Rename variables
This commit is contained in:
parent
6200da58fc
commit
51e251a83c
1 changed files with 144 additions and 144 deletions
288
llama.cpp
288
llama.cpp
|
@ -1288,8 +1288,8 @@ struct llama_hparams {
|
|||
uint32_t n_head_kv;
|
||||
uint32_t n_layer;
|
||||
uint32_t n_rot;
|
||||
uint32_t n_key_dim;
|
||||
uint32_t n_value_dim; // dimension of values (d_v) aka n_embd_head
|
||||
uint32_t n_embd_head_k; // dimension of keys (d_k). d_q is assumed to be the same, but there are n_head q heads, and only n_head_kv k-v heads
|
||||
uint32_t n_embd_head_v; // dimension of values (d_v) aka n_embd_head
|
||||
uint32_t n_ff;
|
||||
uint32_t n_expert = 0;
|
||||
uint32_t n_expert_used = 0;
|
||||
|
@ -1316,8 +1316,8 @@ struct llama_hparams {
|
|||
if (this->n_head_kv != other.n_head_kv) return true;
|
||||
if (this->n_layer != other.n_layer) return true;
|
||||
if (this->n_rot != other.n_rot) return true;
|
||||
if (this->n_key_dim != other.n_key_dim) return true;
|
||||
if (this->n_value_dim != other.n_value_dim) return true;
|
||||
if (this->n_embd_head_k != other.n_embd_head_k) return true;
|
||||
if (this->n_embd_head_v != other.n_embd_head_v) return true;
|
||||
if (this->n_ff != other.n_ff) return true;
|
||||
if (this->n_expert != other.n_expert) return true;
|
||||
if (this->n_expert_used != other.n_expert_used) return true;
|
||||
|
@ -1339,12 +1339,12 @@ struct llama_hparams {
|
|||
return n_head/n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t n_key_gqa() const {
|
||||
return n_key_dim * n_head_kv;
|
||||
uint32_t n_embd_k_gqa() const { // dimension of key embeddings across all k-v heads
|
||||
return n_embd_head_k * n_head_kv;
|
||||
}
|
||||
|
||||
uint32_t n_value_gqa() const { // dimension of value embeddings across all heads in a group
|
||||
return n_value_dim * n_head_kv;
|
||||
uint32_t n_embd_v_gqa() const { // dimension of value embeddings across all k-v heads
|
||||
return n_embd_head_v * n_head_kv;
|
||||
}
|
||||
};
|
||||
|
||||
|
@ -1653,9 +1653,9 @@ static bool llama_kv_cache_init(
|
|||
uint32_t n_ctx,
|
||||
int n_gpu_layers,
|
||||
bool offload) {
|
||||
const uint32_t n_key_gqa = hparams.n_key_gqa();
|
||||
const uint32_t n_value_gqa = hparams.n_value_gqa();
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
const uint32_t n_layer = hparams.n_layer;
|
||||
|
||||
cache.has_shift = false;
|
||||
|
||||
|
@ -1686,8 +1686,8 @@ static bool llama_kv_cache_init(
|
|||
const int i_gpu_start = (int) n_layer - n_gpu_layers;
|
||||
|
||||
for (int i = 0; i < (int) n_layer; i++) {
|
||||
ggml_tensor * k = ggml_new_tensor_1d(cache.ctx, ktype, n_key_gqa*n_ctx);
|
||||
ggml_tensor * v = ggml_new_tensor_1d(cache.ctx, vtype, n_value_gqa*n_ctx);
|
||||
ggml_tensor * k = ggml_new_tensor_1d(cache.ctx, ktype, n_embd_k_gqa*n_ctx);
|
||||
ggml_tensor * v = ggml_new_tensor_1d(cache.ctx, vtype, n_embd_v_gqa*n_ctx);
|
||||
ggml_format_name(k, "cache_k_l%d", i);
|
||||
ggml_format_name(v, "cache_v_l%d", i);
|
||||
cache.k_l.push_back(k);
|
||||
|
@ -2681,11 +2681,11 @@ static void llm_load_hparams(
|
|||
// gpt-j n_rot = rotary_dim
|
||||
}
|
||||
|
||||
hparams.n_key_dim = hparams.n_embd / hparams.n_head_kv;
|
||||
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_key_dim, false);
|
||||
hparams.n_embd_head_k = hparams.n_embd / hparams.n_head_kv;
|
||||
ml.get_key(LLM_KV_ATTENTION_KEY_LENGTH, hparams.n_embd_head_k, false);
|
||||
|
||||
hparams.n_value_dim = hparams.n_embd / hparams.n_head_kv;
|
||||
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_value_dim, false);
|
||||
hparams.n_embd_head_v = hparams.n_embd / hparams.n_head_kv;
|
||||
ml.get_key(LLM_KV_ATTENTION_VALUE_LENGTH, hparams.n_embd_head_v, false);
|
||||
|
||||
// arch-specific KVs
|
||||
switch (model.arch) {
|
||||
|
@ -3098,11 +3098,11 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|||
LLAMA_LOG_INFO("%s: n_head_kv = %u\n", __func__, hparams.n_head_kv);
|
||||
LLAMA_LOG_INFO("%s: n_layer = %u\n", __func__, hparams.n_layer);
|
||||
LLAMA_LOG_INFO("%s: n_rot = %u\n", __func__, hparams.n_rot);
|
||||
LLAMA_LOG_INFO("%s: n_key_dim = %u\n", __func__, hparams.n_key_dim);
|
||||
LLAMA_LOG_INFO("%s: n_value_dim = %u\n", __func__, hparams.n_value_dim); // a.k.a. n_embd_head, n_head_dim
|
||||
LLAMA_LOG_INFO("%s: n_embd_head_k = %u\n", __func__, hparams.n_embd_head_k);
|
||||
LLAMA_LOG_INFO("%s: n_embd_head_v = %u\n", __func__, hparams.n_embd_head_v);
|
||||
LLAMA_LOG_INFO("%s: n_gqa = %u\n", __func__, hparams.n_gqa());
|
||||
LLAMA_LOG_INFO("%s: n_key_gqa = %u\n", __func__, hparams.n_key_gqa());
|
||||
LLAMA_LOG_INFO("%s: n_value_gqa = %u\n", __func__, hparams.n_value_gqa());
|
||||
LLAMA_LOG_INFO("%s: n_embd_k_gqa = %u\n", __func__, hparams.n_embd_k_gqa());
|
||||
LLAMA_LOG_INFO("%s: n_embd_v_gqa = %u\n", __func__, hparams.n_embd_v_gqa());
|
||||
LLAMA_LOG_INFO("%s: f_norm_eps = %.1e\n", __func__, hparams.f_norm_eps);
|
||||
LLAMA_LOG_INFO("%s: f_norm_rms_eps = %.1e\n", __func__, hparams.f_norm_rms_eps);
|
||||
LLAMA_LOG_INFO("%s: f_clamp_kqv = %.1e\n", __func__, hparams.f_clamp_kqv);
|
||||
|
@ -3192,11 +3192,11 @@ static bool llm_load_tensors(
|
|||
|
||||
// create tensors for the weights
|
||||
{
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_key_gqa = hparams.n_key_gqa();
|
||||
const int64_t n_value_gqa = hparams.n_value_gqa();
|
||||
const int64_t n_layer = hparams.n_layer;
|
||||
const int64_t n_vocab = hparams.n_vocab;
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
const int64_t n_layer = hparams.n_layer;
|
||||
const int64_t n_vocab = hparams.n_vocab;
|
||||
|
||||
const auto tn = LLM_TN(model.arch);
|
||||
switch (model.arch) {
|
||||
|
@ -3223,9 +3223,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
|
@ -3294,9 +3294,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
|
@ -3345,9 +3345,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
|
@ -3398,9 +3398,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
|
@ -3453,9 +3453,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
model.layers.resize(n_layer);
|
||||
|
@ -3506,9 +3506,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
|
@ -3560,9 +3560,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
|
@ -3610,9 +3610,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
|
@ -3711,9 +3711,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
|
@ -3763,9 +3763,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
|
@ -3813,9 +3813,9 @@ static bool llm_load_tensors(
|
|||
}
|
||||
|
||||
const uint32_t n_ff = hparams.n_ff;
|
||||
const int64_t n_embd_gqa = n_value_gqa;
|
||||
const int64_t n_embd_gqa = n_embd_v_gqa;
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
GGML_ASSERT(n_embd_gqa == n_key_gqa);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd_k_gqa);
|
||||
|
||||
const int i_gpu_start = n_layer - n_gpu_layers;
|
||||
|
||||
|
@ -4054,8 +4054,8 @@ static struct ggml_tensor * llm_build_inp_embd(
|
|||
return inpL;
|
||||
}
|
||||
|
||||
// Persimmon: n_rot = n_key_dim/2
|
||||
// Other: n_rot = n_key_dim
|
||||
// Persimmon: n_rot = n_embd_head_k/2
|
||||
// Other: n_rot = n_embd_head_k
|
||||
static void llm_build_k_shift(
|
||||
struct ggml_context * ctx,
|
||||
const llama_hparams & hparams,
|
||||
|
@ -4068,17 +4068,17 @@ static void llm_build_k_shift(
|
|||
float freq_base,
|
||||
float freq_scale,
|
||||
const llm_build_cb & cb) {
|
||||
const int64_t n_layer = hparams.n_layer;
|
||||
const int64_t n_head_kv = hparams.n_head_kv;
|
||||
const int64_t n_key_dim = hparams.n_key_dim;
|
||||
const int64_t n_key_gqa = hparams.n_key_gqa();
|
||||
const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx;
|
||||
const float ext_factor = cparams.yarn_ext_factor;
|
||||
const float attn_factor = cparams.yarn_attn_factor;
|
||||
const float beta_fast = cparams.yarn_beta_fast;
|
||||
const float beta_slow = cparams.yarn_beta_slow;
|
||||
const int64_t n_layer = hparams.n_layer;
|
||||
const int64_t n_head_kv = hparams.n_head_kv;
|
||||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const int32_t n_orig_ctx = cparams.n_yarn_orig_ctx;
|
||||
const float ext_factor = cparams.yarn_ext_factor;
|
||||
const float attn_factor = cparams.yarn_attn_factor;
|
||||
const float beta_fast = cparams.yarn_beta_fast;
|
||||
const float beta_slow = cparams.yarn_beta_slow;
|
||||
|
||||
GGML_ASSERT(n_key_dim % n_rot == 0);
|
||||
GGML_ASSERT(n_embd_head_k % n_rot == 0);
|
||||
|
||||
struct ggml_tensor * K_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, n_ctx);
|
||||
cb(K_shift, "K_shift", -1);
|
||||
|
@ -4096,9 +4096,9 @@ static void llm_build_k_shift(
|
|||
// we rotate only the first n_rot dimensions
|
||||
ggml_rope_custom_inplace(ctx,
|
||||
ggml_view_3d(ctx, kv.k_l[il],
|
||||
n_key_dim, n_head_kv, n_ctx,
|
||||
ggml_row_size(kv.k_l[il]->type, n_key_dim),
|
||||
ggml_row_size(kv.k_l[il]->type, n_key_gqa),
|
||||
n_embd_head_k, n_head_kv, n_ctx,
|
||||
ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
|
||||
ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
|
||||
0),
|
||||
K_shift, n_rot, rope_type, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow);
|
||||
|
@ -4119,19 +4119,19 @@ static void llm_build_kv_store(
|
|||
int32_t kv_head,
|
||||
const llm_build_cb & cb,
|
||||
int64_t il) {
|
||||
const int64_t n_key_gqa = hparams.n_key_gqa();
|
||||
const int64_t n_value_gqa = hparams.n_value_gqa();
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
|
||||
// compute the transposed [n_tokens, n_embd] V matrix
|
||||
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_value_gqa, n_tokens));
|
||||
struct ggml_tensor * v_cur_t = ggml_transpose(ctx, ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens));
|
||||
//struct ggml_tensor * v_cur_t = ggml_transpose(ctx, v_cur); // TODO: reshape above is likely not needed
|
||||
cb(v_cur_t, "v_cur_t", il);
|
||||
|
||||
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_key_gqa,
|
||||
(ggml_row_size(kv.k_l[il]->type, n_key_gqa))*kv_head);
|
||||
struct ggml_tensor * k_cache_view = ggml_view_1d(ctx, kv.k_l[il], n_tokens*n_embd_k_gqa,
|
||||
(ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa))*kv_head);
|
||||
cb(k_cache_view, "k_cache_view", il);
|
||||
|
||||
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_value_gqa,
|
||||
struct ggml_tensor * v_cache_view = ggml_view_2d(ctx, kv.v_l[il], n_tokens, n_embd_v_gqa,
|
||||
( n_ctx)*ggml_element_size(kv.v_l[il]),
|
||||
(kv_head)*ggml_element_size(kv.v_l[il]));
|
||||
cb(v_cache_view, "v_cache_view", il);
|
||||
|
@ -4281,21 +4281,21 @@ static struct ggml_tensor * llm_build_kqv(
|
|||
float kq_scale,
|
||||
const llm_build_cb & cb,
|
||||
int il) {
|
||||
const int64_t n_head = hparams.n_head;
|
||||
const int64_t n_head_kv = hparams.n_head_kv;
|
||||
const int64_t n_key_dim = hparams.n_key_dim;
|
||||
const int64_t n_key_gqa = hparams.n_key_gqa();
|
||||
const int64_t n_value_dim = hparams.n_value_dim;
|
||||
const int64_t n_value_gqa = hparams.n_value_gqa();
|
||||
const int64_t n_embd = hparams.n_embd;
|
||||
const int64_t n_head = hparams.n_head;
|
||||
const int64_t n_head_kv = hparams.n_head_kv;
|
||||
const int64_t n_embd_head_k = hparams.n_embd_head_k;
|
||||
const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const int64_t n_embd_head_v = hparams.n_embd_head_v;
|
||||
|
||||
struct ggml_tensor * q = ggml_permute(ctx, q_cur, 0, 2, 1, 3);
|
||||
cb(q, "q", il);
|
||||
|
||||
struct ggml_tensor * k =
|
||||
ggml_view_3d(ctx, kv.k_l[il],
|
||||
n_key_dim, n_kv, n_head_kv,
|
||||
ggml_row_size(kv.k_l[il]->type, n_key_gqa),
|
||||
ggml_row_size(kv.k_l[il]->type, n_key_dim),
|
||||
n_embd_head_k, n_kv, n_head_kv,
|
||||
ggml_row_size(kv.k_l[il]->type, n_embd_k_gqa),
|
||||
ggml_row_size(kv.k_l[il]->type, n_embd_head_k),
|
||||
0);
|
||||
cb(k, "k", il);
|
||||
|
||||
|
@ -4334,9 +4334,9 @@ static struct ggml_tensor * llm_build_kqv(
|
|||
// split cached v into n_head heads
|
||||
struct ggml_tensor * v =
|
||||
ggml_view_3d(ctx, kv.v_l[il],
|
||||
n_kv, n_value_dim, n_head_kv,
|
||||
n_kv, n_embd_head_v, n_head_kv,
|
||||
ggml_element_size(kv.v_l[il])*n_ctx,
|
||||
ggml_element_size(kv.v_l[il])*n_ctx*n_value_dim,
|
||||
ggml_element_size(kv.v_l[il])*n_ctx*n_embd_head_v,
|
||||
0);
|
||||
cb(v, "v", il);
|
||||
|
||||
|
@ -4346,7 +4346,7 @@ static struct ggml_tensor * llm_build_kqv(
|
|||
struct ggml_tensor * kqv_merged = ggml_permute(ctx, kqv, 0, 2, 1, 3);
|
||||
cb(kqv_merged, "kqv_merged", il);
|
||||
|
||||
struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_value_gqa, n_tokens);
|
||||
struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd, n_tokens);
|
||||
cb(cur, "kqv_merged_cont", il);
|
||||
|
||||
cur = ggml_mul_mat(ctx, wo, cur);
|
||||
|
@ -4373,10 +4373,10 @@ struct llm_build_context {
|
|||
const int64_t n_ctx; // user-specified context size (can be different from n_ctx_train)
|
||||
const int64_t n_head;
|
||||
const int64_t n_head_kv;
|
||||
const int64_t n_key_dim;
|
||||
const int64_t n_key_gqa;
|
||||
const int64_t n_value_dim;
|
||||
const int64_t n_value_gqa;
|
||||
const int64_t n_embd_head_k;
|
||||
const int64_t n_embd_k_gqa;
|
||||
const int64_t n_embd_head_v;
|
||||
const int64_t n_embd_v_gqa;
|
||||
const int64_t n_expert;
|
||||
const int64_t n_expert_used;
|
||||
|
||||
|
@ -4418,10 +4418,10 @@ struct llm_build_context {
|
|||
n_ctx (cparams.n_ctx),
|
||||
n_head (hparams.n_head),
|
||||
n_head_kv (hparams.n_head_kv),
|
||||
n_key_dim (hparams.n_key_dim),
|
||||
n_key_gqa (hparams.n_key_gqa()),
|
||||
n_value_dim (hparams.n_value_dim),
|
||||
n_value_gqa (hparams.n_value_gqa()),
|
||||
n_embd_head_k (hparams.n_embd_head_k),
|
||||
n_embd_k_gqa (hparams.n_embd_k_gqa()),
|
||||
n_embd_head_v (hparams.n_embd_head_v),
|
||||
n_embd_v_gqa (hparams.n_embd_v_gqa()),
|
||||
n_expert (hparams.n_expert),
|
||||
n_expert_used (hparams.n_expert_used),
|
||||
freq_base (cparams.rope_freq_base),
|
||||
|
@ -4464,8 +4464,8 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_llama() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
|
@ -4650,8 +4650,8 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_baichuan() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
@ -4770,9 +4770,9 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_falcon() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
const int64_t n_embd_gqa = hparams.n_value_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
|
@ -4894,9 +4894,9 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_starcoder() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
const int64_t n_embd_gqa = hparams.n_value_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
|
@ -4995,12 +4995,12 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_persimmon() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
const int64_t n_embd_gqa = hparams.n_value_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
|
||||
const int64_t n_rot = n_key_dim / 2;
|
||||
const int64_t n_rot = n_embd_head_k / 2;
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
@ -5209,9 +5209,9 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_refact() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
const int64_t n_embd_gqa = hparams.n_value_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
|
@ -5302,9 +5302,9 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_bloom() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
const int64_t n_embd_gqa = hparams.n_value_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
|
@ -5398,9 +5398,9 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_mpt() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
const int64_t n_embd_gqa = hparams.n_value_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
|
@ -5498,8 +5498,8 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_stablelm() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
@ -5611,8 +5611,8 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_qwen() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
@ -5725,9 +5725,9 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_phi2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
const int64_t n_embd_gqa = hparams.n_value_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
|
@ -5842,8 +5842,8 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_plamo() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph(ctx0);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
@ -5949,9 +5949,9 @@ struct llm_build_context {
|
|||
struct ggml_cgraph * build_gpt2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_value_dim;
|
||||
const int64_t n_embd_gqa = hparams.n_value_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_key_dim);
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
const int64_t n_embd_gqa = hparams.n_embd_v_gqa();
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_gqa == n_embd);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
|
@ -9741,8 +9741,8 @@ struct llama_context * llama_new_context_with_model(
|
|||
const ggml_type type_k = params.type_k;
|
||||
const ggml_type type_v = params.type_v;
|
||||
|
||||
GGML_ASSERT(hparams.n_key_dim % ggml_blck_size(type_k) == 0);
|
||||
GGML_ASSERT(hparams.n_value_dim % ggml_blck_size(type_v) == 0);
|
||||
GGML_ASSERT(hparams.n_embd_head_k % ggml_blck_size(type_k) == 0);
|
||||
GGML_ASSERT(hparams.n_embd_head_v % ggml_blck_size(type_v) == 0);
|
||||
|
||||
// reserve memory for context buffers
|
||||
if (!hparams.vocab_only) {
|
||||
|
@ -10286,10 +10286,10 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
|
|||
const auto & hparams = ctx->model.hparams;
|
||||
const auto & cparams = ctx->cparams;
|
||||
|
||||
const auto n_layer = hparams.n_layer;
|
||||
const auto n_key_gqa = hparams.n_key_gqa();
|
||||
const auto n_value_gqa = hparams.n_value_gqa();
|
||||
const auto n_ctx = cparams.n_ctx;
|
||||
const auto n_layer = hparams.n_layer;
|
||||
const auto n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const auto n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
const auto n_ctx = cparams.n_ctx;
|
||||
|
||||
const size_t kv_buf_size = ggml_backend_buffer_get_size(kv_self.buf);
|
||||
const uint32_t kv_head = kv_self.head;
|
||||
|
@ -10311,15 +10311,15 @@ static void llama_copy_state_data_internal(struct llama_context * ctx, llama_dat
|
|||
std::vector<struct ggml_tensor *> vout2d(n_layer);
|
||||
|
||||
for (int il = 0; il < (int) n_layer; ++il) {
|
||||
kout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_key_gqa, kv_head);
|
||||
vout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_value_gqa);
|
||||
kout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd_k_gqa, kv_head);
|
||||
vout2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd_v_gqa);
|
||||
|
||||
ggml_tensor * k2d = ggml_view_2d(cpy_ctx, kv_self.k_l[il],
|
||||
n_key_gqa, kv_head,
|
||||
elt_size*n_key_gqa, 0);
|
||||
n_embd_k_gqa, kv_head,
|
||||
elt_size*n_embd_k_gqa, 0);
|
||||
|
||||
ggml_tensor * v2d = ggml_view_2d(cpy_ctx, kv_self.v_l[il],
|
||||
kv_head, n_value_gqa,
|
||||
kv_head, n_embd_v_gqa,
|
||||
elt_size*n_ctx, 0);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, k2d, kout2d[il]));
|
||||
|
@ -10426,10 +10426,10 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
|||
const auto & hparams = ctx->model.hparams;
|
||||
const auto & cparams = ctx->cparams;
|
||||
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_key_gqa = hparams.n_key_gqa();
|
||||
const int n_value_gqa = hparams.n_value_gqa();
|
||||
const int n_ctx = cparams.n_ctx;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_embd_k_gqa = hparams.n_embd_k_gqa();
|
||||
const int n_embd_v_gqa = hparams.n_embd_v_gqa();
|
||||
const int n_ctx = cparams.n_ctx;
|
||||
|
||||
size_t kv_buf_size;
|
||||
uint32_t kv_head;
|
||||
|
@ -10453,15 +10453,15 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
|
|||
std::vector<struct ggml_tensor *> vin2d(n_layer);
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
kin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_key_gqa, kv_head);
|
||||
vin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_value_gqa);
|
||||
kin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.k_l[il]->type, n_embd_k_gqa, kv_head);
|
||||
vin2d[il] = ggml_new_tensor_2d(cpy_ctx, kv_self.v_l[il]->type, kv_head, n_embd_v_gqa);
|
||||
|
||||
ggml_tensor * k2d = ggml_view_2d(cpy_ctx, kv_self.k_l[il],
|
||||
n_key_gqa, kv_head,
|
||||
elt_size*n_key_gqa, 0);
|
||||
n_embd_k_gqa, kv_head,
|
||||
elt_size*n_embd_k_gqa, 0);
|
||||
|
||||
ggml_tensor * v2d = ggml_view_2d(cpy_ctx, kv_self.v_l[il],
|
||||
kv_head, n_value_gqa,
|
||||
kv_head, n_embd_v_gqa,
|
||||
elt_size*n_ctx, 0);
|
||||
|
||||
ggml_build_forward_expand(gf, ggml_cpy(cpy_ctx, kin2d[il], k2d));
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue