168,9 @@ inline void ggml_sycl_op_dequantize_mul_mat_vec(
} else {
src1_dfloat = src1_dfloat_a.alloc(ne00);
ggml_cpy_f32_f16_sycl((const char *)src1_ddf_i, (char *)src1_dfloat,
ne00, ne00, 1, sizeof(float), 0, 0, ne00, 1,
sizeof(sycl::half), 0, 0, stream);
ne00, ne00, ne01, ne02, nb00, nb01, nb02,
nb03, ne10, ne11, ne12, nb10, nb11, nb12,
nb13, stream);
}
}
#else

View file

@ -2947,6 +2947,8 @@ static void llm_load_hparams(
} break;
case LLM_ARCH_MINICPM:
{
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
switch (hparams.n_layer) {
case 40: model.type = e_model::MODEL_2B; break;
default: model.type = e_model::MODEL_UNKNOWN;
@ -4207,8 +4209,7 @@ static bool llm_load_tensors(
ctx_bufs.emplace_back(ctx, buf);
}
// print memory requirements
{
if (llama_supports_gpu_offload()) {
const int n_gpu = std::min(n_gpu_layers, int(hparams.n_layer));
LLAMA_LOG_INFO("%s: offloading %d repeating layers to GPU\n", __func__, n_gpu);
@ -4220,10 +4221,11 @@ static bool llm_load_tensors(
const int max_offloadable_layers = hparams.n_layer + 1;
LLAMA_LOG_INFO("%s: offloaded %d/%d layers to GPU\n", __func__, std::min(n_gpu_layers, max_offloadable_layers), max_backend_supported_layers);
}
for (ggml_backend_buffer_t buf : model.bufs) {
LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
}
// print memory requirements
for (ggml_backend_buffer_t buf : model.bufs) {
LLAMA_LOG_INFO("%s: %10s buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf) / 1024.0 / 1024.0);
}
// populate tensors_by_name
@ -8586,6 +8588,10 @@ void llama_sample_top_k(struct llama_context * ctx, llama_token_data_array * can
const int64_t t_start_sample_us = ggml_time_us();
if (k <= 0) {
k = candidates->size;
}
k = std::max(k, (int) min_keep);
k = std::min(k, (int) candidates->size);

2
tests/.gitignore vendored
View file

@ -1,3 +1,3 @@
*
!*.*
test-c.o
*.o

View file

@ -235,6 +235,8 @@ int main(void) {
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 1);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f}, 3);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 4);
test_top_k({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f, 0.2f, 0.1f}, 0);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f}, 0);
test_top_p({0.1f, 0.2f, 0.3f, 0.4f}, {0.4f, 0.3f}, 0.7f);