diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 8630bbf29..18a720874 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -618,11 +618,6 @@ class MPTModel(Model): self.gguf_writer.add_tensor(new_name, data) - # note: MPT output is tied to (same as) wte in original model; - # for easier implementation in llama.cpp it's duplicated in GGUF, though :/ - if new_name == "token_embd.weight": - self.gguf_writer.add_tensor("output.weight", data) - class OrionModel(Model): def set_vocab(self): diff --git a/llama.cpp b/llama.cpp index 40dda265c..3b1eb6398 100644 --- a/llama.cpp +++ b/llama.cpp @@ -4056,7 +4056,10 @@ static bool llm_load_tensors( model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd}); model.output_norm_b = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "bias"), {n_embd}, false); - model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab}); + // same as tok_embd, duplicated to allow offloading + model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}); + ml.n_created--; // artificial tensor + ml.size_data += ggml_nbytes(model.output); } for (int i = 0; i < n_layer; ++i) {