Merge branch 'master' into finetune-lora

# Conflicts:
#	examples/train-text-from-scratch/train-text-from-scratch.cpp
#	llama.h
This commit is contained in:
xaedes 2023-09-09 21:30:22 +02:00
commit 54b21a397c
No known key found for this signature in database
GPG key ID: 30030EDD817EA2B1
36 changed files with 477 additions and 321 deletions

View file

@ -3,6 +3,7 @@ Checks: >
bugprone-*,
-bugprone-easily-swappable-parameters,
-bugprone-implicit-widening-of-multiplication-result,
-bugprone-misplaced-widening-cast,
-bugprone-narrowing-conversions,
readability-*,
-readability-avoid-unconditional-preprocessor-if,
@ -15,4 +16,8 @@ Checks: >
-clang-analyzer-security.insecureAPI.DeprecatedOrUnsafeBufferHandling,
performance-*,
portability-*,
misc-*,
-misc-const-correctness,
-misc-non-private-member-variables-in-classes,
-misc-no-recursion,
FormatStyle: none

View file

@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential python3 python3-pip
apt-get install -y build-essential python3 python3-pip git
COPY requirements.txt requirements.txt

View file

@ -12,7 +12,7 @@ FROM ${BASE_CUDA_DEV_CONTAINER} as build
ARG CUDA_DOCKER_ARCH=all
RUN apt-get update && \
apt-get install -y build-essential
apt-get install -y build-essential git
WORKDIR /app

View file

@ -426,7 +426,7 @@ if (LLAMA_ALL_WARNINGS)
)
if (CMAKE_CXX_COMPILER_ID STREQUAL "GNU")
# g++ only
set(cxx_flags ${cxx_flags} -Wno-format-truncation)
set(cxx_flags ${cxx_flags} -Wno-format-truncation -Wno-array-bounds)
endif()
else()
# todo : msvc
@ -551,12 +551,64 @@ else()
message(STATUS "Unknown architecture")
endif()
#
# POSIX conformance
#
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
add_compile_definitions(_XOPEN_SOURCE=600)
# Somehow in OpenBSD whenever POSIX conformance is specified
# some string functions rely on locale_t availability,
# which was introduced in POSIX.1-2008, forcing us to go higher
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
remove_definitions(-D_XOPEN_SOURCE=600)
add_compile_definitions(_XOPEN_SOURCE=700)
endif()
# Data types, macros and functions related to controlling CPU affinity and
# some memory allocation are available on Linux through GNU extensions in libc
if (CMAKE_SYSTEM_NAME MATCHES "Linux")
add_compile_definitions(_GNU_SOURCE)
endif()
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
# similarly on DragonFly, enabling BSD extensions is necessary
if (CMAKE_SYSTEM_NAME MATCHES "Darwin")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "DragonFly")
add_compile_definitions(_DARWIN_C_SOURCE)
endif()
# alloca is a non-standard interface that is not visible on BSDs when
# POSIX conformance is specified, but not all of them provide a clean way
# to enable it in such cases
if (CMAKE_SYSTEM_NAME MATCHES "FreeBSD")
add_compile_definitions(__BSD_VISIBLE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "NetBSD")
add_compile_definitions(_NETBSD_SOURCE)
endif()
if (CMAKE_SYSTEM_NAME MATCHES "OpenBSD")
add_compile_definitions(_BSD_SOURCE)
endif()
#
# libraries
#
# ggml
if (GGML_USE_CPU_HBM)
add_definitions(-DGGML_USE_CPU_HBM)
find_library(memkind memkind REQUIRED)
endif()
add_library(ggml OBJECT
ggml.c
ggml.h
@ -572,6 +624,9 @@ add_library(ggml OBJECT
target_include_directories(ggml PUBLIC . ${LLAMA_EXTRA_INCLUDES})
target_compile_features(ggml PUBLIC c_std_11) # don't bump
target_link_libraries(ggml PUBLIC Threads::Threads ${LLAMA_EXTRA_LIBS})
if (GGML_USE_CPU_HBM)
target_link_libraries(ggml PUBLIC memkind)
endif()
add_library(ggml_static STATIC $<TARGET_OBJECTS:ggml>)
if (BUILD_SHARED_LIBS)

View file

@ -42,9 +42,9 @@ endif
default: $(BUILD_TARGETS)
test:
@echo "Running tests..."
@for test_target in $(TEST_TARGETS); do \
test: $(TEST_TARGETS)
@failures=0; \
for test_target in $(TEST_TARGETS); do \
if [ "$$test_target" = "tests/test-tokenizer-0-llama" ]; then \
./$$test_target $(CURDIR)/models/ggml-vocab-llama.gguf; \
elif [ "$$test_target" = "tests/test-tokenizer-0-falcon" ]; then \
@ -52,10 +52,21 @@ test:
elif [ "$$test_target" = "tests/test-tokenizer-1" ]; then \
continue; \
else \
echo "Running test $$test_target..."; \
./$$test_target; \
fi; \
done
@echo "All tests have been run."
if [ $$? -ne 0 ]; then \
printf 'Test $$test_target FAILED!\n\n' $$test_target; \
failures=$$(( failures + 1 )); \
else \
printf 'Test %s passed.\n\n' $$test_target; \
fi; \
done; \
if [ $$failures -gt 0 ]; then \
printf '\n%s tests failed.\n' $$failures; \
exit 1; \
fi
@echo 'All tests passed.'
all: $(BUILD_TARGETS) $(TEST_TARGETS)
@ -91,10 +102,60 @@ else
OPT = -O3
endif
MK_CPPFLAGS = -I. -Icommon
MK_CFLAGS = $(CPPFLAGS) $(OPT) -std=c11 -fPIC
MK_CXXFLAGS = $(CPPFLAGS) $(OPT) -std=c++11 -fPIC
MK_CFLAGS = $(OPT) -std=c11 -fPIC
MK_CXXFLAGS = $(OPT) -std=c++11 -fPIC
MK_LDFLAGS =
# clock_gettime came in POSIX.1b (1993)
# CLOCK_MONOTONIC came in POSIX.1-2001 / SUSv3 as optional
# posix_memalign came in POSIX.1-2001 / SUSv3
# M_PI is an XSI extension since POSIX.1-2001 / SUSv3, came in XPG1 (1985)
MK_CFLAGS += -D_XOPEN_SOURCE=600
MK_CXXFLAGS += -D_XOPEN_SOURCE=600
# Somehow in OpenBSD whenever POSIX conformance is specified
# some string functions rely on locale_t availability,
# which was introduced in POSIX.1-2008, forcing us to go higher
ifeq ($(UNAME_S),OpenBSD)
MK_CFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
MK_CXXFLAGS += -U_XOPEN_SOURCE -D_XOPEN_SOURCE=700
endif
# Data types, macros and functions related to controlling CPU affinity and
# some memory allocation are available on Linux through GNU extensions in libc
ifeq ($(UNAME_S),Linux)
MK_CFLAGS += -D_GNU_SOURCE
MK_CXXFLAGS += -D_GNU_SOURCE
endif
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
# and on macOS its availability depends on enabling Darwin extensions
# similarly on DragonFly, enabling BSD extensions is necessary
ifeq ($(UNAME_S),Darwin)
MK_CFLAGS += -D_DARWIN_C_SOURCE
MK_CXXFLAGS += -D_DARWIN_C_SOURCE
endif
ifeq ($(UNAME_S),DragonFly)
MK_CFLAGS += -D__BSD_VISIBLE
MK_CXXFLAGS += -D__BSD_VISIBLE
endif
# alloca is a non-standard interface that is not visible on BSDs when
# POSIX conformance is specified, but not all of them provide a clean way
# to enable it in such cases
ifeq ($(UNAME_S),FreeBSD)
MK_CFLAGS += -D__BSD_VISIBLE
MK_CXXFLAGS += -D__BSD_VISIBLE
endif
ifeq ($(UNAME_S),NetBSD)
MK_CFLAGS += -D_NETBSD_SOURCE
MK_CXXFLAGS += -D_NETBSD_SOURCE
endif
ifeq ($(UNAME_S),OpenBSD)
MK_CFLAGS += -D_BSD_SOURCE
MK_CXXFLAGS += -D_BSD_SOURCE
endif
ifdef LLAMA_DEBUG
MK_CFLAGS += -O0 -g
MK_CXXFLAGS += -O0 -g
@ -123,7 +184,7 @@ MK_CXXFLAGS += -Wall -Wextra -Wpedantic -Wcast-qual -Wno-unused-function -Wno-m
ifeq '' '$(findstring clang++,$(CXX))'
# g++ only
MK_CXXFLAGS += -Wno-format-truncation
MK_CXXFLAGS += -Wno-format-truncation -Wno-array-bounds
endif
# OS specific
@ -381,9 +442,8 @@ k_quants.o: k_quants.c k_quants.h
endif # LLAMA_NO_K_QUANTS
# combine build flags with cmdline overrides
override CPPFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS)
override CFLAGS := $(MK_CFLAGS) $(CFLAGS)
override CXXFLAGS := $(MK_CXXFLAGS) $(CXXFLAGS)
override CFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CFLAGS) $(CFLAGS)
override CXXFLAGS := $(MK_CPPFLAGS) $(CPPFLAGS) $(MK_CXXFLAGS) $(CXXFLAGS)
override LDFLAGS := $(MK_LDFLAGS) $(LDFLAGS)
#

View file

@ -2,8 +2,30 @@
import PackageDescription
#if arch(arm) || arch(arm64)
let platforms: [SupportedPlatform]? = [
.macOS(.v11),
.iOS(.v14),
.watchOS(.v4),
.tvOS(.v14)
]
let exclude: [String] = []
let additionalSources: [String] = ["ggml-metal.m"]
let additionalSettings: [CSetting] = [
.unsafeFlags(["-fno-objc-arc"]),
.define("GGML_SWIFT"),
.define("GGML_USE_METAL")
]
#else
let platforms: [SupportedPlatform]? = nil
let exclude: [String] = ["ggml-metal.metal"]
let additionalSources: [String] = []
let additionalSettings: [CSetting] = []
#endif
let package = Package(
name: "llama",
platforms: platforms,
products: [
.library(name: "llama", targets: ["llama"]),
],
@ -11,23 +33,23 @@ let package = Package(
.target(
name: "llama",
path: ".",
exclude: ["ggml-metal.metal"],
exclude: exclude,
sources: [
"ggml.c",
"llama.cpp",
"ggml-alloc.c",
"k_quants.c"
],
"k_quants.c",
] + additionalSources,
publicHeadersPath: "spm-headers",
cSettings: [
.unsafeFlags(["-Wno-shorten-64-to-32"]),
.define("GGML_USE_K_QUANTS"),
.define("GGML_USE_ACCELERATE")
],
] + additionalSettings,
linkerSettings: [
.linkedFramework("Accelerate")
]
),
)
],
cxxLanguageStandard: .cxx11
)

View file

@ -11,21 +11,9 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
### Hot topics
- #### IMPORTANT: Tokenizer fixes and API change (developers and projects using `llama.cpp` built-in tokenization must read): https://github.com/ggerganov/llama.cpp/pull/2810
- Local Falcon 180B inference on Mac Studio
- GGUFv2 adds support for 64-bit sizes + backwards compatible: https://github.com/ggerganov/llama.cpp/pull/2821
- Added support for Falcon models: https://github.com/ggerganov/llama.cpp/pull/2717
- A new file format has been introduced: [GGUF](https://github.com/ggerganov/llama.cpp/pull/2398)
Last revision compatible with the old format: [dadbed9](https://github.com/ggerganov/llama.cpp/commit/dadbed99e65252d79f81101a392d0d6497b86caa)
### Current `master` should be considered in Beta - expect some issues for a few days!
### Be prepared to re-convert and / or re-quantize your GGUF models while this notice is up!
### Issues with non-GGUF models will be considered with low priority!
https://github.com/ggerganov/llama.cpp/assets/1991296/98abd4e8-7077-464c-ae89-aebabca7757e
----
@ -413,7 +401,7 @@ Building the program with BLAS support may lead to some performance improvements
- #### hipBLAS
This provide BLAS acceleation on HIP supported GPU like AMD GPU.
This provides BLAS acceleration on HIP-supported AMD GPUs.
Make sure to have ROCm installed.
You can download it from your Linux distro's package manager or from here: [ROCm Quick Start (Linux)](https://rocm.docs.amd.com/en/latest/deploy/linux/quick_start.html).
Windows support is coming soon...
@ -737,12 +725,12 @@ python3 convert.py pygmalion-7b/ --outtype q4_1
- Refer to [Facebook's LLaMA download page](https://ai.meta.com/resources/models-and-libraries/llama-downloads/) if you want to access the model data.
- Alternatively, if you want to save time and space, you can download already converted and quantized models from [TheBloke](https://huggingface.co/TheBloke), including:
- [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGML)
- [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGML)
- [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGML)
- [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGML)
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGML)
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGML)
- [LLaMA 2 7B base](https://huggingface.co/TheBloke/Llama-2-7B-GGUF)
- [LLaMA 2 13B base](https://huggingface.co/TheBloke/Llama-2-13B-GGUF)
- [LLaMA 2 70B base](https://huggingface.co/TheBloke/Llama-2-70B-GGUF)
- [LLaMA 2 7B chat](https://huggingface.co/TheBloke/Llama-2-7B-chat-GGUF)
- [LLaMA 2 13B chat](https://huggingface.co/TheBloke/Llama-2-13B-chat-GGUF)
- [LLaMA 2 70B chat](https://huggingface.co/TheBloke/Llama-2-70B-chat-GGUF)
### Verifying the model files

View file

@ -57,7 +57,7 @@ int32_t get_num_physical_cores() {
siblings.insert(line);
}
}
if (siblings.size() > 0) {
if (!siblings.empty()) {
return static_cast<int32_t>(siblings.size());
}
#elif defined(__APPLE__) && defined(__MACH__)
@ -791,7 +791,7 @@ std::tuple<struct llama_model *, struct llama_context *> llama_init_from_gpt_par
LOG("warming up the model with an empty run\n");
const std::vector<llama_token> tmp = { llama_token_bos(lctx), llama_token_eos(lctx), };
llama_eval(lctx, tmp.data(), tmp.size(), 0, params.n_threads);
llama_eval(lctx, tmp.data(), std::min(tmp.size(), (size_t) params.n_batch), 0, params.n_threads);
llama_reset_timings(lctx);
}

View file

@ -20,6 +20,9 @@
#define DIRECTORY_SEPARATOR '/'
#endif // _WIN32
#define die(msg) do { fputs("error: " msg "\n", stderr); exit(1); } while (0)
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", ##__VA_ARGS__); exit(1); } while (0)
//
// CLI argument parsing
//

View file

@ -415,6 +415,7 @@ namespace grammar_parser {
std::vector<const llama_grammar_element *> parse_state::c_rules() {
std::vector<const llama_grammar_element *> ret;
ret.reserve(rules.size());
for (const auto & rule : rules) {
ret.push_back(rule.data());
}

View file

@ -266,7 +266,7 @@ class Params:
f_rope_freq_base = config["rope_theta"] if "rope_theta" in config else None
# hack to determine LLaMA v1 vs v2 vs CodeLlama
if f_rope_freq_base and f_rope_freq_base == 1000000:
if f_rope_freq_base == 1000000:
# CodeLlama
n_ctx = 16384
elif config["norm_eps"] == 1e-05:
@ -841,9 +841,9 @@ class OutputFile:
name = "LLaMA"
# TODO: better logic to determine model name
if (params.n_ctx == 4096):
if params.n_ctx == 4096:
name = "LLaMA v2"
elif params.path_model:
elif params.path_model is not None:
name = str(params.path_model.parent).split('/')[-1]
self.gguf.add_name (name)
@ -856,13 +856,13 @@ class OutputFile:
self.gguf.add_head_count_kv (params.n_head_kv)
self.gguf.add_layer_norm_rms_eps (params.f_norm_eps)
if params.f_rope_freq_base:
if params.f_rope_freq_base is not None:
self.gguf.add_rope_freq_base(params.f_rope_freq_base)
if params.f_rope_scale:
if params.f_rope_scale is not None:
self.gguf.add_rope_scale_linear(params.f_rope_scale)
if params.ftype:
if params.ftype is not None:
self.gguf.add_file_type(params.ftype)
def add_meta_vocab(self, vocab: Vocab) -> None:

View file

@ -1,7 +1,3 @@
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "common.h"
#include "llama.h"
#include "build-info.h"

View file

@ -1,5 +1,6 @@
#include "ggml.h"
#include "llama.h"
#include "common.h"
#include <unordered_map>
#include <vector>
@ -499,10 +500,10 @@ struct llama_file {
errno = 0;
std::size_t ret = std::fread(ptr, size, 1, fp);
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
die_fmt("fread failed: %s", strerror(errno));
}
if (ret != 1) {
throw std::runtime_error(std::string("unexpectedly reached end of file"));
die("unexpectedly reached end of file");
}
}
@ -597,8 +598,7 @@ void load_vocab(const char *filename, Config *config, struct llama_vocab *vocab)
printf("Assuming llama2.c vocabulary since %s is not a gguf file\n", filename);
llama_file file(filename, "rb");
if (!file.fp) {
fprintf(stderr, "error: %s: %s\n", strerror(errno), filename);
exit(1);
die_fmt("%s: %s", strerror(errno), filename);
}
const int n_vocab = config->vocab_size;
/* uint32_t max_token_length = */ file.read_u32(); // unused

View file

@ -1,8 +1,3 @@
// Defines sigaction on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "embd-input.h"
#include <cassert>
@ -23,7 +18,7 @@ extern "C" {
struct MyModel* create_mymodel(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
return nullptr;
}

View file

@ -11,17 +11,12 @@
int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
params.embedding = true;
if (params.n_ctx > 2048) {
fprintf(stderr, "%s: warning: model might not support context sizes greater than 2048 tokens (%d specified);"
"expect poor results\n", __func__, params.n_ctx);
}
fprintf(stderr, "%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
if (params.seed == LLAMA_DEFAULT_SEED) {
@ -47,6 +42,12 @@ int main(int argc, char ** argv) {
return 1;
}
const int n_ctx_train = llama_n_ctx_train(ctx);
if (params.n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, params.n_ctx);
}
// print system information
{
fprintf(stderr, "\n");

View file

@ -953,7 +953,7 @@ int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}

View file

@ -925,7 +925,7 @@ int main(int argc, char ** argv) {
gpt_params params;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}

View file

@ -986,7 +986,12 @@ int main(int argc, char ** argv) {
test t(inst, lmodel, ctx);
// warmup run
test_gen(ctx, 1, 0, t.n_threads);
if (t.n_prompt > 0) {
test_prompt(ctx, std::min(2, t.n_batch), 0, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
test_gen(ctx, 1, 0, t.n_threads);
}
for (int i = 0; i < params.reps; i++) {
uint64_t t_start = get_time_ns();

View file

@ -1,8 +1,3 @@
// Defines sigaction on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "common.h"
#include "console.h"
@ -48,8 +43,9 @@ static bool is_interacting = false;
void write_logfile(
const llama_context * ctx, const gpt_params & params, const llama_model * model,
const std::vector<llama_token> input_tokens, const std::string output, const std::vector<llama_token> output_tokens) {
const std::vector<llama_token> & input_tokens, const std::string & output,
const std::vector<llama_token> & output_tokens
) {
if (params.logdir.empty()) {
return;
}
@ -109,7 +105,7 @@ int main(int argc, char ** argv) {
gpt_params params;
g_params = &params;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
@ -186,8 +182,10 @@ int main(int argc, char ** argv) {
return 1;
}
if (params.n_ctx > llama_n_ctx(ctx)) {
LOG_TEE("%s: warning: base model only supports context sizes no greater than %d tokens (%d specified)\n", __func__, llama_n_ctx(ctx), params.n_ctx);
const int n_ctx_train = llama_n_ctx_train(ctx);
if (params.n_ctx > n_ctx_train) {
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, params.n_ctx);
} else if (params.n_ctx < 8) {
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
params.n_ctx = 8;
@ -303,7 +301,7 @@ int main(int argc, char ** argv) {
// debug message about similarity of saved session, if applicable
size_t n_matching_session_tokens = 0;
if (session_tokens.size() > 0) {
if (!session_tokens.empty()) {
for (llama_token id : session_tokens) {
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
break;
@ -401,7 +399,7 @@ int main(int argc, char ** argv) {
LOG_TEE("%s: interactive mode on.\n", __func__);
if (params.antiprompt.size()) {
if (!params.antiprompt.empty()) {
for (const auto & antiprompt : params.antiprompt) {
LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
}
@ -499,7 +497,7 @@ int main(int argc, char ** argv) {
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
// predict
if (embd.size() > 0) {
if (!embd.empty()) {
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
// --prompt or --file which uses the same value.
int max_embd_size = n_ctx - 4;
@ -624,7 +622,7 @@ int main(int argc, char ** argv) {
LOG("n_past = %d\n", n_past);
}
if (embd.size() > 0 && !path_session.empty()) {
if (!embd.empty() && !path_session.empty()) {
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
n_session_consumed = session_tokens.size();
}
@ -695,7 +693,7 @@ int main(int argc, char ** argv) {
// if not currently processing queued inputs;
if ((int) embd_inp.size() <= n_consumed) {
// check for reverse prompt
if (params.antiprompt.size()) {
if (!params.antiprompt.empty()) {
std::string last_output;
for (auto id : last_tokens) {
last_output += llama_token_to_piece(ctx, id);
@ -732,7 +730,7 @@ int main(int argc, char ** argv) {
LOG("found EOS token\n");
if (params.interactive) {
if (params.antiprompt.size() != 0) {
if (!params.antiprompt.empty()) {
// tokenize and inject first reverse prompt
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false);
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());

View file

@ -655,7 +655,7 @@ int main(int argc, char ** argv) {
gpt_params params;
params.n_batch = 512;
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
@ -693,9 +693,10 @@ int main(int argc, char ** argv) {
return 1;
}
if (params.n_ctx > llama_n_ctx(ctx)) {
fprintf(stderr, "%s: warning: model might not support context sizes greater than %d tokens (%d specified);"
"expect poor results\n", __func__, llama_n_ctx(ctx), params.n_ctx);
const int n_ctx_train = llama_n_ctx_train(ctx);
if (params.n_ctx > n_ctx_train) {
fprintf(stderr, "%s: warning: model was trained on only %d context tokens (%d specified)\n",
__func__, n_ctx_train, params.n_ctx);
}
// print system information

View file

@ -71,7 +71,7 @@ void quantize_stats_print_usage(int /*argc*/, char ** argv) {
}
// Check if a layer is included/excluded by command line
bool layer_included(const quantize_stats_params params, const std::string & layer) {
bool layer_included(const quantize_stats_params & params, const std::string & layer) {
for (const auto& excluded : params.exclude_layers) {
if (std::regex_search(layer, std::regex(excluded))) {
return false;

View file

@ -143,10 +143,9 @@ int main(int argc, char ** argv) {
if (!try_parse_ftype(argv[arg_idx], params.ftype, ftype_str)) {
fprintf(stderr, "%s: invalid ftype '%s'\n", __func__, argv[3]);
return 1;
} else {
if (ftype_str == "COPY") {
params.only_copy = true;
}
}
if (ftype_str == "COPY") {
params.only_copy = true;
}
arg_idx++;
}

View file

@ -13,7 +13,7 @@ int main(int argc, char ** argv) {
params.repeat_last_n = 64;
params.prompt = "The quick brown fox";
if (gpt_params_parse(argc, argv, params) == false) {
if (!gpt_params_parse(argc, argv, params)) {
return 1;
}
@ -44,7 +44,7 @@ int main(int argc, char ** argv) {
llama_free_model(model);
return 1;
}
auto tokens = llama_tokenize(ctx, params.prompt.c_str(), true);
auto tokens = llama_tokenize(ctx, params.prompt, true);
auto n_prompt_tokens = tokens.size();
if (n_prompt_tokens < 1) {
fprintf(stderr, "%s : failed to tokenize prompt\n", __func__);

View file

@ -139,7 +139,7 @@ static std::string tokens_to_output_formatted_string(const llama_context *ctx, c
}
// convert a vector of completion_token_output to json
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> probs)
static json probs_vector_to_json(const llama_context *ctx, const std::vector<completion_token_output> & probs)
{
json out = json::array();
for (const auto &prob : probs)
@ -271,7 +271,7 @@ struct llama_server_context
return true;
}
std::vector<llama_token> tokenize(json json_prompt, bool add_bos)
std::vector<llama_token> tokenize(const json & json_prompt, bool add_bos) const
{
// If `add_bos` is true, we only add BOS, when json_prompt is a string,
// or the first element of the json_prompt array is a string.
@ -611,7 +611,7 @@ struct llama_server_context
completion_token_output doCompletion()
{
const completion_token_output token_with_probs = nextToken();
auto token_with_probs = nextToken();
const std::string token_text = token_with_probs.tok == -1 ? "" : llama_token_to_piece(ctx, token_with_probs.tok);
generated_text += token_text;
@ -1271,7 +1271,7 @@ void beam_search_callback(void * callback_data, llama_beams_state beams_state) {
struct token_translator {
llama_context * ctx;
std::string operator()(llama_token tok) const { return llama_token_to_piece(ctx, tok); }
std::string operator()(completion_token_output cto) const { return (*this)(cto.tok); }
std::string operator()(const completion_token_output & cto) const { return (*this)(cto.tok); }
};
void append_to_generated_text_from_generated_token_probs(llama_server_context & llama) {

View file

@ -1,7 +1,3 @@
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "build-info.h"
#include "common.h"

View file

@ -1,7 +1,3 @@
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "build-info.h"
#include "common.h"

View file

@ -169,10 +169,6 @@ struct my_llama_hparams {
float rope_freq_base = 10000.0f;
float rope_freq_scale = 1.0f;
bool operator!=(const my_llama_hparams& other) const {
return memcmp(this, &other, sizeof(my_llama_hparams));
}
};
struct my_llama_layer {
@ -682,28 +678,6 @@ void get_example_targets_batch(struct llama_context * lctx, const int * train_sa
}
}
#ifdef __GNUC__
#ifdef __MINGW32__
__attribute__((format(gnu_printf, 1, 2)))
#else
__attribute__((format(printf, 1, 2)))
#endif
#endif
static std::string format(const char * fmt, ...) {
va_list ap, ap2;
va_start(ap, fmt);
va_copy(ap2, ap);
int size = vsnprintf(NULL, 0, fmt, ap);
GGML_ASSERT(size >= 0 && size < INT_MAX);
std::vector<char> buf(size + 1);
int size2 = vsnprintf(buf.data(), size + 1, fmt, ap2);
GGML_ASSERT(size2 == size);
va_end(ap2);
va_end(ap);
return std::string(buf.data(), size);
}
int tokenize_file(struct llama_context * lctx, const char * filename, std::vector<llama_token>& out) {
FILE * fp = std::fopen(filename, "rb");
if (fp == NULL) {
@ -736,10 +710,10 @@ int tokenize_file(struct llama_context * lctx, const char * filename, std::vecto
out.resize(size+1);
if (std::fread(buf.data(), size, 1, fp) != 1) {
throw std::runtime_error(std::string("unexpectedly reached end of file"));
die("unexpectedly reached end of file");
}
if (ferror(fp)) {
throw std::runtime_error(format("read error: %s", strerror(errno)));
die_fmt("fread failed: %s", strerror(errno));
}
buf[size] = '\0';
@ -809,11 +783,11 @@ std::string replace_str(const char * s, const char * needle, const char * replac
if (kid >= 0) { \
enum gguf_type ktype = gguf_get_kv_type(ctx, kid); \
if (ktype != (type)) { \
throw std::runtime_error(format("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype))); \
die_fmt("key %s has wrong type: %s", skey.c_str(), gguf_type_name(ktype)); \
} \
(dst) = func(ctx, kid); \
} else if (req) { \
throw std::runtime_error(format("key not found in model: %s", skey.c_str())); \
die_fmt("key not found in model: %s", skey.c_str()); \
} \
}
@ -898,7 +872,7 @@ void load_opt_context_gguf(struct gguf_context * fctx, struct ggml_context * f_g
read_tensor_by_name(opt->lbfgs.lms, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_S);
read_tensor_by_name(opt->lbfgs.lmy, f_ggml_ctx, LLM_TENSOR_OPTIMIZER_LBFGS_MEMORY_Y);
} else {
throw std::runtime_error("unknown optimizer type\n");
die("unknown optimizer type");
}
}
@ -1077,20 +1051,20 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod
const int token_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_LIST));
if (token_idx == -1) {
throw std::runtime_error("cannot find tokenizer vocab in model file\n");
die("cannot find tokenizer vocab in model file");
}
const uint32_t n_vocab = gguf_get_arr_n(vctx, token_idx);
const int score_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_SCORES));
if (score_idx == -1) {
throw std::runtime_error("cannot find tokenizer scores in model file\n");
die("cannot find tokenizer scores in model file");
}
const float * scores = (const float * ) gguf_get_arr_data(vctx, score_idx);
const int toktype_idx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_TOKEN_TYPE));
if (toktype_idx == -1) {
throw std::runtime_error("cannot find token type list in GGUF file\n");
die("cannot find token type list in GGUF file");
}
const int * toktypes = (const int * ) gguf_get_arr_data(vctx, toktype_idx);
@ -1118,7 +1092,7 @@ void save_llama_model_gguf(struct gguf_context * fctx, const char * fn_vocab_mod
// read and copy bpe merges
const int merges_keyidx = gguf_find_key(vctx, kv(LLM_KV_TOKENIZER_MERGES));
if (merges_keyidx == -1) {
throw std::runtime_error("cannot find tokenizer merges in model file\n");
die("cannot find tokenizer merges in model file");
}
const int n_merges = gguf_get_arr_n(vctx, merges_keyidx);
@ -1826,7 +1800,7 @@ void opt_callback(void * vdata, int accum_step, float * sched) {
float min_sched = params->adam_min_alpha / params->adam_alpha;
*sched = min_sched + *sched * (1.0f - min_sched);
int impr_plot = std::isnan(opt->loss_after) ? 0 : -(int)(1 + (opt->loss_before - opt->loss_after) * 10.0f + 0.5f);
int impr_plot = std::isnan(opt->loss_after) ? 0 : -std::lround(1 + (opt->loss_before - opt->loss_after) * 10.0f);
printf("%s: iter=%*d, sched=%f loss0=%f loss=%f | improvement: %*d>\n", __func__, 6, opt->iter, *sched, opt->loss_before, opt->loss_after, impr_plot, (int)0);
}

View file

@ -93,6 +93,10 @@
type = "app";
program = "${self.packages.${system}.default}/bin/quantize";
};
apps.train-text-from-scratch = {
type = "app";
program = "${self.packages.${system}.default}/bin/train-text-from-scratch";
};
apps.default = self.apps.${system}.llama;
devShells.default = pkgs.mkShell {
buildInputs = [ llama-python ];

View file

@ -1,8 +1,3 @@
// defines MAP_ANONYMOUS
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "ggml-alloc.h"
#include "ggml.h"
#include <assert.h>
@ -138,7 +133,7 @@ static bool ggml_allocr_is_own(struct ggml_allocr * alloc, const struct ggml_ten
void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor) {
#ifdef GGML_ALLOCATOR_DEBUG
GGML_ASSERT(ggml_is_view(tensor) == false); // views generally get data pointer from one of their sources
GGML_ASSERT(!ggml_is_view(tensor)); // views generally get data pointer from one of their sources
GGML_ASSERT(tensor->data == NULL); // avoid allocating tensor which already has memory allocated
#endif
size_t size = ggml_allocr_get_alloc_size(alloc, tensor);
@ -172,7 +167,7 @@ void ggml_allocr_alloc(struct ggml_allocr * alloc, struct ggml_tensor * tensor)
fprintf(stderr, "%s: not enough space in the buffer (needed %zu, largest block available %zu)\n",
__func__, size, max_avail);
GGML_ASSERT(!"not enough space in the buffer");
return;
return;
}
}
struct free_block * block = &alloc->free_blocks[best_fit_block];
@ -318,7 +313,11 @@ static void * alloc_vmem(size_t size) {
#if defined(_WIN32)
return VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS);
#elif defined(_POSIX_MAPPED_FILES)
return mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
void * ptr = mmap(NULL, size, PROT_NONE, MAP_PRIVATE | MAP_ANON, -1, 0);
if (ptr == MAP_FAILED) {
return NULL;
}
return ptr;
#else
// use a fixed address for other platforms
uintptr_t base_addr = (uintptr_t)-size - 0x100;

View file

@ -4086,7 +4086,8 @@ static __global__ void rope_neox_f32(const float * x, float * dst, const int nco
dst[i + ncols/2] = x0*sin_theta + x1*cos_theta;
}
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p, const float block_p, const float theta_scale) {
static __global__ void rope_glm_f32(const float * x, float * dst, const int ncols, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx) {
const int col = blockDim.x*blockIdx.x + threadIdx.x;
const int half_n_dims = ncols/4;
@ -4098,8 +4099,9 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol
const int i = row*ncols + col;
const float col_theta_scale = powf(theta_scale, col);
const float p = p0 + p_delta*(row/p_delta_rows);
const float theta = p*col_theta_scale;
const float theta = min(p, p_delta*(n_ctx - 2))*col_theta_scale;
const float sin_theta = sinf(theta);
const float cos_theta = cosf(theta);
@ -4109,7 +4111,7 @@ static __global__ void rope_glm_f32(const float * x, float * dst, const int ncol
dst[i + 0] = x0*cos_theta - x1*sin_theta;
dst[i + half_n_dims] = x0*sin_theta + x1*cos_theta;
const float block_theta = block_p*col_theta_scale;
const float block_theta = max(p - p_delta*(n_ctx - 2), 0.f)*col_theta_scale;
const float sin_block_theta = sinf(block_theta);
const float cos_block_theta = cosf(block_theta);
@ -4984,12 +4986,13 @@ static void rope_neox_f32_cuda(const float * x, float * dst, const int ncols, co
rope_neox_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale);
}
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p, const float block_p, const float theta_scale, cudaStream_t stream) {
GGML_ASSERT(nrows % 4 == 0);
const dim3 block_dims(4*CUDA_ROPE_BLOCK_SIZE, 1, 1);
const int num_blocks_x = (ncols + 4*CUDA_ROPE_BLOCK_SIZE - 1) / (4*CUDA_ROPE_BLOCK_SIZE);
static void rope_glm_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, const float p0,
const float p_delta, const int p_delta_rows, const float theta_scale, const int n_ctx, cudaStream_t stream) {
GGML_ASSERT(ncols % 4 == 0);
const dim3 block_dims(CUDA_ROPE_BLOCK_SIZE/4, 1, 1);
const int num_blocks_x = (ncols + CUDA_ROPE_BLOCK_SIZE - 1) / CUDA_ROPE_BLOCK_SIZE;
const dim3 block_nums(num_blocks_x, nrows, 1);
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p, block_p, theta_scale);
rope_glm_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols, p0, p_delta, p_delta_rows, theta_scale, n_ctx);
}
static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const int nrows,
@ -5723,22 +5726,18 @@ inline void ggml_cuda_op_rope(
memcpy(&freq_scale, (int32_t *) dst->op_params + 5, sizeof(float));
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
const bool is_neox = mode & 2;
const bool is_glm = mode & 4;
// compute
if (is_glm) {
const float p = (((mode & 1) == 0 ? n_past + i02 : i02)) * freq_scale;
const float id_p = min(p, n_ctx - 2.f);
const float block_p = max(p - (n_ctx - 2.f), 0.f);
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, id_p, block_p, theta_scale, cudaStream_main);
rope_glm_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, n_ctx, cudaStream_main);
} else if (is_neox) {
GGML_ASSERT(ne00 == n_dims && "ne00 != n_dims is not implemented for CUDA yet");
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
rope_neox_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
} else {
const float p0 = (((mode & 1) == 0 ? n_past : 0)) * freq_scale;
rope_f32_cuda(src0_ddf_i, dst_ddf_i, ne00, i01_diff, p0, freq_scale, ne01, theta_scale, cudaStream_main);
}
@ -6400,10 +6399,7 @@ void ggml_cuda_rope(const ggml_tensor * src0, const ggml_tensor * src1, ggml_ten
GGML_ASSERT(src0->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0)); // TODO: this restriction is temporary until non-cont support is implemented
const int mode = ((int32_t *) dst->op_params)[2];
const bool is_glm = mode & 4;
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, !is_glm); // flatten support not implemented for glm
ggml_cuda_op(src0, src1, dst, ggml_cuda_op_rope, true, true);
}
void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {

View file

@ -117,14 +117,17 @@ static NSString * const msl_library_source = @"see metal.metal";
struct ggml_metal_context * ggml_metal_init(int n_cb) {
metal_printf("%s: allocating\n", __func__);
// Show all the Metal device instances in the system
NSArray * devices = MTLCopyAllDevices();
id <MTLDevice> device;
NSString * s;
#if TARGET_OS_OSX
// Show all the Metal device instances in the system
NSArray * devices = MTLCopyAllDevices();
for (device in devices) {
s = [device name];
metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
}
#endif
// Pick and show default Metal device
device = MTLCreateSystemDefaultDevice();
@ -141,12 +144,20 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
ctx->d_queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
#if 0
// compile from source string and show compile log
#ifdef GGML_SWIFT
// load the default.metallib file
{
NSError * error = nil;
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
NSString * llamaBundlePath = [bundle pathForResource:@"llama_llama" ofType:@"bundle"];
NSBundle * llamaBundle = [NSBundle bundleWithPath:llamaBundlePath];
NSString * libPath = [llamaBundle pathForResource:@"default" ofType:@"metallib"];
NSURL * libURL = [NSURL fileURLWithPath:libPath];
// Load the metallib file into a Metal library
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
if (error) {
metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
return NULL;
@ -247,13 +258,15 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
#undef GGML_METAL_ADD_KERNEL
}
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
#if TARGET_OS_OSX
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
if (ctx->device.maxTransferRate != 0) {
metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
} else {
metal_printf("%s: maxTransferRate = built-in GPU\n", __func__);
}
#endif
return ctx;
}
@ -327,7 +340,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
void * ggml_metal_host_malloc(size_t n) {
void * data = NULL;
const int result = posix_memalign((void **) &data, getpagesize(), n);
const int result = posix_memalign((void **) &data, sysconf(_SC_PAGESIZE), n);
if (result != 0) {
metal_printf("%s: error: posix_memalign failed\n", __func__);
return NULL;
@ -401,7 +414,7 @@ bool ggml_metal_add_buffer(
}
}
const size_t size_page = getpagesize();
const size_t size_page = sysconf(_SC_PAGESIZE);
size_t size_aligned = size;
if ((size_aligned % size_page) != 0) {
@ -454,6 +467,7 @@ bool ggml_metal_add_buffer(
}
}
#if TARGET_OS_OSX
metal_printf(", (%8.2f / %8.2f)",
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
@ -463,6 +477,9 @@ bool ggml_metal_add_buffer(
} else {
metal_printf("\n");
}
#else
metal_printf(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
#endif
}
return true;
@ -1141,7 +1158,7 @@ void ggml_metal_graph_compute(
[encoder setBytes:&freq_base length:sizeof(float) atIndex:21];
[encoder setBytes:&freq_scale length:sizeof(float) atIndex:22];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(32, 1, 1)];
} break;
case GGML_OP_DUP:
case GGML_OP_CPY:

View file

@ -220,14 +220,10 @@ kernel void kernel_norm(
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
//// broadcast
//if (tpitg == 0) {
// sum[0] /= ne00;
//}
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float mean = sum[0];
const float mean = sum[0] / ne00;
// recenter and VARIANCE
threadgroup_barrier(mem_flags::mem_threadgroup);
device float * y = dst + tgpig*ne00;
sum[tpitg] = 0.0f;
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
@ -235,12 +231,6 @@ kernel void kernel_norm(
sum[tpitg] += y[i00] * y[i00];
}
//// VARIANCE
//// parallel sum
//sum[tpitg] = 0.0f;
//for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
// sum[tpitg] += y[i00] * y[i00];
//}
// reduce
threadgroup_barrier(mem_flags::mem_threadgroup);
for (uint i = ntg/2; i > 0; i /= 2) {
@ -249,12 +239,7 @@ kernel void kernel_norm(
}
threadgroup_barrier(mem_flags::mem_threadgroup);
}
//// broadcast
//if (tpitg == 0) {
// sum[0] /= ne00;
//}
//threadgroup_barrier(mem_flags::mem_threadgroup);
const float variance = sum[0];
const float variance = sum[0] / ne00;
const float scale = 1.0f/sqrt(variance + eps);
for (int i00 = tpitg; i00 < ne00; i00 += ntg) {
@ -262,7 +247,6 @@ kernel void kernel_norm(
}
}
kernel void kernel_rms_norm(
device const void * src0,
device float * dst,
@ -630,7 +614,6 @@ kernel void kernel_mul_mat_f16_f32(
}
}
}
}
kernel void kernel_alibi_f32(
@ -699,25 +682,27 @@ kernel void kernel_rope(
constant int & mode,
constant float & freq_base,
constant float & freq_scale,
uint3 tpig[[thread_position_in_grid]]) {
const int64_t i3 = tpig[2];
const int64_t i2 = tpig[1];
const int64_t i1 = tpig[0];
uint tiitg[[thread_index_in_threadgroup]],
uint3 tptg[[threads_per_threadgroup]],
uint3 tgpig[[threadgroup_position_in_grid]]) {
const int64_t i3 = tgpig[2];
const int64_t i2 = tgpig[1];
const int64_t i1 = tgpig[0];
const bool is_neox = mode & 2;
const float theta_scale = pow(freq_base, -2.0f/n_dims);
const int64_t p = ((mode & 1) == 0 ? n_past + i2 : i2);
float theta = freq_scale * (float)p;
const float theta_0 = freq_scale * (float)p;
const float inv_ndims = -1.f/n_dims;
if (!is_neox) {
for (int64_t i0 = 0; i0 < ne0; i0 += 2) {
for (int64_t i0 = 2*tiitg; i0 < ne0; i0 += 2*tptg.x) {
const float theta = theta_0 * pow(freq_base, inv_ndims*i0);
const float cos_theta = cos(theta);
const float sin_theta = sin(theta);
theta *= theta_scale;
device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
device float * dst_data = (device float *)((device char *) dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
@ -729,12 +714,12 @@ kernel void kernel_rope(
}
} else {
for (int64_t ib = 0; ib < ne0/n_dims; ++ib) {
for (int64_t ic = 0; ic < n_dims; ic += 2) {
for (int64_t ic = 2*tiitg; ic < n_dims; ic += 2*tptg.x) {
const float theta = theta_0 * pow(freq_base, inv_ndims*ic - ib);
const float cos_theta = cos(theta);
const float sin_theta = sin(theta);
theta *= theta_scale;
const int64_t i0 = ib*n_dims + ic/2;
device const float * const src = (device float *)((device char *) src0 + i3*nb03 + i2*nb02 + i1*nb01 + i0*nb00);
@ -1138,31 +1123,40 @@ kernel void kernel_mul_mat_q3_K_f32(
device const block_q3_K * x = (device const block_q3_K *) src0 + first_row*nb + offset0;
device const float * yy = (device const float *) src1 + r1*ne10 + r2*ne00*ne1;
float yl[16];
float yl[32];
const uint16_t kmask1 = 0x0303;
const uint16_t kmask1 = 0x3030;
const uint16_t kmask2 = 0x0f0f;
const int tid = tiisg/2;
const int ix = tiisg%2;
const int ip = tid/8; // 0 or 1
const int il = tid/2 - 4*ip; // 0...3
const int tid = tiisg/4;
const int ix = tiisg%4;
const int ip = tid/4; // 0 or 1
const int il = 2*((tid%4)/2); // 0 or 2
const int ir = tid%2;
const int n = 8;
const int l0 = n*ir;
const uint16_t m1 = 1 << (4*ip + il);
const uint16_t m2 = m1 << 8;
// One would think that the Metal compiler would figure out that ip and il can only have
// 4 possible states, and optimize accordingly. Well, no. It needs help, and we do it
// with these two tales.
//
// Possible masks for the high bit
const ushort4 mm[4] = {{0x0001, 0x0100, 0x0002, 0x0200}, // ip = 0, il = 0
{0x0004, 0x0400, 0x0008, 0x0800}, // ip = 0, il = 2
{0x0010, 0x1000, 0x0020, 0x2000}, // ip = 1, il = 0
{0x0040, 0x4000, 0x0080, 0x8000}}; // ip = 1, il = 2
// Possible masks for the low 2 bits
const int4 qm[2] = {{0x0003, 0x0300, 0x000c, 0x0c00}, {0x0030, 0x3000, 0x00c0, 0xc000}};
const ushort4 hm = mm[2*ip + il/2];
const int shift = 2*il;
const uint16_t qm1 = 0x0003 << shift;
const uint16_t qm2 = 0x0300 << shift;
const int32_t v1 = 4 << shift;
const int32_t v2 = 1024 << shift;
const float v1 = il == 0 ? 4.f : 64.f;
const float v2 = 4.f * v1;
const uint16_t s_shift1 = 4*ip;
const uint16_t s_shift2 = s_shift1 + 2*(il/2);
const int ik = 4 + (il%2);
const uint16_t s_shift2 = s_shift1 + il;
const int q_offset = 32*ip + l0;
const int y_offset = 128*ip + 32*il + l0;
@ -1171,12 +1165,19 @@ kernel void kernel_mul_mat_q3_K_f32(
device const float * y1 = yy + ix*QK_K + y_offset;
float sumf1[2] = {0.f}, sumf2[2] = {0.f};
for (int i = ix; i < nb; i += 2) {
uint32_t scales32, aux32;
thread uint16_t * scales16 = (thread uint16_t *)&scales32;
thread const int8_t * scales = (thread const int8_t *)&scales32;
float sumf1[2] = {0.f};
float sumf2[2] = {0.f};
for (int i = ix; i < nb; i += 4) {
for (int l = 0; l < 8; ++l) {
yl[l+0] = y1[l+ 0];
yl[l+8] = y1[l+16];
yl[l+ 0] = y1[l+ 0];
yl[l+ 8] = y1[l+16];
yl[l+16] = y1[l+32];
yl[l+24] = y1[l+48];
}
device const uint16_t * q = (device const uint16_t *)(x[i].qs + q_offset);
@ -1187,27 +1188,43 @@ kernel void kernel_mul_mat_q3_K_f32(
for (int row = 0; row < 2; ++row) {
const float d_all = (float)dh[0];
const char2 scales = as_type<char2>((uint16_t)(((a[il] >> s_shift1) & kmask2) | (((a[ik] >> s_shift2) & kmask1) << 4)));
float s1 = 0, s2 = 0;
for (int l = 0; l < n; l += 2) {
const uint16_t qs = q[l/2];
s1 += yl[l+0] * ((int32_t)(qs & qm1) - ((h[l/2] & m1) ? 0 : v1));
s2 += yl[l+1] * ((int32_t)(qs & qm2) - ((h[l/2] & m2) ? 0 : v2));
}
float d = d_all * (s1 + 1.f/256.f * s2);
sumf1[row] += d * scales[0];
sumf2[row] += d;
scales16[0] = a[4];
scales16[1] = a[5];
aux32 = ((scales32 >> s_shift2) << 4) & 0x30303030;
scales16[0] = a[il+0];
scales16[1] = a[il+1];
scales32 = ((scales32 >> s_shift1) & 0x0f0f0f0f) | aux32;
s1 = s2 = 0;
float s1 = 0, s2 = 0, s3 = 0, s4 = 0, s5 = 0, s6 = 0;
for (int l = 0; l < n; l += 2) {
const uint16_t qs = q[l/2+8];
s1 += yl[l+8] * ((int32_t)(qs & qm1) - ((h[l/2+8] & m1) ? 0 : v1));
s2 += yl[l+9] * ((int32_t)(qs & qm2) - ((h[l/2+8] & m2) ? 0 : v2));
const int32_t qs = q[l/2];
s1 += yl[l+0] * (qs & qm[il/2][0]);
s2 += yl[l+1] * (qs & qm[il/2][1]);
s3 += ((h[l/2] & hm[0]) ? 0.f : yl[l+0]) + ((h[l/2] & hm[1]) ? 0.f : yl[l+1]);
s4 += yl[l+16] * (qs & qm[il/2][2]);
s5 += yl[l+17] * (qs & qm[il/2][3]);
s6 += ((h[l/2] & hm[2]) ? 0.f : yl[l+16]) + ((h[l/2] & hm[3]) ? 0.f : yl[l+17]);
}
d = d_all * (s1 + 1.f/256.f * s2);
sumf1[row] += d * scales[1];
sumf2[row] += d;
float d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
float d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
sumf1[row] += d1 * (scales[0] - 32);
sumf2[row] += d2 * (scales[2] - 32);
s1 = s2 = s3 = s4 = s5 = s6 = 0;
for (int l = 0; l < n; l += 2) {
const int32_t qs = q[l/2+8];
s1 += yl[l+8] * (qs & qm[il/2][0]);
s2 += yl[l+9] * (qs & qm[il/2][1]);
s3 += ((h[l/2+8] & hm[0]) ? 0.f : yl[l+8]) + ((h[l/2+8] & hm[1]) ? 0.f : yl[l+9]);
s4 += yl[l+24] * (qs & qm[il/2][2]);
s5 += yl[l+25] * (qs & qm[il/2][3]);
s6 += ((h[l/2+8] & hm[2]) ? 0.f : yl[l+24]) + ((h[l/2+8] & hm[3]) ? 0.f : yl[l+25]);
}
d1 = d_all * (s1 + 1.f/256.f * s2 - s3*v1);
d2 = d_all * (s4 + 1.f/256.f * s5 - s6*v2);
sumf1[row] += d1 * (scales[1] - 32);
sumf2[row] += d2 * (scales[3] - 32);
q += step;
h += step;
@ -1216,17 +1233,20 @@ kernel void kernel_mul_mat_q3_K_f32(
}
y1 += 2 * QK_K;
y1 += 4 * QK_K;
}
for (int row = 0; row < 2; ++row) {
const float sumf = (sumf1[row] - 32.f*sumf2[row]) / (1 << shift);
const float tot = simd_sum(sumf);
if (tiisg == 0) {
dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = tot;
const float sumf = (sumf1[row] + 0.25f * sumf2[row]) / (1 << shift);
sumf1[row] = simd_sum(sumf);
}
if (tiisg == 0) {
for (int row = 0; row < 2; ++row) {
dst[r1*ne0 + r2*ne0*ne1 + first_row + row] = sumf1[row];
}
}
}
#else
kernel void kernel_mul_mat_q3_K_f32(
@ -1579,17 +1599,25 @@ kernel void kernel_mul_mat_q5_K_f32(
sc16[2] = ((a[4] >> 0) & kmask2) | ((a[0] & kmask3) >> 2);
sc16[3] = ((a[4] >> 4) & kmask2) | ((a[2] & kmask3) >> 2);
float4 acc = {0.f, 0.f, 0.f, 0.f};
float4 acc1 = {0.f};
float4 acc2 = {0.f};
for (int l = 0; l < n; ++l) {
uint8_t h = qh[l];
acc[0] += yl[l+0] * ((uint16_t)(q1[l] & 0x0F) + (h & hm1 ? 16 : 0));
acc[1] += yl[l+8] * ((uint16_t)(q1[l] & 0xF0) + (h & hm2 ? 256 : 0));
acc[2] += yh[l+0] * ((uint16_t)(q2[l] & 0x0F) + (h & hm3 ? 16 : 0));
acc[3] += yh[l+8] * ((uint16_t)(q2[l] & 0xF0) + (h & hm4 ? 256 : 0));
acc1[0] += yl[l+0] * (q1[l] & 0x0F);
acc1[1] += yl[l+8] * (q1[l] & 0xF0);
acc1[2] += yh[l+0] * (q2[l] & 0x0F);
acc1[3] += yh[l+8] * (q2[l] & 0xF0);
acc2[0] += h & hm1 ? yl[l+0] : 0.f;
acc2[1] += h & hm2 ? yl[l+8] : 0.f;
acc2[2] += h & hm3 ? yh[l+0] : 0.f;
acc2[3] += h & hm4 ? yh[l+8] : 0.f;
}
const float dall = dh[0];
const float dmin = dh[1];
sumf[row] += dall * (acc[0] * sc8[0] + acc[1] * sc8[1] * 1.f/16.f + acc[2] * sc8[4] + acc[3] * sc8[5] * 1.f/16.f) -
sumf[row] += dall * (sc8[0] * (acc1[0] + 16.f*acc2[0]) +
sc8[1] * (acc1[1]/16.f + 16.f*acc2[1]) +
sc8[4] * (acc1[2] + 16.f*acc2[2]) +
sc8[5] * (acc1[3]/16.f + 16.f*acc2[3])) -
dmin * (sumy[0] * sc8[2] + sumy[1] * sc8[3] + sumy[2] * sc8[6] + sumy[3] * sc8[7]);
q1 += step;

39
ggml.c
View file

@ -1,4 +1,3 @@
#define _GNU_SOURCE // Defines CLOCK_MONOTONIC on Linux
#define _CRT_SECURE_NO_DEPRECATE // Disables ridiculous "unsafe" warnigns on Windows
#include "ggml.h"
@ -47,6 +46,10 @@
// disable "possible loss of data" to avoid hundreds of casts
// we should just be careful :)
#pragma warning(disable: 4244 4267)
// disable POSIX deprecation warnigns
// these functions are never going away, anyway
#pragma warning(disable: 4996)
#endif
#if defined(_WIN32)
@ -103,6 +106,9 @@ typedef void * thread_ret_t;
#include <sys/stat.h>
#include <unistd.h>
#endif
#ifdef GGML_USE_CPU_HBM
#include <hbwmalloc.h>
#endif
// __FMA__ and __F16C__ are not defined in MSVC, however they are implied with AVX2/AVX512
@ -192,9 +198,15 @@ typedef void * thread_ret_t;
#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
#else
inline static void * ggml_aligned_malloc(size_t size) {
if (size == 0) {
GGML_PRINT("WARNING: Behavior may be unexpected when allocating 0 bytes for ggml_aligned_malloc!\n");
return NULL;
}
void * aligned_memory = NULL;
#ifdef GGML_USE_METAL
int result = posix_memalign(&aligned_memory, getpagesize(), size);
#ifdef GGML_USE_CPU_HBM
int result = hbw_posix_memalign(&aligned_memory, 16, size);
#elif GGML_USE_METAL
int result = posix_memalign(&aligned_memory, sysconf(_SC_PAGESIZE), size);
#else
int result = posix_memalign(&aligned_memory, GGML_MEM_ALIGN, size);
#endif
@ -215,8 +227,12 @@ inline static void * ggml_aligned_malloc(size_t size) {
return aligned_memory;
}
#define GGML_ALIGNED_MALLOC(size) ggml_aligned_malloc(size)
#ifdef GGML_USE_CPU_HBM
#define GGML_ALIGNED_FREE(ptr) if(NULL != ptr) hbw_free(ptr)
#else
#define GGML_ALIGNED_FREE(ptr) free(ptr)
#endif
#endif
#define UNUSED GGML_UNUSED
#define SWAP(x, y, T) do { T SWAP = x; x = y; y = SWAP; } while (0)
@ -294,12 +310,14 @@ typedef double ggml_float;
#if defined(_MSC_VER) || defined(__MINGW32__)
#include <intrin.h>
#else
#if defined(__AVX__) || defined(__AVX2__) || defined(__AVX512F__) || defined(__SSSE3__) || defined(__SSE3__)
#if !defined(__riscv)
#include <immintrin.h>
#endif
#endif
#endif
#endif
#endif
#ifdef __riscv_v_intrinsic
#include <riscv_vector.h>
@ -4565,6 +4583,11 @@ struct ggml_context * ggml_init(struct ggml_init_params params) {
return NULL;
}
// allow to call ggml_init with 0 size
if (params.mem_size == 0) {
params.mem_size = GGML_MEM_ALIGN;
}
const size_t mem_size = params.mem_buffer ? params.mem_size : GGML_PAD(params.mem_size, GGML_MEM_ALIGN);
*ctx = (struct ggml_context) {
@ -4767,7 +4790,7 @@ static struct ggml_tensor * ggml_new_tensor_impl(
size_t obj_alloc_size = 0;
if (view_src == NULL && ctx->no_alloc == false) {
if (view_src == NULL && !ctx->no_alloc) {
if (ctx->scratch.data != NULL) {
// allocate tensor data in the scratch buffer
if (ctx->scratch.offs + data_size > ctx->scratch.size) {
@ -5676,7 +5699,7 @@ static struct ggml_tensor * ggml_mul_impl(
}
if (inplace) {
GGML_ASSERT(is_node == false);
GGML_ASSERT(!is_node);
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
@ -5719,7 +5742,7 @@ static struct ggml_tensor * ggml_div_impl(
}
if (inplace) {
GGML_ASSERT(is_node == false);
GGML_ASSERT(!is_node);
}
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
@ -20548,7 +20571,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
struct ggml_tensor * data = NULL;
if (params.no_alloc == false) {
if (!params.no_alloc) {
data = ggml_new_tensor_1d(ctx_data, GGML_TYPE_I8, ctx->size);
ok = ok && data != NULL;
@ -20589,7 +20612,7 @@ struct gguf_context * gguf_init_from_file(const char * fname, struct gguf_init_p
}
// point the data member to the appropriate location in the binary blob using the tensor infos
if (params.no_alloc == false) {
if (!params.no_alloc) {
//cur->data = (char *) data->data + ctx->infos[i].offset - ctx->offset; // offset from start of file
cur->data = (char *) data->data + ctx->infos[i].offset; // offset from data
}

View file

@ -1,8 +1,3 @@
// Defines fileno on msys:
#ifndef _GNU_SOURCE
#define _GNU_SOURCE
#endif
#include "llama.h"
#include "ggml.h"
@ -126,6 +121,9 @@ void replace_all(std::string & s, const std::string & search, const std::string
}
s = std::move(result);
}
#ifdef GGML_USE_CPU_HBM
#include <hbwmalloc.h>
#endif
static void zeros(std::ofstream & file, size_t n) {
char zero = 0;
@ -450,6 +448,9 @@ static void ggml_graph_compute_helper(std::vector<uint8_t> & buf, ggml_cgraph *
#elif GGML_USE_METAL
# define llama_host_malloc(n) ggml_metal_host_malloc(n)
# define llama_host_free(data) ggml_metal_host_free(data)
#elif GGML_USE_CPU_HBM
# define llama_host_malloc(n) hbw_malloc(n)
# define llama_host_free(data) if (data != NULL) hbw_free(data)
#else
# define llama_host_malloc(n) malloc(n)
# define llama_host_free(data) free(data)
@ -606,16 +607,16 @@ struct llama_mmap {
if (prefetch > 0) {
// Advise the kernel to preload the mapped memory
if (madvise(addr, std::min(file->size, prefetch), MADV_WILLNEED)) {
fprintf(stderr, "warning: madvise(.., MADV_WILLNEED) failed: %s\n",
if (posix_madvise(addr, std::min(file->size, prefetch), POSIX_MADV_WILLNEED)) {
fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_WILLNEED) failed: %s\n",
strerror(errno));
}
}
if (numa) {
// advise the kernel not to use readahead
// (because the next page might not belong on the same node)
if (madvise(addr, file->size, MADV_RANDOM)) {
fprintf(stderr, "warning: madvise(.., MADV_RANDOM) failed: %s\n",
if (posix_madvise(addr, file->size, POSIX_MADV_RANDOM)) {
fprintf(stderr, "warning: posix_madvise(.., POSIX_MADV_RANDOM) failed: %s\n",
strerror(errno));
}
}
@ -1489,7 +1490,11 @@ struct llama_model_loader {
// allocate temp buffer if not using mmap
if (!use_mmap && cur->data == NULL) {
GGML_ASSERT(cur->backend != GGML_BACKEND_CPU);
cur->data = malloc(ggml_nbytes(cur));
#ifdef GGML_USE_CPU_HBM
cur->data = (uint8_t*)hbw_malloc(ggml_nbytes(cur));
#else
cur->data = (uint8_t*)malloc(ggml_nbytes(cur));
#endif
}
load_data_for(cur);
@ -3052,33 +3057,10 @@ static bool llama_is_control_token(const llama_vocab & vocab, llama_token id) {
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_CONTROL;
}
static bool llama_is_user_defined_token(const llama_vocab & vocab, llama_token id) {
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_USER_DEFINED;
}
static bool llama_is_unused_token(const llama_vocab & vocab, llama_token id) {
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_UNUSED;
}
static bool llama_is_byte_token(const llama_vocab & vocab, llama_token id) {
return vocab.id_to_token[id].type == LLAMA_TOKEN_TYPE_BYTE;
}
static bool llama_is_bos_token(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(llama_is_control_token(vocab, id));
return id == vocab.special_bos_id;
}
static bool llama_is_eos_token(const llama_vocab & vocab, llama_token id ) {
GGML_ASSERT(llama_is_control_token(vocab, id));
return id == vocab.special_eos_id;
}
static bool llama_is_pad_token(const llama_vocab & vocab, llama_token id ) {
GGML_ASSERT(id < 0 || llama_is_control_token(vocab, id));
return id == vocab.special_pad_id;
}
static uint8_t llama_token_to_byte(const llama_vocab & vocab, llama_token id) {
GGML_ASSERT(llama_is_byte_token(vocab, id));
const auto& token_data = vocab.id_to_token.at(id);
@ -4800,9 +4782,11 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
std::vector<std::thread> workers;
std::mutex mutex;
#ifdef GGML_USE_K_QUANTS
auto use_more_bits = [] (int i_layer, int num_layers) -> bool {
return i_layer < num_layers/8 || i_layer >= 7*num_layers/8 || (i_layer - num_layers/8)%3 == 2;
};
#endif
int idx = 0;
@ -5650,15 +5634,19 @@ void llama_free(struct llama_context * ctx) {
}
int llama_n_vocab(const struct llama_context * ctx) {
return ctx->model.vocab.id_to_token.size();
return llama_model_n_vocab(&ctx->model);
}
int llama_n_ctx(const struct llama_context * ctx) {
return ctx->model.hparams.n_ctx;
return llama_model_n_ctx(&ctx->model);
}
int llama_n_ctx_train(const struct llama_context * ctx) {
return llama_model_n_ctx_train(&ctx->model);
}
int llama_n_embd(const struct llama_context * ctx) {
return ctx->model.hparams.n_embd;
return llama_model_n_embd(&ctx->model);
}
int llama_n_ff(const struct llama_context * ctx) {
@ -5693,6 +5681,10 @@ int llama_model_n_ctx(const struct llama_model * model) {
return model->hparams.n_ctx;
}
int llama_model_n_ctx_train(const struct llama_model * model) {
return model->hparams.n_ctx_train;
}
int llama_model_n_embd(const struct llama_model * model) {
return model->hparams.n_embd;
}
@ -5992,7 +5984,7 @@ size_t llama_set_state_data(struct llama_context * ctx, uint8_t * src) {
rng_ss.str(std::string(&rng_buf[0], rng_size));
rng_ss >> ctx->rng;
GGML_ASSERT(rng_ss.fail() == false);
GGML_ASSERT(!rng_ss.fail());
}
// set logits

34
llama.h
View file

@ -245,25 +245,27 @@ extern "C" {
LLAMA_API bool llama_mmap_supported (void);
LLAMA_API bool llama_mlock_supported(void);
LLAMA_API int llama_n_vocab (const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
LLAMA_API int llama_n_ff (const struct llama_context * ctx);
LLAMA_API int llama_n_head (const struct llama_context * ctx);
LLAMA_API int llama_n_head_kv(const struct llama_context * ctx);
LLAMA_API int llama_n_rot (const struct llama_context * ctx);
LLAMA_API int llama_n_layer (const struct llama_context * ctx);
LLAMA_API int llama_n_vocab (const struct llama_context * ctx);
LLAMA_API int llama_n_ctx (const struct llama_context * ctx);
LLAMA_API int llama_n_ctx_train(const struct llama_context * ctx);
LLAMA_API int llama_n_embd (const struct llama_context * ctx);
LLAMA_API int llama_n_ff (const struct llama_context * ctx);
LLAMA_API int llama_n_head (const struct llama_context * ctx);
LLAMA_API int llama_n_head_kv (const struct llama_context * ctx);
LLAMA_API int llama_n_rot (const struct llama_context * ctx);
LLAMA_API int llama_n_layer (const struct llama_context * ctx);
LLAMA_API enum llama_vocab_type llama_vocab_type(const struct llama_context * ctx);
LLAMA_API int llama_model_n_vocab(const struct llama_model * model);
LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
LLAMA_API int llama_model_n_embd (const struct llama_model * model);
LLAMA_API int llama_model_n_ff (const struct llama_model * model);
LLAMA_API int llama_model_n_head (const struct llama_model * model);
LLAMA_API int llama_model_n_head_kv(const struct llama_model * model);
LLAMA_API int llama_model_n_rot (const struct llama_model * model);
LLAMA_API int llama_model_n_layer(const struct llama_model * model);
LLAMA_API int llama_model_n_vocab (const struct llama_model * model);
LLAMA_API int llama_model_n_ctx (const struct llama_model * model);
LLAMA_API int llama_model_n_ctx_train(const struct llama_model * model);
LLAMA_API int llama_model_n_embd (const struct llama_model * model);
LLAMA_API int llama_model_n_ff (const struct llama_model * model);
LLAMA_API int llama_model_n_head (const struct llama_model * model);
LLAMA_API int llama_model_n_head_kv (const struct llama_model * model);
LLAMA_API int llama_model_n_rot (const struct llama_model * model);
LLAMA_API int llama_model_n_layer (const struct llama_model * model);
// Get a string describing the model type
LLAMA_API int llama_model_desc(const struct llama_model * model, char * buf, size_t buf_size);

View file

@ -76,7 +76,7 @@ void * align_with_offset(void * ptr, int offset) {
return (char *) std::align(MAX_ALIGNMENT, MAX_ALIGNMENT, ptr, dummy_size) + offset;
}
void benchmark_function(size_t size, size_t q_size, int64_t iterations, std::function<size_t(void)> function) {
void benchmark_function(size_t size, size_t q_size, int64_t iterations, const std::function<size_t(void)> & function) {
int64_t min_time_us = INT64_MAX;
int64_t total_time_us = 0;
int64_t min_time_cycles = INT64_MAX;