Fix embedding layer based on Noeda's example
This commit is contained in:
parent
c354db751e
commit
553b09ba8f
2 changed files with 34 additions and 59 deletions
|
@ -2351,55 +2351,7 @@ class CommandR2Model(Model):
|
||||||
super().set_gguf_parameters()
|
super().set_gguf_parameters()
|
||||||
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
|
self.gguf_writer.add_logit_scale(self.hparams["logit_scale"])
|
||||||
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.NONE)
|
||||||
|
|
||||||
def write_tensors(self):
|
|
||||||
block_count = self.hparams.get("n_layers", self.hparams.get("num_hidden_layers", self.hparams.get("n_layer")))
|
|
||||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
|
||||||
for name, data_torch in self.get_tensors():
|
|
||||||
# we don't need these
|
|
||||||
if name.endswith((".attention.masked_bias", ".attention.bias", ".attention.rotary_emb.inv_freq")):
|
|
||||||
continue
|
|
||||||
|
|
||||||
#Convert Q norm and K norm to 1d so they are exported in float32 and not quantized
|
|
||||||
if name.endswith((".q_norm.weight")) or name.endswith((".k_norm.weight")):
|
|
||||||
data_torch = data_torch.flatten()
|
|
||||||
|
|
||||||
old_dtype = data_torch.dtype
|
|
||||||
|
|
||||||
# convert any unsupported data types to float32
|
|
||||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
|
||||||
data_torch = data_torch.to(torch.float32)
|
|
||||||
|
|
||||||
data = data_torch.squeeze().numpy()
|
|
||||||
|
|
||||||
# map tensor names
|
|
||||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
|
||||||
if new_name is None:
|
|
||||||
print(f"Can not map tensor {name!r}")
|
|
||||||
sys.exit()
|
|
||||||
|
|
||||||
n_dims = len(data.shape)
|
|
||||||
data_dtype = data.dtype
|
|
||||||
|
|
||||||
# if f32 desired, convert any float16 to float32
|
|
||||||
if self.ftype == 0 and data_dtype == np.float16:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
|
|
||||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
|
||||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
|
||||||
data = data.astype(np.float32)
|
|
||||||
|
|
||||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
|
||||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
|
||||||
data = data.astype(np.float16)
|
|
||||||
|
|
||||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
|
||||||
|
|
||||||
self.gguf_writer.add_tensor(new_name, data)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
###### CONVERSION LOGIC ######
|
###### CONVERSION LOGIC ######
|
||||||
|
|
||||||
|
|
||||||
|
|
43
llama.cpp
43
llama.cpp
|
@ -5405,13 +5405,13 @@ static bool llm_load_tensors(
|
||||||
auto & layer = model.layers[i];
|
auto & layer = model.layers[i];
|
||||||
|
|
||||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||||
|
|
||||||
if(n_layer >= 64)
|
if (n_layer >= 64)
|
||||||
{
|
{
|
||||||
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k * hparams.n_head});
|
layer.attn_q_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head});
|
||||||
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k * hparams.n_head_kv});
|
layer.attn_k_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K_NORM, "weight", i), {hparams.n_embd_head_k, hparams.n_head_kv});
|
||||||
}
|
}
|
||||||
|
|
||||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||||||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||||||
|
@ -9460,19 +9460,31 @@ struct llm_build_context {
|
||||||
cb(Vcur, "Vcur", il);
|
cb(Vcur, "Vcur", il);
|
||||||
}
|
}
|
||||||
|
|
||||||
if(model.layers[il].attn_q_norm)
|
if (model.layers[il].attn_q_norm)
|
||||||
{
|
{
|
||||||
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
|
||||||
|
Qcur = ggml_view_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens,
|
||||||
|
ggml_element_size(Qcur) * n_embd_head,
|
||||||
|
ggml_element_size(Qcur) * n_embd_head * n_head,
|
||||||
|
0);
|
||||||
|
cb(Qcur, "Qcur", il);
|
||||||
|
Kcur = ggml_view_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens,
|
||||||
|
ggml_element_size(Kcur) * n_embd_head,
|
||||||
|
ggml_element_size(Kcur) * n_embd_head * n_head_kv,
|
||||||
|
0);
|
||||||
|
cb(Kcur, "Kcur", il);
|
||||||
|
|
||||||
|
Qcur = llm_build_norm(ctx0, Qcur, hparams,
|
||||||
model.layers[il].attn_q_norm,
|
model.layers[il].attn_q_norm,
|
||||||
NULL,
|
NULL,
|
||||||
LLM_NORM, cb, il);
|
LLM_NORM, cb, il);
|
||||||
cb(Qcur, "Qcur", il);
|
cb(Qcur, "Qcur", il);
|
||||||
|
|
||||||
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
Kcur = llm_build_norm(ctx0, Kcur, hparams,
|
||||||
model.layers[il].attn_k_norm,
|
model.layers[il].attn_k_norm,
|
||||||
NULL,
|
NULL,
|
||||||
LLM_NORM, cb, il);
|
LLM_NORM, cb, il);
|
||||||
cb(Kcur, "Kcur", il);
|
cb(Kcur, "Kcur", il);
|
||||||
}
|
}
|
||||||
|
|
||||||
Qcur = ggml_rope_custom(
|
Qcur = ggml_rope_custom(
|
||||||
|
@ -13085,9 +13097,15 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||||
return std::make_pair(i_layer, n_layer);
|
return std::make_pair(i_layer, n_layer);
|
||||||
};
|
};
|
||||||
|
|
||||||
|
// Command-R+ has such a large embedding weight tensor it overflows
|
||||||
|
// 32-bit signed integers. This is band-aid until quants can deal with
|
||||||
|
// that.
|
||||||
|
if (name == "token_embd.weight" && arch == LLM_ARCH_COMMAND_R && qs.model.hparams.n_layer >= 64) {
|
||||||
|
new_type = GGML_TYPE_F16;
|
||||||
|
}
|
||||||
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
|
// for arches that share the same tensor between the token embeddings and the output, we quantize the token embeddings
|
||||||
// with the quantization of the output tensor
|
// with the quantization of the output tensor
|
||||||
if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
|
else if (name == tn(LLM_TENSOR_OUTPUT, "weight") || (!qs.has_output && name == tn(LLM_TENSOR_TOKEN_EMBD, "weight"))) {
|
||||||
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
|
if (qs.params->output_tensor_type < GGML_TYPE_COUNT) {
|
||||||
new_type = qs.params->output_tensor_type;
|
new_type = qs.params->output_tensor_type;
|
||||||
} else {
|
} else {
|
||||||
|
@ -13119,6 +13137,11 @@ static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type n
|
||||||
new_type = GGML_TYPE_IQ3_S;
|
new_type = GGML_TYPE_IQ3_S;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
} else if ((arch == LLM_ARCH_COMMAND_R) &&
|
||||||
|
(name.find("q_norm") != std::string::npos ||
|
||||||
|
name.find("k_norm") != std::string::npos)) {
|
||||||
|
new_type = GGML_TYPE_F32;
|
||||||
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
} else if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
||||||
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M || ftype == LLAMA_FTYPE_MOSTLY_IQ1_M) {
|
||||||
if (name.find("attn_v.weight") != std::string::npos) {
|
if (name.find("attn_v.weight") != std::string::npos) {
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue