in-series multithreading for prompt embedding?
added commented-out code to attempt to start implementing mutlithreading for embedding in main
This commit is contained in:
parent
86842b20e5
commit
544268888b
1 changed files with 108 additions and 7 deletions
|
@ -17,6 +17,15 @@ struct diff_wrapper {
|
|||
size_t n_rows; // number of rows in the matrix for size calculation
|
||||
};
|
||||
|
||||
/* TODO part of multithreading
|
||||
struct tokens_pair {
|
||||
size_t max_seq_len;
|
||||
std::string positive;
|
||||
std::string negative;
|
||||
std::vector<llama_token> tokens_pos;
|
||||
std::vector<llama_token> tokens_neg;
|
||||
}; */
|
||||
|
||||
struct callback_data {
|
||||
std::vector<uint8_t> data;
|
||||
|
||||
|
@ -45,6 +54,8 @@ struct callback_data {
|
|||
struct ctrl_params {
|
||||
/* default meta parameters */
|
||||
bool always_reload = false;
|
||||
// TODO part of multithreading
|
||||
// bool max_batch = false;
|
||||
int n_completions = 64;
|
||||
int n_threads = 8;
|
||||
|
||||
|
@ -84,6 +95,8 @@ static void print_usage(const char * executable) {
|
|||
printf(" -t, --num-threads N number of threads to use (do not confuse with gpt-opts -t)\n");
|
||||
printf(" default: 8\n");
|
||||
printf(" --always-reload reload the model for every new template to parse\n");
|
||||
// TODO part of multithreading
|
||||
//printf(" --max-batch maximize batch sizes, rather than optimizing for multithreading\n");
|
||||
printf("\n");
|
||||
printf("gpt-opts:\n");
|
||||
printf(" other options from main\n");
|
||||
|
@ -173,6 +186,11 @@ static int ctrlvec_params_parse_ex(int argc, char ** argv, ctrl_params & params)
|
|||
params.always_reload = true;
|
||||
skipme += 1;
|
||||
}
|
||||
/* TODO part of multithreading
|
||||
if (arg == "--max-batch") {
|
||||
params.max_batch = true;
|
||||
skipme += 1;
|
||||
} */
|
||||
// TODO it might be nice QoL to have single positive/negative args
|
||||
// we do not handle any other unknown arguments here because they will be handled by gpt_parse_params
|
||||
}
|
||||
|
@ -209,10 +227,10 @@ static std::vector<std::string> ctrlvec_load_prompt_file(std::string path) {
|
|||
}
|
||||
|
||||
static std::string format_template(std::string persona, std::string suffix) {
|
||||
const std::string user_tag = "[INST]";
|
||||
const std::string asst_tag = "[/INST]";
|
||||
// TODO make this dynamic - allow the user to change it somehow - and adapt based on model
|
||||
//const std::string user_tag = "[INST]";
|
||||
//const std::string asst_tag = "[/INST]";
|
||||
//return user_tag + " Act as if you're extremely " + persona + ". " + asst_tag + " " + suffix;
|
||||
// TODO make this dynamic - allow the user to change it somehow - and adapt based on model
|
||||
return persona + " " + suffix; // entry in positive/negative.txt must already be formatted i.e. "[INST] Act as if you're extremely happy. [/INST]"
|
||||
}
|
||||
|
||||
|
@ -233,6 +251,61 @@ static void populate_entries(ctrl_params & cparams, std::string positive, std::s
|
|||
}
|
||||
}
|
||||
|
||||
/* TODO part of multithreading
|
||||
static size_t tokenize_pair(tokens_pair & tp, llama_context * ctx, const std::string & pos, const std::string & neg, const bool add_bos) {
|
||||
tp.positive = pos;
|
||||
tp.negative = neg;
|
||||
tp.tokens_pos = ::llama_tokenize(ctx, pos, add_bos);
|
||||
tp.tokens_neg = ::llama_tokenize(ctx, neg, add_bos);
|
||||
tp.max_seq_len = std::max(tp.tokens_pos.size(), tp.tokens_neg.size());
|
||||
padding_seq(ctx, tp.tokens_pos, tp.max_seq_len);
|
||||
padding_seq(ctx, tp.tokens_neg, tp.max_seq_len);
|
||||
return 2 * max_seq_len;
|
||||
}
|
||||
|
||||
// current batching strategy works as follows:
|
||||
// each batch runs on one model load, since we reload the model after every batch to clear context
|
||||
// therefore each batch must be small enough to fit in the context size
|
||||
// we try to make the batches multiples of thread count so threads are used most efficiently
|
||||
static std::vector<std::vector<tokens_pair>> batch_prompts(llama_context * ctx, ctrl_params & cparams, int n_ctx, const bool add_bos) {
|
||||
std::vector<std::vector<tokens_pair>> batched_prompts;
|
||||
std::vector<tokens_pair> thread_batch;
|
||||
std::vector<tokens_pair> batch;
|
||||
size_t n_batch_tokens = 0;
|
||||
|
||||
for (size_t i = 0; i < cparams.positive_entries.size(); ++i) {
|
||||
tokens_pair tp;
|
||||
size_t n_tokens = tokenize_pair(tp, ctx, cparams.positive_entries[i], cparams.negative_entries[i], add_bos);
|
||||
n_batch_tokens += n_tokens;
|
||||
|
||||
if (n_batch_tokens > n_ctx) {
|
||||
if (cparams.max_batch) {
|
||||
batch.insert(batch.end(), thread_batch.begin(), thread_batch.end());
|
||||
thread_batch.clear();
|
||||
}
|
||||
batched_prompts.push_back(batch);
|
||||
batch.clear();
|
||||
n_batch_tokens = n_tokens;
|
||||
}
|
||||
|
||||
thread_batch.push_back(tp);
|
||||
|
||||
if (thread_batch.size() >= cparams.n_threads) {
|
||||
batch.insert(batch.end(), thread_batch.begin(), thread_batch.end());
|
||||
thread_batch.clear();;
|
||||
}
|
||||
}
|
||||
|
||||
if (!thread_batch.empty()) {
|
||||
batch.insert(batch.end(), thread_batch.begin(), thread_batch.end());
|
||||
}
|
||||
if (!batch.empty()) {
|
||||
batched_prompts.push_back(batch);
|
||||
}
|
||||
|
||||
return batched_prompts;
|
||||
} */
|
||||
|
||||
static std::string ggml_ne_string(const ggml_tensor * t) {
|
||||
std::string str;
|
||||
for (int i = 0; i < GGML_MAX_DIMS; ++i) {
|
||||
|
@ -387,13 +460,14 @@ static void concatenate_diffs(callback_data & cb_data) {
|
|||
// BEGIN NON-GGML IMPLEMENTATION
|
||||
|
||||
// TODO translate to ggml
|
||||
// this probably doesn't want to be here - put it into the compute graph as a step in processing each layer
|
||||
// this probably doesn't want to be a separate function - put it into the compute graph as a step in processing each layer
|
||||
static float* square_diff(callback_data & cb_data, size_t idx) {
|
||||
float* result = new float[cb_data.n_embd * cb_data.n_embd];
|
||||
std::memset(result, 0, cb_data.n_embd * cb_data.n_embd * sizeof(float));
|
||||
for (size_t i = 0; i < (size_t) cb_data.n_embd; i++) {
|
||||
for (size_t j = 0; j < (size_t) cb_data.n_embd; j++) {
|
||||
float sum = 0.0f;
|
||||
// watch out for indexing - can't just use cb_data.n_tokens
|
||||
for (size_t k = 0; k < cb_data.v_diff[idx].n_rows; k++) {
|
||||
sum += cb_data.v_diff[idx].diff[i + cb_data.n_embd * k] * cb_data.v_diff[idx].diff[j + cb_data.n_embd * k];
|
||||
}
|
||||
|
@ -560,6 +634,10 @@ int main(int argc, char ** argv) {
|
|||
fprintf(stderr, "number of positive and negative prompts must be equal");
|
||||
return 1;
|
||||
}
|
||||
if (cparams.positive_prompts.empty()) {
|
||||
fprintf(stderr, "must provide at least one prompt pair");
|
||||
return 1;
|
||||
}
|
||||
|
||||
callback_data cb_data;
|
||||
|
||||
|
@ -578,6 +656,7 @@ int main(int argc, char ** argv) {
|
|||
llama_context * ctx;
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
|
||||
int n_ctx = llama_n_ctx(ctx);
|
||||
int n_layers = llama_n_layer(model);
|
||||
int n_embd = llama_n_embd(model);
|
||||
cb_data.n_embd = n_embd;
|
||||
|
@ -596,10 +675,32 @@ int main(int argc, char ** argv) {
|
|||
|
||||
const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx));
|
||||
|
||||
int token_ct = 0;
|
||||
int n_ctx = llama_n_ctx(ctx);
|
||||
/* TODO part of multithreading
|
||||
std::vector<std::vector<tokens_pair>> & batched_prompts = batch_prompts(ctx, cparams, n_ctx, add_bos);
|
||||
std::vector<std::thread> threads;
|
||||
auto worker_function = [&](tokens_pair & tp) {
|
||||
printf("Evaluating prompt: \"%s\" - \"%s\" (%ld tokens)\n", tp.positive.c_str(), tp.negative.c_str(), tp.max_seq_len);
|
||||
// TODO so how do we deal with this?
|
||||
// TODO we only have one cb_data object that everything gets passed to. so we need to be able to write to a different object per thread
|
||||
// TODO but there's only one cb_eval function used as callback by the model... help wanted
|
||||
};
|
||||
printf("Batching prompts...\n");
|
||||
for (int i = 0; i < batched_prompts.size(); ++i) {
|
||||
for (int j = 0; j < batched_prompts[i].size(); ++j) {
|
||||
threads.emplace_back(worker_function, batched_prompts[i][j]);
|
||||
}
|
||||
for (auto & th : threads) th.join();
|
||||
|
||||
// reload model for next batch
|
||||
llama_free(ctx);
|
||||
llama_free_model(model);
|
||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||
}
|
||||
printf("Done with batching prompts.\n");
|
||||
*/
|
||||
|
||||
int token_ct = 0;
|
||||
|
||||
// TODO multithread this
|
||||
for(size_t i = 0; i < cparams.positive_entries.size(); ++i) {
|
||||
std::string positive_prompt = cparams.positive_entries[i];
|
||||
std::string negative_prompt = cparams.negative_entries[i];
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue