add phi3v projection handling in clip.cpp
This commit is contained in:
parent
efeaeaf79f
commit
5175117a09
6 changed files with 85 additions and 65 deletions
|
@ -127,11 +127,12 @@ python examples/llava/llava-surgery-v2.py -C -m phi3-fun/phi3-vision/
|
||||||
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
|
4) Copy the llava.clip file into a subdirectory (like vit), rename it to pytorch_model.bin and add a fitting vit configuration to the directory:
|
||||||
```console
|
```console
|
||||||
// under phi3-fun/phi-vision dir
|
// under phi3-fun/phi-vision dir
|
||||||
mkdir vit
|
mkdir vit
|
||||||
cp llava.clip vit/pytorch_model.bin
|
cp llava.clip vit/pytorch_model.bin
|
||||||
cp llava.projector vit/
|
cp llava.projector vit/
|
||||||
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
|
curl -s -q https://huggingface.co/cmp-nct/llava-1.6-gguf/raw/main/config_vit.json -o vit/config.json
|
||||||
```
|
```
|
||||||
|
set `mm_projector_type` -> `mlp_phi` in `config.json`
|
||||||
|
|
||||||
5) Create the visual gguf model:
|
5) Create the visual gguf model:
|
||||||
```console
|
```console
|
||||||
|
@ -151,7 +152,6 @@ python convert-hf-to-gguf.py phi3-fun/phi3-base
|
||||||
```
|
```
|
||||||
|
|
||||||
8) Invoke
|
8) Invoke
|
||||||
(recompile llama.cpp first)
|
|
||||||
```console
|
```console
|
||||||
./llava-cli -m phi3-fun/phi3-base/ggml-model-f16.gguf --mmproj phi3-fun/phi3-vision/vit/mmproj-model-f16.gguf --image IMAGE -c 4096 --temp .1 -p "PROMPT"
|
./llava-cli -m phi3-fun/phi3-base/ggml-model-f16.gguf --mmproj phi3-fun/phi3-vision/vit/mmproj-model-f16.gguf --image IMAGE -c 4096 --temp .1 -p "PROMPT"
|
||||||
```
|
```
|
||||||
|
|
|
@ -130,12 +130,14 @@ enum projector_type {
|
||||||
PROJECTOR_TYPE_LDP,
|
PROJECTOR_TYPE_LDP,
|
||||||
PROJECTOR_TYPE_LDPV2,
|
PROJECTOR_TYPE_LDPV2,
|
||||||
PROJECTOR_TYPE_UNKNOWN,
|
PROJECTOR_TYPE_UNKNOWN,
|
||||||
|
PROJECTOR_TYPE_MLP_PHI
|
||||||
};
|
};
|
||||||
|
|
||||||
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
static std::map<projector_type, std::string> PROJECTOR_TYPE_NAMES = {
|
||||||
{ PROJECTOR_TYPE_MLP, "mlp" },
|
{ PROJECTOR_TYPE_MLP, "mlp" },
|
||||||
{ PROJECTOR_TYPE_LDP, "ldp" },
|
{ PROJECTOR_TYPE_LDP, "ldp" },
|
||||||
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
{ PROJECTOR_TYPE_LDPV2, "ldpv2"},
|
||||||
|
{ PROJECTOR_TYPE_MLP_PHI, "mlp_phi" }
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
||||||
|
@ -698,8 +700,6 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||||
// ne is whcn, ne = [1024, 576, 1, 1]
|
// ne is whcn, ne = [1024, 576, 1, 1]
|
||||||
embeddings = ggml_get_rows(ctx0, embeddings, patches);
|
embeddings = ggml_get_rows(ctx0, embeddings, patches);
|
||||||
|
|
||||||
// print_tensor_info(embeddings, "embeddings");
|
|
||||||
|
|
||||||
// llava projector
|
// llava projector
|
||||||
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
||||||
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
||||||
|
@ -709,7 +709,24 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32
|
||||||
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
||||||
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
||||||
|
|
||||||
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
} else if (ctx->proj_type == PROJECTOR_TYPE_MLP_PHI) {
|
||||||
|
// needs to be reworked, see https://huggingface.co/microsoft/Phi-3-vision-128k-instruct/blob/main/image_embedding_phi3_v.py
|
||||||
|
// line 204 onwards
|
||||||
|
struct ggml_tensor * embeddings_ = embeddings;
|
||||||
|
// [1024, 576, 1, 1] -> [4096, 576, 1, 1]
|
||||||
|
embeddings = ggml_concat(ctx0, embeddings, embeddings_, 0);
|
||||||
|
embeddings = ggml_concat(ctx0, embeddings, embeddings_, 0);
|
||||||
|
embeddings = ggml_concat(ctx0, embeddings, embeddings_, 0);
|
||||||
|
|
||||||
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
||||||
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
||||||
|
|
||||||
|
embeddings = ggml_gelu(ctx0, embeddings);
|
||||||
|
embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings);
|
||||||
|
embeddings = ggml_add(ctx0, embeddings, model.mm_2_b);
|
||||||
|
|
||||||
|
}
|
||||||
|
else if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||||
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings);
|
||||||
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
embeddings = ggml_add(ctx0, embeddings, model.mm_0_b);
|
||||||
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
|
// ggml_tensor_printf(embeddings, "mm_0_w",0,true,false);
|
||||||
|
@ -1208,7 +1225,7 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) {
|
||||||
}
|
}
|
||||||
|
|
||||||
// LLaVA projection
|
// LLaVA projection
|
||||||
if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
if (new_clip->proj_type == PROJECTOR_TYPE_MLP || new_clip->proj_type == PROJECTOR_TYPE_MLP_NORM || new_clip->proj_type == PROJECTOR_TYPE_MLP_PHI) {
|
||||||
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
|
vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight"));
|
||||||
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
|
vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias"));
|
||||||
try {
|
try {
|
||||||
|
@ -2069,6 +2086,9 @@ int clip_n_mmproj_embd(const struct clip_ctx * ctx) {
|
||||||
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP) {
|
||||||
return ctx->vision_model.mm_2_b->ne[0];
|
return ctx->vision_model.mm_2_b->ne[0];
|
||||||
}
|
}
|
||||||
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP_PHI) {
|
||||||
|
return ctx->vision_model.mm_2_b->ne[0];
|
||||||
|
}
|
||||||
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
if (ctx->proj_type == PROJECTOR_TYPE_MLP_NORM) {
|
||||||
return ctx->vision_model.mm_3_b->ne[0];
|
return ctx->vision_model.mm_3_b->ne[0];
|
||||||
}
|
}
|
||||||
|
|
|
@ -86,7 +86,7 @@ ap.add_argument("--clip-model-is-vision", action="store_true", required=False,
|
||||||
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
ap.add_argument("--clip-model-is-openclip", action="store_true", required=False,
|
||||||
help="The clip model is from openclip (for ViT-SO400M type))")
|
help="The clip model is from openclip (for ViT-SO400M type))")
|
||||||
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.")
|
||||||
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2"], default="mlp")
|
ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp, ldpv2", choices=["mlp", "ldp", "ldpv2", "mlp_phi"], default="mlp_phi")
|
||||||
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||||
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
# Example --image_mean 0.48145466 0.4578275 0.40821073 --image_std 0.26862954 0.26130258 0.27577711
|
||||||
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
# Example --image_mean 0.5 0.5 0.5 --image_std 0.5 0.5 0.5
|
||||||
|
@ -206,39 +206,39 @@ if has_vision_encoder:
|
||||||
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
|
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
|
||||||
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
||||||
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
||||||
# /**
|
# /**
|
||||||
# "image_grid_pinpoints": [
|
# "image_grid_pinpoints": [
|
||||||
# [
|
# [
|
||||||
# 336,
|
# 336,
|
||||||
# 672
|
# 672
|
||||||
# ],
|
# ],
|
||||||
# [
|
# [
|
||||||
# 672,
|
# 672,
|
||||||
# 336
|
# 336
|
||||||
# ],
|
# ],
|
||||||
# [
|
# [
|
||||||
# 672,
|
# 672,
|
||||||
# 672
|
# 672
|
||||||
# ],
|
# ],
|
||||||
# [
|
# [
|
||||||
# 1008,
|
# 1008,
|
||||||
# 336
|
# 336
|
||||||
# ],
|
# ],
|
||||||
# [
|
# [
|
||||||
# 336,
|
# 336,
|
||||||
# 1008
|
# 1008
|
||||||
# ]
|
# ]
|
||||||
# ],
|
# ],
|
||||||
# Flattened:
|
# Flattened:
|
||||||
# [
|
# [
|
||||||
# 336, 672,
|
# 336, 672,
|
||||||
# 672, 336,
|
# 672, 336,
|
||||||
# 672, 672,
|
# 672, 672,
|
||||||
# 1008, 336,
|
# 1008, 336,
|
||||||
# 336, 1008
|
# 336, 1008
|
||||||
# ]
|
# ]
|
||||||
# *
|
# *
|
||||||
# */
|
# */
|
||||||
if "image_grid_pinpoints" in v_hparams:
|
if "image_grid_pinpoints" in v_hparams:
|
||||||
# flatten it
|
# flatten it
|
||||||
image_grid_pinpoints = []
|
image_grid_pinpoints = []
|
||||||
|
@ -257,7 +257,6 @@ if has_vision_encoder:
|
||||||
if "mm_projector_type" in v_hparams:
|
if "mm_projector_type" in v_hparams:
|
||||||
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
|
fout.add_string("clip.vision.mm_projector_type", v_hparams["mm_projector_type"])
|
||||||
|
|
||||||
|
|
||||||
if processor is not None:
|
if processor is not None:
|
||||||
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
|
image_mean = processor.image_processor.image_mean if args.image_mean is None or args.image_mean == default_image_mean else args.image_mean
|
||||||
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
|
image_std = processor.image_processor.image_std if args.image_std is None or args.image_std == default_image_std else args.image_std
|
||||||
|
|
|
@ -11,19 +11,19 @@ def main(args):
|
||||||
|
|
||||||
# https://stackoverflow.com/questions/67689219/copy-one-layers-weights-from-one-huggingface-bert-model-to-another
|
# https://stackoverflow.com/questions/67689219/copy-one-layers-weights-from-one-huggingface-bert-model-to-another
|
||||||
|
|
||||||
phi3_vision = AutoModelForCausalLM.from_pretrained(args.phi3v_base_path,\
|
phi3_vision = AutoModelForCausalLM.from_pretrained(args.phi3v_base_path,
|
||||||
device_map="auto",\
|
device_map="auto",
|
||||||
trust_remote_code=True,\
|
trust_remote_code=True,
|
||||||
torch_dtype=torch.float16,\
|
torch_dtype=torch.float16,
|
||||||
_attn_implementation='eager')
|
_attn_implementation='eager')
|
||||||
|
|
||||||
print("PHI3 VISION LOADED IN MEMORY")
|
print("PHI3 VISION LOADED IN MEMORY")
|
||||||
|
|
||||||
phi3_base = AutoModelForCausalLM.from_pretrained(args.phi3_instruct_base_path,\
|
phi3_base = AutoModelForCausalLM.from_pretrained(args.phi3_instruct_base_path,
|
||||||
device_map="auto",\
|
device_map="auto",
|
||||||
trust_remote_code=True,\
|
trust_remote_code=True,
|
||||||
torch_dtype=torch.float16,\
|
torch_dtype=torch.float16,
|
||||||
_attn_implementation='eager')
|
_attn_implementation='eager')
|
||||||
|
|
||||||
print("PHI3 BASE LOADED IN MEMORY")
|
print("PHI3 BASE LOADED IN MEMORY")
|
||||||
|
|
||||||
|
@ -34,21 +34,21 @@ def main(args):
|
||||||
|
|
||||||
print("----------------------------------------------------")
|
print("----------------------------------------------------")
|
||||||
print("before transfer")
|
print("before transfer")
|
||||||
print(dict(phi3_vision.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"] == \
|
print(dict(phi3_vision.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"]
|
||||||
dict(phi3_base.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"])
|
== dict(phi3_base.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"])
|
||||||
print("----------------------------------------------------")
|
print("----------------------------------------------------")
|
||||||
|
|
||||||
for part in parts:
|
for part in parts:
|
||||||
phi3_base_layers[part].data.copy_(phi3_vision_layers[part].data)
|
phi3_base_layers[part].data.copy_(phi3_vision_layers[part].data)
|
||||||
# target # source
|
# target # source
|
||||||
|
|
||||||
print("----------------------------------------------------")
|
print("----------------------------------------------------")
|
||||||
print("after transfer")
|
print("after transfer")
|
||||||
print(dict(phi3_vision.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"] == \
|
print(dict(phi3_vision.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"]
|
||||||
dict(phi3_base.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"])
|
== dict(phi3_base.named_parameters())["model.layers.19.mlp.gate_up_proj.weight"])
|
||||||
print("----------------------------------------------------")
|
print("----------------------------------------------------")
|
||||||
|
|
||||||
# save updated model weights
|
# save updated model weights
|
||||||
outfile = "phi3-instruct-vision-weight-transfer.safetensors"
|
outfile = "phi3-instruct-vision-weight-transfer.safetensors"
|
||||||
outpath = os.path.join(args.phi3_instruct_base_path, outfile)
|
outpath = os.path.join(args.phi3_instruct_base_path, outfile)
|
||||||
save_file(phi3_base_layers, outpath)
|
save_file(phi3_base_layers, outpath)
|
||||||
|
@ -59,7 +59,7 @@ def main(args):
|
||||||
|
|
||||||
with open(weight_index_path, "r") as f:
|
with open(weight_index_path, "r") as f:
|
||||||
index_data = json.load(f)
|
index_data = json.load(f)
|
||||||
|
|
||||||
for k,v in index_data["weight_map"].items():
|
for k,v in index_data["weight_map"].items():
|
||||||
if v != "phi3-instruct-vision-weight-transfer.safetensors":
|
if v != "phi3-instruct-vision-weight-transfer.safetensors":
|
||||||
index_data["weight_map"][k] = outfile
|
index_data["weight_map"][k] = outfile
|
||||||
|
@ -69,8 +69,9 @@ def main(args):
|
||||||
|
|
||||||
print(f"hf saftensor mapping updated!")
|
print(f"hf saftensor mapping updated!")
|
||||||
|
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
|
|
||||||
parser = argparse.ArgumentParser(description="script to copy weights from PHI3V language model to PHI3-instruct")
|
parser = argparse.ArgumentParser(description="script to copy weights from PHI3V language model to PHI3-instruct")
|
||||||
|
|
||||||
parser.add_argument("--phi3-instruct-base-path", type=str, default="microsoft/Phi-3-mini-128k-instruct", help="model path or model card for PHI3-instruct")
|
parser.add_argument("--phi3-instruct-base-path", type=str, default="microsoft/Phi-3-mini-128k-instruct", help="model path or model card for PHI3-instruct")
|
||||||
|
|
|
@ -779,7 +779,7 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
||||||
case GGML_OP_LEAKY_RELU:
|
case GGML_OP_LEAKY_RELU:
|
||||||
return true;
|
return true;
|
||||||
case GGML_OP_FLASH_ATTN_EXT:
|
case GGML_OP_FLASH_ATTN_EXT:
|
||||||
if (op->src[1]->type != GGML_TYPE_F16) {
|
if (op->src[1]->type != GGML_TYPE_F16) {
|
||||||
return false;
|
return false;
|
||||||
}
|
}
|
||||||
if (op->src[2]->type != GGML_TYPE_F16) {
|
if (op->src[2]->type != GGML_TYPE_F16) {
|
||||||
|
@ -1523,10 +1523,10 @@ static enum ggml_status ggml_metal_graph_compute(
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_MUL_MAT:
|
case GGML_OP_MUL_MAT:
|
||||||
{
|
{
|
||||||
// GGML_ASSERT(ne00 == ne10);
|
GGML_ASSERT(ne00 == ne10);
|
||||||
|
|
||||||
// GGML_ASSERT(ne12 % ne02 == 0);
|
GGML_ASSERT(ne12 % ne02 == 0);
|
||||||
// GGML_ASSERT(ne13 % ne03 == 0);
|
GGML_ASSERT(ne13 % ne03 == 0);
|
||||||
|
|
||||||
const uint r2 = ne12/ne02;
|
const uint r2 = ne12/ne02;
|
||||||
const uint r3 = ne13/ne03;
|
const uint r3 = ne13/ne03;
|
||||||
|
|
4
ggml.c
4
ggml.c
|
@ -5290,8 +5290,8 @@ struct ggml_tensor * ggml_mul_mat(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b) {
|
struct ggml_tensor * b) {
|
||||||
// GGML_ASSERT(ggml_can_mul_mat(a, b));
|
GGML_ASSERT(ggml_can_mul_mat(a, b));
|
||||||
// GGML_ASSERT(!ggml_is_transposed(a));
|
GGML_ASSERT(!ggml_is_transposed(a));
|
||||||
|
|
||||||
bool is_node = false;
|
bool is_node = false;
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue