refactor
This commit is contained in:
parent
886e68aee9
commit
52186adcbe
1 changed files with 62 additions and 60 deletions
122
llama.cpp
122
llama.cpp
|
@ -11311,6 +11311,47 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
|||
}
|
||||
}
|
||||
|
||||
// TODO: remove this when #5830 is merged
|
||||
static int32_t llama_tensor_quantize_internal(enum ggml_type new_type, const float * f32_data, void * new_data, const int chunk_size, int nrows, int n_per_row, int64_t * hist_cur, const float * imatrix, std::vector<std::thread> & workers, const int nthread) {
|
||||
std::mutex mutex;
|
||||
int counter = 0;
|
||||
size_t new_size = 0;
|
||||
if (nthread < 2) {
|
||||
// single-thread
|
||||
return ggml_quantize_chunk(new_type, f32_data, new_data, 0, nrows, n_per_row, hist_cur, imatrix);
|
||||
}
|
||||
auto compute = [&mutex, &counter, &hist_cur, &new_size, new_type, f32_data, new_data, chunk_size,
|
||||
nrows, n_per_row, imatrix]() {
|
||||
std::array<int64_t, 1 << 4> local_hist = {};
|
||||
const int nrows_per_chunk = chunk_size / n_per_row;
|
||||
size_t local_size = 0;
|
||||
while (true) {
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
int first_row = counter; counter += nrows_per_chunk;
|
||||
if (first_row >= nrows) {
|
||||
if (local_size > 0) {
|
||||
for (int j=0; j<int(local_hist.size()); ++j) {
|
||||
hist_cur[j] += local_hist[j];
|
||||
}
|
||||
new_size += local_size;
|
||||
}
|
||||
break;
|
||||
}
|
||||
lock.unlock();
|
||||
const int this_nrow = std::min(nrows - first_row, nrows_per_chunk);
|
||||
local_size += ggml_quantize_chunk(new_type, f32_data, new_data,
|
||||
first_row * n_per_row, this_nrow, n_per_row, local_hist.data(), imatrix);
|
||||
}
|
||||
};
|
||||
for (int it = 0; it < nthread - 1; ++it) {
|
||||
workers.emplace_back(compute);
|
||||
}
|
||||
compute();
|
||||
for (auto & w : workers) { w.join(); }
|
||||
workers.clear();
|
||||
return new_size;
|
||||
}
|
||||
|
||||
int32_t llama_merge_models(const struct llama_merge_config * config) {
|
||||
#if defined(__linux__) || defined(_WIN32)
|
||||
constexpr bool use_mmap = true;
|
||||
|
@ -11439,10 +11480,8 @@ int32_t llama_merge_models(const struct llama_merge_config * config) {
|
|||
return ggml_nbytes(tensor);
|
||||
};
|
||||
|
||||
std::mutex mutex;
|
||||
std::condition_variable condition;
|
||||
size_t n_done = 0; // protected by mutex
|
||||
size_t n_curr = 0; // protected by mutex
|
||||
size_t n_done = 0;
|
||||
size_t n_curr = 0;
|
||||
auto log_step = [&](const struct ggml_tensor * tensor) {
|
||||
n_done++;
|
||||
LLAMA_LOG_INFO("[%4ld/%4ld] %36s - [%s], input type = %6s\n",
|
||||
|
@ -11476,33 +11515,13 @@ int32_t llama_merge_models(const struct llama_merge_config * config) {
|
|||
log_step(out_tensor);
|
||||
}
|
||||
|
||||
// TODO: allow user to set n_threads
|
||||
const int n_threads = std::thread::hardware_concurrency();
|
||||
int n_running = 0; // protected by mutex
|
||||
auto worker_release = [&]() {
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
n_running--;
|
||||
}
|
||||
condition.notify_all();
|
||||
};
|
||||
auto worker_acquire = [&]() {
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
condition.wait(lock, [&]{
|
||||
return n_running < n_threads;
|
||||
});
|
||||
n_running++;
|
||||
};
|
||||
|
||||
// process function, to be run as thread
|
||||
// TODO: multi-threading here is done for each tensor (instead of each row like in llama_model_quantize_internal), this is not ideal but still better than single-thread
|
||||
const size_t n_start = n_curr;
|
||||
auto process_output_tensor = [&]() {
|
||||
worker_acquire();
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
struct ggml_tensor * out_tensor = output_tensors[n_curr];
|
||||
const size_t my_number = n_curr++;
|
||||
lock.unlock();
|
||||
std::vector<std::thread> workers;
|
||||
workers.reserve(n_threads);
|
||||
|
||||
// process tensors associated to layer
|
||||
for (auto & out_tensor : output_tensors) {
|
||||
const size_t n_elements = ggml_nelements(out_tensor);
|
||||
std::vector<no_init<uint8_t>> in_buf;
|
||||
std::vector<no_init<float>> f32_in_buf; // dequant it internally
|
||||
|
@ -11513,6 +11532,10 @@ int32_t llama_merge_models(const struct llama_merge_config * config) {
|
|||
int i_layer_out = get_i_layer(out_name.c_str());
|
||||
auto layer = config->layers[i_layer_out];
|
||||
|
||||
if (i_layer_out < 0) {
|
||||
continue; // skip non-layer tensors
|
||||
}
|
||||
|
||||
for (size_t i_model = 0; i_model < config->n_models; i_model++) {
|
||||
int src_layer = layer.srcs[i_model]; // source layer
|
||||
float scale = layer.scales[i_model];
|
||||
|
@ -11521,16 +11544,13 @@ int32_t llama_merge_models(const struct llama_merge_config * config) {
|
|||
if (in_tensor == nullptr) {
|
||||
LLAMA_LOG_ERROR("Cannot find layer name %s from model %ld\n", src_name.c_str(), i_model + 1);
|
||||
clean_up();
|
||||
return; // TODO: not good for multi-threading
|
||||
return -1; // stop
|
||||
}
|
||||
read_tensor_data(in_tensor, *mls[i_model], in_buf);
|
||||
// dequant the tensor to FP32
|
||||
if (in_tensor->type != GGML_TYPE_F32) {
|
||||
//LLAMA_LOG_ERROR("dequant ");
|
||||
std::vector<std::thread> workers;
|
||||
int nthread = 4; // limit for now
|
||||
workers.reserve(nthread);
|
||||
llama_convert_tensor_internal(in_tensor, f32_in_buf, workers, n_elements, nthread);
|
||||
llama_convert_tensor_internal(in_tensor, f32_in_buf, workers, n_elements, n_threads);
|
||||
} else {
|
||||
// if we already have f32, just copy it
|
||||
//LLAMA_LOG_ERROR("f32_copy ");
|
||||
|
@ -11552,27 +11572,24 @@ int32_t llama_merge_models(const struct llama_merge_config * config) {
|
|||
std::array<int64_t, 1 << 4> hist_cur = {};
|
||||
const int n_per_row = out_tensor->ne[0];
|
||||
const int n_rows = n_elements / n_per_row;
|
||||
size_t new_size = ggml_quantize_chunk(
|
||||
static const int min_chunk_size = 32 * 512;
|
||||
const int chunk_size = n_per_row >= min_chunk_size ? n_per_row : n_per_row * ((min_chunk_size + n_per_row - 1)/n_per_row);
|
||||
size_t new_size = llama_tensor_quantize_internal(
|
||||
out_tensor->type,
|
||||
f32_out_buf.data(),
|
||||
out_buf.data(),
|
||||
0, // start offset
|
||||
chunk_size,
|
||||
n_rows,
|
||||
n_per_row,
|
||||
hist_cur.data(), // unused for now
|
||||
nullptr);
|
||||
nullptr,
|
||||
workers,
|
||||
n_threads);
|
||||
GGML_ASSERT(new_size == out_buf.size());
|
||||
}
|
||||
|
||||
// wait until my turn
|
||||
// write tensor to file
|
||||
{
|
||||
std::unique_lock<std::mutex> lock(mutex);
|
||||
// if I'm the first, no need to wait for other
|
||||
if (my_number > n_start) {
|
||||
condition.wait(lock, [&]{
|
||||
return n_done == my_number;
|
||||
});
|
||||
}
|
||||
LLAMA_LOG_ERROR("===> INPUT [layer %d] %f %f %f\n", i_layer_out, f32_in_buf[0].value, f32_in_buf[1].value, f32_in_buf[2].value);
|
||||
LLAMA_LOG_ERROR("===> OUTPUT [layer %d] %f %f %f\n", i_layer_out, f32_out_buf[0], f32_out_buf[1], f32_out_buf[2]);
|
||||
// my turn, write the result!
|
||||
|
@ -11581,21 +11598,6 @@ int32_t llama_merge_models(const struct llama_merge_config * config) {
|
|||
zeros(fout, GGML_PAD(out_buf.size(), GGUF_DEFAULT_ALIGNMENT) - out_buf.size());
|
||||
log_step(out_tensor);
|
||||
}
|
||||
worker_release();
|
||||
};
|
||||
|
||||
// spawn all thread to process
|
||||
std::vector<std::thread> threads;
|
||||
for (auto & out_tensor : output_tensors) {
|
||||
std::string out_name = ggml_get_name(out_tensor);
|
||||
int i_layer_out = get_i_layer(out_name.c_str());
|
||||
if (i_layer_out >= 0) {
|
||||
// tensor belongs to a layer, start worker thread for it
|
||||
threads.emplace_back(process_output_tensor);
|
||||
}
|
||||
}
|
||||
for (auto & thread : threads) {
|
||||
thread.join();
|
||||
}
|
||||
|
||||
// go back to beginning of file and write the updated meta data
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue