Add rwkv5 layer norms
This commit is contained in:
parent
4e23d9715b
commit
5479588569
1 changed files with 26 additions and 9 deletions
|
@ -1345,9 +1345,11 @@ static const std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NA
|
||||||
LLM_ARCH_RWKV,
|
LLM_ARCH_RWKV,
|
||||||
{
|
{
|
||||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||||
|
{ LLM_TENSOR_TOKEN_EMBD_NORM, "token_embd_norm" },
|
||||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||||
{ LLM_TENSOR_OUTPUT, "output" },
|
{ LLM_TENSOR_OUTPUT, "output" },
|
||||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||||
|
{ LLM_TENSOR_ATTN_NORM_2, "blk.%d.attn_norm_2" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -8238,6 +8240,10 @@ static bool llm_load_tensors(
|
||||||
{
|
{
|
||||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||||
|
|
||||||
|
// Block 0, LN0
|
||||||
|
model.tok_norm = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
|
||||||
|
model.tok_norm_b = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD_NORM, "weight"), {n_embd});
|
||||||
|
|
||||||
// output
|
// output
|
||||||
{
|
{
|
||||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||||
|
@ -8252,6 +8258,9 @@ static bool llm_load_tensors(
|
||||||
|
|
||||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||||
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
layer.attn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "bias", i), {n_embd});
|
||||||
|
|
||||||
|
layer.attn_norm_2 = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "weight", i), {n_embd});
|
||||||
|
layer.attn_norm_2_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM_2, "bias", i), {n_embd});
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
}
|
||||||
|
@ -14740,22 +14749,30 @@ struct llm_build_context {
|
||||||
ggml_cgraph *gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
ggml_cgraph *gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||||
|
|
||||||
// Input embeddings, start of the model after tokenizing ({n_embd, n_tokens})
|
// Input embeddings, start of the model after tokenizing ({n_embd, n_tokens})
|
||||||
ggml_tensor *input_embeddings = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
ggml_tensor * input_embeddings = llm_build_inp_embd(ctx0, lctx, hparams, batch, model.tok_embd, cb);
|
||||||
|
|
||||||
// Dummy operation, just to copy, we're not doing anything with it right now
|
// x = self.layer_norm(x, self.w.blocks[0].ln0)
|
||||||
ggml_tensor *output = ggml_scale(ctx0, input_embeddings, 1.0);
|
ggml_tensor * current = llm_build_norm(ctx0, input_embeddings, hparams, model.tok_norm, model.tok_norm_b, LLM_NORM, cb, -1);
|
||||||
|
|
||||||
|
for (int layer_i = 0; layer_i < n_layer; ++layer_i) {
|
||||||
|
const llama_layer * layer = &model.layers[layer_i];
|
||||||
|
|
||||||
|
current = llm_build_norm(ctx0, current, hparams, layer->attn_norm, layer->attn_norm_b, LLM_NORM, cb, -1);
|
||||||
|
|
||||||
|
current = llm_build_norm(ctx0, current, hparams, layer->attn_norm_2, layer->attn_norm_2_b, LLM_NORM, cb, -1);
|
||||||
|
}
|
||||||
|
|
||||||
// Something related to skipping tokens, specifics unclear
|
// Something related to skipping tokens, specifics unclear
|
||||||
struct ggml_tensor * inp_out_ids = build_inp_out_ids();
|
ggml_tensor * inp_out_ids = build_inp_out_ids();
|
||||||
output = ggml_get_rows(ctx0, output, inp_out_ids);
|
current = ggml_get_rows(ctx0, current, inp_out_ids);
|
||||||
|
|
||||||
// Output head, convert result vector to logits
|
// Output head, convert result vector to logits
|
||||||
output = llm_build_norm(ctx0, output, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1);
|
current = llm_build_norm(ctx0, current, hparams, model.output_norm, model.output_norm_b, LLM_NORM, cb, -1);
|
||||||
output = ggml_mul_mat(ctx0, model.output, output);
|
current = ggml_mul_mat(ctx0, model.output, current);
|
||||||
|
|
||||||
// Mark the output as being the result
|
// Mark the output as being the result
|
||||||
cb(output, "result_output", -1);
|
cb(current, "result_output", -1);
|
||||||
ggml_build_forward_expand(gf, output);
|
ggml_build_forward_expand(gf, current);
|
||||||
|
|
||||||
return gf;
|
return gf;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue