server: bench: PR feedback and improved k6 script configuration

This commit is contained in:
Pierrick HYMBERT 2024-03-09 00:13:54 +01:00
parent 0b822b6a0f
commit 548bc9635a
2 changed files with 69 additions and 39 deletions

View file

@ -2,12 +2,18 @@
Benchmark is using [k6](https://k6.io/).
##### Install k6 - ubuntu
##### Install k6
Follow instruction from: https://k6.io/docs/get-started/installation/
Example for ubuntu:
```shell
snap install k6
```
#### Downloading the ShareGPT dataset
#### Download a dataset
This dataset was originally proposed in [vLLM benchmarks](https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md).
```shell
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
@ -21,7 +27,7 @@ Example for PHI-2
```
#### Start the server
The server must listen on `localhost:8080`.
The server must answer OAI Chat completion requests on `http://localhost:8080/v1` or according to the environment variable `SERVER_BENCH_URL`.
Example:
```shell
@ -36,13 +42,22 @@ server --host localhost --port 8080 \
-ngl 33
```
#### Run the bench
#### Run the benchmark
```shell
k6 run script.js
```
#### Change the number of concurrent user
in the `script.js`, change the ramping period according to your number of slots.
The benchmark values can be overridden with:
- `SERVER_BENCH_URL` server url prefix for chat completions, default `http://localhost:8080/v1`
- `SERVER_BENCH_N_PROMPTS` total prompts to randomly select in the benchmark, default `480`
- `SERVER_BENCH_MODEL_ALIAS` model alias to pass in the completion request, default `my-model`
Or with [k6 options](https://k6.io/docs/using-k6/k6-options/reference/):
```shell
SERVER_BENCH_N_PROMPTS=500 k6 run script.js --duration 10m --iterations 500 --vus 8
```
#### Metrics

View file

@ -1,51 +1,58 @@
import http from 'k6/http';
import { check, sleep } from 'k6';
import { SharedArray } from 'k6/data';
import { Counter, Gauge, Rate } from 'k6/metrics';
import http from 'k6/http'
import {check, sleep} from 'k6'
import {SharedArray} from 'k6/data'
import {Counter, Gauge, Rate} from 'k6/metrics'
// Server chat completions prefix
const server_url = __ENV.SERVER_BENCH_URL ? __ENV.SERVER_BENCH_URL : 'http://localhost:8080/v1'
// Number of total prompts in the dataset - default 10m / 10 seconds/request * number of users
const n_prompt = __ENV.SERVER_BENCH_N_PROMPTS ? parseInt(__ENV.SERVER_BENCH_N_PROMPTS) : 600 / 10 * 8
// Model name to request
const model = __ENV.SERVER_BENCH_MODEL_ALIAS ? __ENV.SERVER_BENCH_MODEL_ALIAS : 'my-model'
// Dataset path
const dataset_path = __ENV.SERVER_BENCH_DATASET ? __ENV.SERVER_BENCH_DATASET : './ShareGPT_V3_unfiltered_cleaned_split.json'
export function setup() {
console.info(`Benchmark config: server_url=${server_url} n_prompt=${n_prompt} model=${model} dataset_path=${dataset_path}`)
}
const data = new SharedArray('conversations', function () {
return JSON.parse(open('./ShareGPT_V3_unfiltered_cleaned_split.json'))
return JSON.parse(open(dataset_path))
// Filter out the conversations with less than 2 turns.
.filter(data => data["conversations"].length >= 2)
// Only keep the first two turns of each conversation.
.map(data => Array(data["conversations"][0]["value"], data["conversations"][1]["value"]));
});
.map(data => Array(data["conversations"][0]["value"], data["conversations"][1]["value"]))
// Keep only first n prompts
.slice(0, n_prompt)
})
const llamacpp_prompt_tokens = new Gauge('llamacpp_prompt_tokens');
const llamacpp_completion_tokens = new Gauge('llamacpp_completion_tokens');
const llamacpp_prompt_tokens = new Gauge('llamacpp_prompt_tokens')
const llamacpp_completion_tokens = new Gauge('llamacpp_completion_tokens')
const llamacpp_completions_tokens_seconds = new Gauge('llamacpp_completions_tokens_seconds');
const llamacpp_completions_tokens_seconds = new Gauge('llamacpp_completions_tokens_seconds')
const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter');
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter');
const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter')
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter')
const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate');
const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate');
const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate')
const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate')
export const options = {
thresholds: {
llamacpp_completions_truncated_rate: [
// more than 10% of truncated input will abort the test
{ threshold: 'rate < 0.1', abortOnFail: true, delayAbortEval: '1m' },
{threshold: 'rate < 0.1', abortOnFail: true, delayAbortEval: '1m'},
],
},
scenarios: {
completions: {
executor: 'ramping-vus',
startVUs: 1,
stages: [
{duration: '1m', target: 8},
{duration: '3m', target: 8},
{duration: '1m', target: 0},
],
gracefulRampDown: '30s',
},
},
};
duration: '10m',
vus: 8,
}
export default function () {
const conversation = data[0]
const conversation = data[Math.floor(Math.random() * data.length)]
const payload = {
"messages": [
{
@ -57,15 +64,23 @@ export default function () {
"content": conversation[1],
}
],
"model": "model",
"model": model,
"stream": false,
}
let res = http.post('http://localhost:8080/v1/chat/completions', JSON.stringify(payload), {
headers: { 'Content-Type': 'application/json' },
const body = JSON.stringify(payload)
console.debug(`request: ${body}`)
let res = http.post(`${server_url}/chat/completions`, body, {
headers: {'Content-Type': 'application/json'},
timeout: '300s'
})
check(res, {'success completion': (r) => r.status === 200})
console.debug(`response: ${res.body}`)
const completions = res.json()
llamacpp_prompt_tokens.add(completions.usage.prompt_tokens)