server: bench: PR feedback and improved k6 script configuration
This commit is contained in:
parent
0b822b6a0f
commit
548bc9635a
2 changed files with 69 additions and 39 deletions
|
@ -2,12 +2,18 @@
|
|||
|
||||
Benchmark is using [k6](https://k6.io/).
|
||||
|
||||
##### Install k6 - ubuntu
|
||||
##### Install k6
|
||||
|
||||
Follow instruction from: https://k6.io/docs/get-started/installation/
|
||||
|
||||
Example for ubuntu:
|
||||
```shell
|
||||
snap install k6
|
||||
```
|
||||
|
||||
#### Downloading the ShareGPT dataset
|
||||
#### Download a dataset
|
||||
|
||||
This dataset was originally proposed in [vLLM benchmarks](https://github.com/vllm-project/vllm/blob/main/benchmarks/README.md).
|
||||
|
||||
```shell
|
||||
wget https://huggingface.co/datasets/anon8231489123/ShareGPT_Vicuna_unfiltered/resolve/main/ShareGPT_V3_unfiltered_cleaned_split.json
|
||||
|
@ -21,7 +27,7 @@ Example for PHI-2
|
|||
```
|
||||
|
||||
#### Start the server
|
||||
The server must listen on `localhost:8080`.
|
||||
The server must answer OAI Chat completion requests on `http://localhost:8080/v1` or according to the environment variable `SERVER_BENCH_URL`.
|
||||
|
||||
Example:
|
||||
```shell
|
||||
|
@ -36,13 +42,22 @@ server --host localhost --port 8080 \
|
|||
-ngl 33
|
||||
```
|
||||
|
||||
#### Run the bench
|
||||
#### Run the benchmark
|
||||
|
||||
```shell
|
||||
k6 run script.js
|
||||
```
|
||||
|
||||
#### Change the number of concurrent user
|
||||
in the `script.js`, change the ramping period according to your number of slots.
|
||||
The benchmark values can be overridden with:
|
||||
- `SERVER_BENCH_URL` server url prefix for chat completions, default `http://localhost:8080/v1`
|
||||
- `SERVER_BENCH_N_PROMPTS` total prompts to randomly select in the benchmark, default `480`
|
||||
- `SERVER_BENCH_MODEL_ALIAS` model alias to pass in the completion request, default `my-model`
|
||||
|
||||
Or with [k6 options](https://k6.io/docs/using-k6/k6-options/reference/):
|
||||
|
||||
```shell
|
||||
SERVER_BENCH_N_PROMPTS=500 k6 run script.js --duration 10m --iterations 500 --vus 8
|
||||
```
|
||||
|
||||
#### Metrics
|
||||
|
||||
|
|
|
@ -1,51 +1,58 @@
|
|||
import http from 'k6/http';
|
||||
import { check, sleep } from 'k6';
|
||||
import { SharedArray } from 'k6/data';
|
||||
import { Counter, Gauge, Rate } from 'k6/metrics';
|
||||
import http from 'k6/http'
|
||||
import {check, sleep} from 'k6'
|
||||
import {SharedArray} from 'k6/data'
|
||||
import {Counter, Gauge, Rate} from 'k6/metrics'
|
||||
|
||||
// Server chat completions prefix
|
||||
const server_url = __ENV.SERVER_BENCH_URL ? __ENV.SERVER_BENCH_URL : 'http://localhost:8080/v1'
|
||||
|
||||
// Number of total prompts in the dataset - default 10m / 10 seconds/request * number of users
|
||||
const n_prompt = __ENV.SERVER_BENCH_N_PROMPTS ? parseInt(__ENV.SERVER_BENCH_N_PROMPTS) : 600 / 10 * 8
|
||||
|
||||
// Model name to request
|
||||
const model = __ENV.SERVER_BENCH_MODEL_ALIAS ? __ENV.SERVER_BENCH_MODEL_ALIAS : 'my-model'
|
||||
|
||||
// Dataset path
|
||||
const dataset_path = __ENV.SERVER_BENCH_DATASET ? __ENV.SERVER_BENCH_DATASET : './ShareGPT_V3_unfiltered_cleaned_split.json'
|
||||
|
||||
export function setup() {
|
||||
console.info(`Benchmark config: server_url=${server_url} n_prompt=${n_prompt} model=${model} dataset_path=${dataset_path}`)
|
||||
}
|
||||
|
||||
const data = new SharedArray('conversations', function () {
|
||||
return JSON.parse(open('./ShareGPT_V3_unfiltered_cleaned_split.json'))
|
||||
|
||||
return JSON.parse(open(dataset_path))
|
||||
// Filter out the conversations with less than 2 turns.
|
||||
.filter(data => data["conversations"].length >= 2)
|
||||
// Only keep the first two turns of each conversation.
|
||||
.map(data => Array(data["conversations"][0]["value"], data["conversations"][1]["value"]));
|
||||
});
|
||||
.map(data => Array(data["conversations"][0]["value"], data["conversations"][1]["value"]))
|
||||
// Keep only first n prompts
|
||||
.slice(0, n_prompt)
|
||||
})
|
||||
|
||||
const llamacpp_prompt_tokens = new Gauge('llamacpp_prompt_tokens');
|
||||
const llamacpp_completion_tokens = new Gauge('llamacpp_completion_tokens');
|
||||
const llamacpp_prompt_tokens = new Gauge('llamacpp_prompt_tokens')
|
||||
const llamacpp_completion_tokens = new Gauge('llamacpp_completion_tokens')
|
||||
|
||||
const llamacpp_completions_tokens_seconds = new Gauge('llamacpp_completions_tokens_seconds');
|
||||
const llamacpp_completions_tokens_seconds = new Gauge('llamacpp_completions_tokens_seconds')
|
||||
|
||||
const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter');
|
||||
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter');
|
||||
const llamacpp_prompt_tokens_total_counter = new Counter('llamacpp_prompt_tokens_total_counter')
|
||||
const llamacpp_completion_tokens_total_counter = new Counter('llamacpp_completion_tokens_total_counter')
|
||||
|
||||
const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate');
|
||||
const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate');
|
||||
const llamacpp_completions_truncated_rate = new Rate('llamacpp_completions_truncated_rate')
|
||||
const llamacpp_completions_stop_rate = new Rate('llamacpp_completions_stop_rate')
|
||||
|
||||
export const options = {
|
||||
thresholds: {
|
||||
llamacpp_completions_truncated_rate: [
|
||||
// more than 10% of truncated input will abort the test
|
||||
{ threshold: 'rate < 0.1', abortOnFail: true, delayAbortEval: '1m' },
|
||||
{threshold: 'rate < 0.1', abortOnFail: true, delayAbortEval: '1m'},
|
||||
],
|
||||
},
|
||||
scenarios: {
|
||||
completions: {
|
||||
executor: 'ramping-vus',
|
||||
startVUs: 1,
|
||||
stages: [
|
||||
{duration: '1m', target: 8},
|
||||
{duration: '3m', target: 8},
|
||||
{duration: '1m', target: 0},
|
||||
],
|
||||
gracefulRampDown: '30s',
|
||||
},
|
||||
},
|
||||
};
|
||||
duration: '10m',
|
||||
vus: 8,
|
||||
}
|
||||
|
||||
export default function () {
|
||||
const conversation = data[0]
|
||||
const conversation = data[Math.floor(Math.random() * data.length)]
|
||||
const payload = {
|
||||
"messages": [
|
||||
{
|
||||
|
@ -57,15 +64,23 @@ export default function () {
|
|||
"content": conversation[1],
|
||||
}
|
||||
],
|
||||
"model": "model",
|
||||
"model": model,
|
||||
"stream": false,
|
||||
}
|
||||
let res = http.post('http://localhost:8080/v1/chat/completions', JSON.stringify(payload), {
|
||||
headers: { 'Content-Type': 'application/json' },
|
||||
|
||||
const body = JSON.stringify(payload)
|
||||
|
||||
console.debug(`request: ${body}`)
|
||||
|
||||
let res = http.post(`${server_url}/chat/completions`, body, {
|
||||
headers: {'Content-Type': 'application/json'},
|
||||
timeout: '300s'
|
||||
})
|
||||
|
||||
check(res, {'success completion': (r) => r.status === 200})
|
||||
|
||||
console.debug(`response: ${res.body}`)
|
||||
|
||||
const completions = res.json()
|
||||
|
||||
llamacpp_prompt_tokens.add(completions.usage.prompt_tokens)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue