wip integrating new rwkv
This commit is contained in:
parent
fe63bfdb0f
commit
55e0fbf024
6 changed files with 1239 additions and 247 deletions
|
@ -23,6 +23,7 @@
|
||||||
#include "gpt2_v2.cpp"
|
#include "gpt2_v2.cpp"
|
||||||
#include "gpt2_v3.cpp"
|
#include "gpt2_v3.cpp"
|
||||||
#include "rwkv_v2.cpp"
|
#include "rwkv_v2.cpp"
|
||||||
|
#include "rwkv_v3.cpp"
|
||||||
#include "neox_v2.cpp"
|
#include "neox_v2.cpp"
|
||||||
#include "neox_v3.cpp"
|
#include "neox_v3.cpp"
|
||||||
|
|
||||||
|
@ -43,7 +44,7 @@ static gpt2_model gpt2_ctx_v3;
|
||||||
static gpt_neox_v2_model neox_ctx_v2;
|
static gpt_neox_v2_model neox_ctx_v2;
|
||||||
static gpt_neox_model neox_ctx_v3;
|
static gpt_neox_model neox_ctx_v3;
|
||||||
|
|
||||||
static rwkv_context * rwkv_ctx_v1;
|
static rwkv_v2_context * rwkv_ctx_v2;
|
||||||
static llama_v2_context_params llama_ctx_params_v2;
|
static llama_v2_context_params llama_ctx_params_v2;
|
||||||
static llama_context_params llama_ctx_params;
|
static llama_context_params llama_ctx_params;
|
||||||
static llama_v2_context * llama_ctx_v2;
|
static llama_v2_context * llama_ctx_v2;
|
||||||
|
@ -390,17 +391,17 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
|
||||||
}
|
}
|
||||||
else if (file_format == FileFormat::RWKV_1)
|
else if (file_format == FileFormat::RWKV_1)
|
||||||
{
|
{
|
||||||
rwkv_ctx_v1 = rwkv_init_from_file(modelname.c_str(), n_threads);
|
rwkv_ctx_v2 = rwkv_v2_init_from_file(modelname.c_str(), n_threads);
|
||||||
|
|
||||||
//setup buffers for rwkv state
|
//setup buffers for rwkv state
|
||||||
auto padding = 512u;
|
auto padding = 512u;
|
||||||
auto statebufsiz = rwkv_get_state_buffer_element_count(rwkv_ctx_v1) * sizeof(float) + padding;
|
auto statebufsiz = rwkv_v2_get_state_buffer_element_count(rwkv_ctx_v2) * sizeof(float) + padding;
|
||||||
auto logitbufsiz = rwkv_get_logits_buffer_element_count(rwkv_ctx_v1) * sizeof(float) + padding;
|
auto logitbufsiz = rwkv_v2_get_logits_buffer_element_count(rwkv_ctx_v2) * sizeof(float) + padding;
|
||||||
|
|
||||||
printf("\nRWKV Init: State Buffer:%u, Logit Buffer:%u\n", statebufsiz, logitbufsiz);
|
printf("\nRWKV Init: State Buffer:%u, Logit Buffer:%u\n", statebufsiz, logitbufsiz);
|
||||||
rwkv_ctx_v1->state_out = (float *)malloc(statebufsiz);
|
rwkv_ctx_v2->state_out = (float *)malloc(statebufsiz);
|
||||||
rwkv_ctx_v1->logits_out = (float *)malloc(logitbufsiz);
|
rwkv_ctx_v2->logits_out = (float *)malloc(logitbufsiz);
|
||||||
rwkv_ctx_v1->state_in = nullptr;
|
rwkv_ctx_v2->state_in = nullptr;
|
||||||
n_batch = 1;
|
n_batch = 1;
|
||||||
|
|
||||||
std::string word;
|
std::string word;
|
||||||
|
@ -414,15 +415,15 @@ ModelLoadResult gpttype_load_model(const load_model_inputs inputs, FileFormat in
|
||||||
}
|
}
|
||||||
printf("\nRWKV Vocab: %u\n",vocabsiz);
|
printf("\nRWKV Vocab: %u\n",vocabsiz);
|
||||||
|
|
||||||
bool testeval = rwkv_eval(rwkv_ctx_v1, 0, rwkv_ctx_v1->state_in, rwkv_ctx_v1->state_out, rwkv_ctx_v1->logits_out);
|
bool testeval = rwkv_v2_eval(rwkv_ctx_v2, 0, rwkv_ctx_v2->state_in, rwkv_ctx_v2->state_out, rwkv_ctx_v2->logits_out);
|
||||||
if(!testeval)
|
if(!testeval)
|
||||||
{
|
{
|
||||||
printf("\nError: RWKV Init Eval Failed!\n");
|
printf("\nError: RWKV Init Eval Failed!\n");
|
||||||
}
|
}
|
||||||
logits.resize(vocabsiz);
|
logits.resize(vocabsiz);
|
||||||
memcpy(logits.data(), rwkv_ctx_v1->logits_out, sizeof(float)*vocabsiz);
|
memcpy(logits.data(), rwkv_ctx_v2->logits_out, sizeof(float)*vocabsiz);
|
||||||
|
|
||||||
if (rwkv_ctx_v1 == NULL)
|
if (rwkv_ctx_v2 == NULL)
|
||||||
{
|
{
|
||||||
return ModelLoadResult::FAIL;
|
return ModelLoadResult::FAIL;
|
||||||
}
|
}
|
||||||
|
@ -838,11 +839,11 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
|
||||||
n_vocab = vocab.id_to_token.size(); //handled seperately
|
n_vocab = vocab.id_to_token.size(); //handled seperately
|
||||||
if(n_past==0)
|
if(n_past==0)
|
||||||
{
|
{
|
||||||
rwkv_ctx_v1->state_in = nullptr;
|
rwkv_ctx_v2->state_in = nullptr;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
rwkv_ctx_v1->state_in = rwkv_ctx_v1->state_out;
|
rwkv_ctx_v2->state_in = rwkv_ctx_v2->state_out;
|
||||||
//if it's empty, push in the final previous token
|
//if it's empty, push in the final previous token
|
||||||
if(embd_inp.size()==0 && current_context_tokens.size()>0)
|
if(embd_inp.size()==0 && current_context_tokens.size()>0)
|
||||||
{
|
{
|
||||||
|
@ -910,9 +911,9 @@ generation_outputs gpttype_generate(const generation_inputs inputs, generation_o
|
||||||
}
|
}
|
||||||
else if(file_format==FileFormat::RWKV_1)
|
else if(file_format==FileFormat::RWKV_1)
|
||||||
{
|
{
|
||||||
evalres = rwkv_eval(rwkv_ctx_v1, embd[0], rwkv_ctx_v1->state_in, rwkv_ctx_v1->state_out, rwkv_ctx_v1->logits_out);
|
evalres = rwkv_v2_eval(rwkv_ctx_v2, embd[0], rwkv_ctx_v2->state_in, rwkv_ctx_v2->state_out, rwkv_ctx_v2->logits_out);
|
||||||
memcpy(logits.data(), rwkv_ctx_v1->logits_out, sizeof(float)*rwkv_vocab.size());
|
memcpy(logits.data(), rwkv_ctx_v2->logits_out, sizeof(float)*rwkv_vocab.size());
|
||||||
rwkv_ctx_v1->state_in = rwkv_ctx_v1->state_out;
|
rwkv_ctx_v2->state_in = rwkv_ctx_v2->state_out;
|
||||||
}
|
}
|
||||||
else if(file_format==FileFormat::GPT2_1)
|
else if(file_format==FileFormat::GPT2_1)
|
||||||
{
|
{
|
||||||
|
|
|
@ -23,7 +23,7 @@
|
||||||
// --- Utilities ---
|
// --- Utilities ---
|
||||||
|
|
||||||
// Checks that x is not false. If x is false, prints fancy message to stderr and returns 0.
|
// Checks that x is not false. If x is false, prints fancy message to stderr and returns 0.
|
||||||
#define RWKV_ASSERT_FALSE(x, ...) \
|
#define RWKV_V2_ASSERT_FALSE(x, ...) \
|
||||||
do { \
|
do { \
|
||||||
if (!(x)) { \
|
if (!(x)) { \
|
||||||
fprintf(stderr, __VA_ARGS__); \
|
fprintf(stderr, __VA_ARGS__); \
|
||||||
|
@ -33,7 +33,7 @@
|
||||||
} while (0)
|
} while (0)
|
||||||
|
|
||||||
// Checks that x is not false. If x is false, prints fancy message to stderr and returns NULL.
|
// Checks that x is not false. If x is false, prints fancy message to stderr and returns NULL.
|
||||||
#define RWKV_ASSERT_NULL(x, ...) \
|
#define RWKV_V2_ASSERT_NULL(x, ...) \
|
||||||
do { \
|
do { \
|
||||||
if (!(x)) { \
|
if (!(x)) { \
|
||||||
fprintf(stderr, __VA_ARGS__); \
|
fprintf(stderr, __VA_ARGS__); \
|
||||||
|
@ -43,16 +43,16 @@
|
||||||
} while (0)
|
} while (0)
|
||||||
|
|
||||||
// Reads single int32 value from a file.
|
// Reads single int32 value from a file.
|
||||||
bool read_int32(FILE * file, int32_t * dest) {
|
bool rwkv_v2_read_int32(FILE * file, int32_t * dest) {
|
||||||
RWKV_ASSERT_FALSE(fread(dest, 4, 1, file) == 1, "Failed to read an int32 value from a file");
|
RWKV_V2_ASSERT_FALSE(fread(dest, 4, 1, file) == 1, "Failed to read an int32 value from a file");
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
#define GGML_V2_TYPE_UNKNOWN GGML_V2_TYPE_COUNT
|
#define GGML_V2_TYPE_UNKNOWN GGML_V2_TYPE_COUNT
|
||||||
|
|
||||||
#define FORMAT_TYPE_COUNT 10
|
#define RWKV_V2_FORMAT_TYPE_COUNT 10
|
||||||
|
|
||||||
static const ggml_v2_type FORMAT_TYPE_TO_GGML_V2_TYPE[FORMAT_TYPE_COUNT] = {
|
static const ggml_v2_type FORMAT_TYPE_TO_GGML_V2_TYPE[RWKV_V2_FORMAT_TYPE_COUNT] = {
|
||||||
GGML_V2_TYPE_F32,
|
GGML_V2_TYPE_F32,
|
||||||
GGML_V2_TYPE_F16,
|
GGML_V2_TYPE_F16,
|
||||||
GGML_V2_TYPE_Q4_0,
|
GGML_V2_TYPE_Q4_0,
|
||||||
|
@ -65,7 +65,7 @@ static const ggml_v2_type FORMAT_TYPE_TO_GGML_V2_TYPE[FORMAT_TYPE_COUNT] = {
|
||||||
GGML_V2_TYPE_Q8_0
|
GGML_V2_TYPE_Q8_0
|
||||||
};
|
};
|
||||||
|
|
||||||
static int32_t format_name_to_format_type(const char * format_name) {
|
static int32_t rwkv_v2_format_name_to_format_type(const char * format_name) {
|
||||||
if (strcmp(format_name, "Q4_0") == 0) return 2;
|
if (strcmp(format_name, "Q4_0") == 0) return 2;
|
||||||
if (strcmp(format_name, "Q4_1") == 0) return 3;
|
if (strcmp(format_name, "Q4_1") == 0) return 3;
|
||||||
if (strcmp(format_name, "Q4_2") == 0) return 5;
|
if (strcmp(format_name, "Q4_2") == 0) return 5;
|
||||||
|
@ -78,7 +78,7 @@ static int32_t format_name_to_format_type(const char * format_name) {
|
||||||
|
|
||||||
// --- Model definition and loading utilities ---
|
// --- Model definition and loading utilities ---
|
||||||
|
|
||||||
struct rwkv_layer {
|
struct rwkv_v2_layer {
|
||||||
struct ggml_v2_tensor * ln1_weight;
|
struct ggml_v2_tensor * ln1_weight;
|
||||||
struct ggml_v2_tensor * ln1_bias;
|
struct ggml_v2_tensor * ln1_bias;
|
||||||
|
|
||||||
|
@ -104,7 +104,7 @@ struct rwkv_layer {
|
||||||
struct ggml_v2_tensor * ffn_receptance;
|
struct ggml_v2_tensor * ffn_receptance;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct rwkv_model {
|
struct rwkv_v2_model {
|
||||||
int32_t n_vocab;
|
int32_t n_vocab;
|
||||||
int32_t n_layer;
|
int32_t n_layer;
|
||||||
int32_t n_embed;
|
int32_t n_embed;
|
||||||
|
@ -116,7 +116,7 @@ struct rwkv_model {
|
||||||
struct ggml_v2_tensor * ln0_weight;
|
struct ggml_v2_tensor * ln0_weight;
|
||||||
struct ggml_v2_tensor * ln0_bias;
|
struct ggml_v2_tensor * ln0_bias;
|
||||||
|
|
||||||
std::vector<rwkv_layer> layers;
|
std::vector<rwkv_v2_layer> layers;
|
||||||
|
|
||||||
struct ggml_v2_tensor * ln_out_weight;
|
struct ggml_v2_tensor * ln_out_weight;
|
||||||
struct ggml_v2_tensor * ln_out_bias;
|
struct ggml_v2_tensor * ln_out_bias;
|
||||||
|
@ -126,64 +126,64 @@ struct rwkv_model {
|
||||||
|
|
||||||
// Finds model parameter by key and sets it into dest.
|
// Finds model parameter by key and sets it into dest.
|
||||||
// If the parameter was not found, returns false.
|
// If the parameter was not found, returns false.
|
||||||
bool set_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, char * key, struct ggml_v2_tensor ** dest) {
|
bool rwkv_v2_set_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, char * key, struct ggml_v2_tensor ** dest) {
|
||||||
struct ggml_v2_tensor * parameter = (*parameters)[key];
|
struct ggml_v2_tensor * parameter = (*parameters)[key];
|
||||||
RWKV_ASSERT_FALSE(parameter != NULL, "Parameter %s not found in model file", key);
|
RWKV_V2_ASSERT_FALSE(parameter != NULL, "Parameter %s not found in model file", key);
|
||||||
*dest = parameter;
|
*dest = parameter;
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
// Finds block parameter by block index and key and sets it into dest.
|
// Finds block parameter by block index and key and sets it into dest.
|
||||||
// If the parameter was not found, returns false.
|
// If the parameter was not found, returns false.
|
||||||
bool set_block_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, int32_t block_index, char * key, struct ggml_v2_tensor ** dest) {
|
bool rwkv_v2_set_block_parameter(std::unordered_map<std::string, struct ggml_v2_tensor *> * parameters, int32_t block_index, char * key, struct ggml_v2_tensor ** dest) {
|
||||||
char full_key[128];
|
char full_key[128];
|
||||||
sprintf(full_key, "blocks.%d.%s", block_index, key);
|
sprintf(full_key, "blocks.%d.%s", block_index, key);
|
||||||
return set_parameter(parameters, full_key, dest);
|
return rwkv_v2_set_parameter(parameters, full_key, dest);
|
||||||
}
|
}
|
||||||
|
|
||||||
// --- Operators ---
|
// --- Operators ---
|
||||||
|
|
||||||
void rwkv_exp_impl(const int n_cols, float * dest, const float * src) {
|
void rwkv_v2_exp_impl(const int n_cols, float * dest, const float * src) {
|
||||||
for (int i = 0; i < n_cols; i++) {
|
for (int i = 0; i < n_cols; i++) {
|
||||||
dest[i] = expf(src[i]);
|
dest[i] = expf(src[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void rwkv_1_minus_x_impl(const int n_cols, float * dest, const float * src) {
|
void rwkv_v2_1_minus_x_impl(const int n_cols, float * dest, const float * src) {
|
||||||
for (int i = 0; i < n_cols; i++) {
|
for (int i = 0; i < n_cols; i++) {
|
||||||
dest[i] = 1.0F - src[i];
|
dest[i] = 1.0F - src[i];
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void rwkv_sigmoid_impl(const int n_cols, float * dest, const float * src) {
|
void rwkv_v2_sigmoid_impl(const int n_cols, float * dest, const float * src) {
|
||||||
for (int i = 0; i < n_cols; i++) {
|
for (int i = 0; i < n_cols; i++) {
|
||||||
dest[i] = 1.0F / (1.0F + expf(-src[i]));
|
dest[i] = 1.0F / (1.0F + expf(-src[i]));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void rwkv_max_impl(const int n_cols, float * dest, const float * src0, const float * src1) {
|
void rwkv_v2_max_impl(const int n_cols, float * dest, const float * src0, const float * src1) {
|
||||||
for (int i = 0; i < n_cols; i++) {
|
for (int i = 0; i < n_cols; i++) {
|
||||||
dest[i] = fmaxf(src0[i], src1[i]);
|
dest[i] = fmaxf(src0[i], src1[i]);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_v2_tensor * rwkv_exp(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
|
struct ggml_v2_tensor * rwkv_v2_exp(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
|
||||||
return ggml_v2_map_unary_f32(ctx, x, rwkv_exp_impl);
|
return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_exp_impl);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_v2_tensor * rwkv_1_minus_x(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
|
struct ggml_v2_tensor * rwkv_v2_1_minus_x(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
|
||||||
return ggml_v2_map_unary_f32(ctx, x, rwkv_1_minus_x_impl);
|
return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_1_minus_x_impl);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_v2_tensor * rwkv_sigmoid(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
|
struct ggml_v2_tensor * rwkv_v2_sigmoid(ggml_v2_context * ctx, struct ggml_v2_tensor * x) {
|
||||||
return ggml_v2_map_unary_f32(ctx, x, rwkv_sigmoid_impl);
|
return ggml_v2_map_unary_f32(ctx, x, rwkv_v2_sigmoid_impl);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_v2_tensor * rwkv_max(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * y) {
|
struct ggml_v2_tensor * rwkv_v2_max(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * y) {
|
||||||
return ggml_v2_map_binary_f32(ctx, x, y, rwkv_max_impl);
|
return ggml_v2_map_binary_f32(ctx, x, y, rwkv_v2_max_impl);
|
||||||
}
|
}
|
||||||
|
|
||||||
struct ggml_v2_tensor * rwkv_layer_norm(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * weight, struct ggml_v2_tensor * bias) {
|
struct ggml_v2_tensor * rwkv_v2_layer_norm(ggml_v2_context * ctx, struct ggml_v2_tensor * x, struct ggml_v2_tensor * weight, struct ggml_v2_tensor * bias) {
|
||||||
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
|
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
|
||||||
// Looks like ggml_v2_norm does the first part, we only need to apply weight & bias.
|
// Looks like ggml_v2_norm does the first part, we only need to apply weight & bias.
|
||||||
x = ggml_v2_norm(ctx, x);
|
x = ggml_v2_norm(ctx, x);
|
||||||
|
@ -194,8 +194,8 @@ struct ggml_v2_tensor * rwkv_layer_norm(ggml_v2_context * ctx, struct ggml_v2_te
|
||||||
|
|
||||||
// --- Implementation ---
|
// --- Implementation ---
|
||||||
|
|
||||||
struct rwkv_context {
|
struct rwkv_v2_context {
|
||||||
struct rwkv_model * model;
|
struct rwkv_v2_model * model;
|
||||||
struct ggml_v2_tensor * token_index;
|
struct ggml_v2_tensor * token_index;
|
||||||
struct ggml_v2_tensor * state;
|
struct ggml_v2_tensor * state;
|
||||||
struct ggml_v2_tensor ** state_parts;
|
struct ggml_v2_tensor ** state_parts;
|
||||||
|
@ -208,38 +208,38 @@ struct rwkv_context {
|
||||||
float * logits_out = 0; //stores address of output logit buffer
|
float * logits_out = 0; //stores address of output logit buffer
|
||||||
};
|
};
|
||||||
|
|
||||||
struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_threads) {
|
struct rwkv_v2_context * rwkv_v2_init_from_file(const char * file_path, uint32_t n_threads) {
|
||||||
FILE * file = fopen(file_path, "rb");
|
FILE * file = fopen(file_path, "rb");
|
||||||
RWKV_ASSERT_NULL(file != NULL, "Failed to open file %s", file_path);
|
RWKV_V2_ASSERT_NULL(file != NULL, "Failed to open file %s", file_path);
|
||||||
|
|
||||||
int32_t magic;
|
int32_t magic;
|
||||||
read_int32(file, &magic);
|
rwkv_v2_read_int32(file, &magic);
|
||||||
RWKV_ASSERT_NULL(magic == RWKV_FILE_MAGIC, "Unexpected magic value %d", magic);
|
RWKV_V2_ASSERT_NULL(magic == RWKV_V2_FILE_MAGIC, "Unexpected magic value %d", magic);
|
||||||
|
|
||||||
int32_t version;
|
int32_t version;
|
||||||
read_int32(file, &version);
|
rwkv_v2_read_int32(file, &version);
|
||||||
RWKV_ASSERT_NULL(version == RWKV_FILE_VERSION, "Unsupported file version %d", version);
|
RWKV_V2_ASSERT_NULL(version == RWKV_V2_FILE_VERSION, "Unsupported file version %d", version);
|
||||||
|
|
||||||
struct rwkv_model * model = (struct rwkv_model *) calloc(1, sizeof(struct rwkv_model));
|
struct rwkv_v2_model * model = (struct rwkv_v2_model *) calloc(1, sizeof(struct rwkv_v2_model));
|
||||||
|
|
||||||
read_int32(file, &(model->n_vocab));
|
rwkv_v2_read_int32(file, &(model->n_vocab));
|
||||||
RWKV_ASSERT_NULL(model->n_vocab > 0, "Non-positive n_vocab %d", model->n_vocab);
|
RWKV_V2_ASSERT_NULL(model->n_vocab > 0, "Non-positive n_vocab %d", model->n_vocab);
|
||||||
|
|
||||||
read_int32(file, &(model->n_embed));
|
rwkv_v2_read_int32(file, &(model->n_embed));
|
||||||
RWKV_ASSERT_NULL(model->n_embed > 0, "Non-positive n_embed %d", model->n_embed);
|
RWKV_V2_ASSERT_NULL(model->n_embed > 0, "Non-positive n_embed %d", model->n_embed);
|
||||||
|
|
||||||
read_int32(file, &(model->n_layer));
|
rwkv_v2_read_int32(file, &(model->n_layer));
|
||||||
RWKV_ASSERT_NULL(model->n_layer > 0, "Non-positive n_layer %d", model->n_layer);
|
RWKV_V2_ASSERT_NULL(model->n_layer > 0, "Non-positive n_layer %d", model->n_layer);
|
||||||
|
|
||||||
read_int32(file, &(model->data_type));
|
rwkv_v2_read_int32(file, &(model->data_type));
|
||||||
RWKV_ASSERT_NULL(model->data_type >= 0 && model->data_type < FORMAT_TYPE_COUNT, "Unsupported model data type %d", model->data_type);
|
RWKV_V2_ASSERT_NULL(model->data_type >= 0 && model->data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Unsupported model data type %d", model->data_type);
|
||||||
|
|
||||||
RWKV_ASSERT_NULL(
|
RWKV_V2_ASSERT_NULL(
|
||||||
model->data_type != 4,
|
model->data_type != 4,
|
||||||
"Models in Q4_1_O format cannot be loaded anymore because the format was removed. You need to quantize the model into another format"
|
"Models in Q4_1_O format cannot be loaded anymore because the format was removed. You need to quantize the model into another format"
|
||||||
);
|
);
|
||||||
|
|
||||||
RWKV_ASSERT_NULL(
|
RWKV_V2_ASSERT_NULL(
|
||||||
model->data_type != 6,
|
model->data_type != 6,
|
||||||
"Models in Q4_3 format cannot be loaded anymore because the format was removed. You need to quantize the model into another format"
|
"Models in Q4_3 format cannot be loaded anymore because the format was removed. You need to quantize the model into another format"
|
||||||
);
|
);
|
||||||
|
@ -249,7 +249,7 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
|
|
||||||
{
|
{
|
||||||
auto fin = std::ifstream(file_path, std::ios::binary);
|
auto fin = std::ifstream(file_path, std::ios::binary);
|
||||||
RWKV_ASSERT_NULL(fin, "Failed to open file %s", file_path);
|
RWKV_V2_ASSERT_NULL(fin, "Failed to open file %s", file_path);
|
||||||
fin.seekg(0, fin.end);
|
fin.seekg(0, fin.end);
|
||||||
file_size = fin.tellg();
|
file_size = fin.tellg();
|
||||||
fin.close();
|
fin.close();
|
||||||
|
@ -283,20 +283,20 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
RWKV_ASSERT_NULL(elements_read == 1, "Failed to read dimension count");
|
RWKV_V2_ASSERT_NULL(elements_read == 1, "Failed to read dimension count");
|
||||||
RWKV_ASSERT_NULL(dim_count == 1 || dim_count == 2, "Unsupported dimension count %d", dim_count);
|
RWKV_V2_ASSERT_NULL(dim_count == 1 || dim_count == 2, "Unsupported dimension count %d", dim_count);
|
||||||
|
|
||||||
int32_t key_length;
|
int32_t key_length;
|
||||||
read_int32(file, &key_length);
|
rwkv_v2_read_int32(file, &key_length);
|
||||||
RWKV_ASSERT_NULL(key_length > 0, "Non-positive key length %d", key_length);
|
RWKV_V2_ASSERT_NULL(key_length > 0, "Non-positive key length %d", key_length);
|
||||||
|
|
||||||
int32_t data_type;
|
int32_t data_type;
|
||||||
read_int32(file, &data_type);
|
rwkv_v2_read_int32(file, &data_type);
|
||||||
RWKV_ASSERT_NULL(data_type >= 0 && data_type < FORMAT_TYPE_COUNT, "Unsupported parameter data type %d", data_type);
|
RWKV_V2_ASSERT_NULL(data_type >= 0 && data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Unsupported parameter data type %d", data_type);
|
||||||
|
|
||||||
ggml_v2_type ggml_v2_data_type = FORMAT_TYPE_TO_GGML_V2_TYPE[data_type];
|
ggml_v2_type ggml_v2_data_type = FORMAT_TYPE_TO_GGML_V2_TYPE[data_type];
|
||||||
|
|
||||||
RWKV_ASSERT_NULL(ggml_v2_data_type != GGML_V2_TYPE_UNKNOWN, "Unsupported parameter data type %d", data_type);
|
RWKV_V2_ASSERT_NULL(ggml_v2_data_type != GGML_V2_TYPE_UNKNOWN, "Unsupported parameter data type %d", data_type);
|
||||||
|
|
||||||
struct ggml_v2_tensor * tensor;
|
struct ggml_v2_tensor * tensor;
|
||||||
|
|
||||||
|
@ -304,20 +304,20 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
int32_t y = -1;
|
int32_t y = -1;
|
||||||
|
|
||||||
if (dim_count == 1) {
|
if (dim_count == 1) {
|
||||||
read_int32(file, &x);
|
rwkv_v2_read_int32(file, &x);
|
||||||
tensor = ggml_v2_new_tensor_1d(ctx, ggml_v2_data_type, x);
|
tensor = ggml_v2_new_tensor_1d(ctx, ggml_v2_data_type, x);
|
||||||
} else if (dim_count == 2) {
|
} else if (dim_count == 2) {
|
||||||
read_int32(file, &x);
|
rwkv_v2_read_int32(file, &x);
|
||||||
read_int32(file, &y);
|
rwkv_v2_read_int32(file, &y);
|
||||||
tensor = ggml_v2_new_tensor_2d(ctx, ggml_v2_data_type, x, y);
|
tensor = ggml_v2_new_tensor_2d(ctx, ggml_v2_data_type, x, y);
|
||||||
} else {
|
} else {
|
||||||
abort();
|
abort();
|
||||||
}
|
}
|
||||||
|
|
||||||
std::string key(key_length, 0);
|
std::string key(key_length, 0);
|
||||||
RWKV_ASSERT_NULL(fread(&key[0], 1, key_length, file) == uint32_t(key_length), "Failed to read parameter key");
|
RWKV_V2_ASSERT_NULL(fread(&key[0], 1, key_length, file) == uint32_t(key_length), "Failed to read parameter key");
|
||||||
|
|
||||||
RWKV_ASSERT_NULL(fread(tensor->data, 1, ggml_v2_nbytes(tensor), file) == ggml_v2_nbytes(tensor), "Failed to read parameter data");
|
RWKV_V2_ASSERT_NULL(fread(tensor->data, 1, ggml_v2_nbytes(tensor), file) == ggml_v2_nbytes(tensor), "Failed to read parameter data");
|
||||||
|
|
||||||
parameters[key] = tensor;
|
parameters[key] = tensor;
|
||||||
}
|
}
|
||||||
|
@ -326,49 +326,49 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
|
|
||||||
model->layers.resize(model->n_layer);
|
model->layers.resize(model->n_layer);
|
||||||
|
|
||||||
set_parameter(¶meters, "emb.weight", &(model->emb));
|
rwkv_v2_set_parameter(¶meters, "emb.weight", &(model->emb));
|
||||||
|
|
||||||
set_parameter(¶meters, "blocks.0.ln0.weight", &(model->ln0_weight));
|
rwkv_v2_set_parameter(¶meters, "blocks.0.ln0.weight", &(model->ln0_weight));
|
||||||
set_parameter(¶meters, "blocks.0.ln0.bias", &(model->ln0_bias));
|
rwkv_v2_set_parameter(¶meters, "blocks.0.ln0.bias", &(model->ln0_bias));
|
||||||
|
|
||||||
for (int i = 0; i < model->n_layer; i++) {
|
for (int i = 0; i < model->n_layer; i++) {
|
||||||
rwkv_layer layer = model->layers[i];
|
rwkv_v2_layer layer = model->layers[i];
|
||||||
|
|
||||||
set_block_parameter(¶meters, i, "ln1.weight", &(layer.ln1_weight));
|
rwkv_v2_set_block_parameter(¶meters, i, "ln1.weight", &(layer.ln1_weight));
|
||||||
set_block_parameter(¶meters, i, "ln1.bias", &(layer.ln1_bias));
|
rwkv_v2_set_block_parameter(¶meters, i, "ln1.bias", &(layer.ln1_bias));
|
||||||
|
|
||||||
set_block_parameter(¶meters, i, "att.time_mix_k", &(layer.att_time_mix_k));
|
rwkv_v2_set_block_parameter(¶meters, i, "att.time_mix_k", &(layer.att_time_mix_k));
|
||||||
set_block_parameter(¶meters, i, "att.time_mix_v", &(layer.att_time_mix_v));
|
rwkv_v2_set_block_parameter(¶meters, i, "att.time_mix_v", &(layer.att_time_mix_v));
|
||||||
set_block_parameter(¶meters, i, "att.time_mix_r", &(layer.att_time_mix_r));
|
rwkv_v2_set_block_parameter(¶meters, i, "att.time_mix_r", &(layer.att_time_mix_r));
|
||||||
set_block_parameter(¶meters, i, "att.time_first", &(layer.att_time_first));
|
rwkv_v2_set_block_parameter(¶meters, i, "att.time_first", &(layer.att_time_first));
|
||||||
set_block_parameter(¶meters, i, "att.time_decay", &(layer.att_time_decay));
|
rwkv_v2_set_block_parameter(¶meters, i, "att.time_decay", &(layer.att_time_decay));
|
||||||
set_block_parameter(¶meters, i, "att.key.weight", &(layer.att_key));
|
rwkv_v2_set_block_parameter(¶meters, i, "att.key.weight", &(layer.att_key));
|
||||||
set_block_parameter(¶meters, i, "att.value.weight", &(layer.att_value));
|
rwkv_v2_set_block_parameter(¶meters, i, "att.value.weight", &(layer.att_value));
|
||||||
set_block_parameter(¶meters, i, "att.receptance.weight", &(layer.att_receptance));
|
rwkv_v2_set_block_parameter(¶meters, i, "att.receptance.weight", &(layer.att_receptance));
|
||||||
set_block_parameter(¶meters, i, "att.output.weight", &(layer.att_output));
|
rwkv_v2_set_block_parameter(¶meters, i, "att.output.weight", &(layer.att_output));
|
||||||
|
|
||||||
set_block_parameter(¶meters, i, "ln2.weight", &(layer.ln2_weight));
|
rwkv_v2_set_block_parameter(¶meters, i, "ln2.weight", &(layer.ln2_weight));
|
||||||
set_block_parameter(¶meters, i, "ln2.bias", &(layer.ln2_bias));
|
rwkv_v2_set_block_parameter(¶meters, i, "ln2.bias", &(layer.ln2_bias));
|
||||||
|
|
||||||
set_block_parameter(¶meters, i, "ffn.time_mix_k", &(layer.ffn_time_mix_k));
|
rwkv_v2_set_block_parameter(¶meters, i, "ffn.time_mix_k", &(layer.ffn_time_mix_k));
|
||||||
set_block_parameter(¶meters, i, "ffn.time_mix_r", &(layer.ffn_time_mix_r));
|
rwkv_v2_set_block_parameter(¶meters, i, "ffn.time_mix_r", &(layer.ffn_time_mix_r));
|
||||||
set_block_parameter(¶meters, i, "ffn.key.weight", &(layer.ffn_key));
|
rwkv_v2_set_block_parameter(¶meters, i, "ffn.key.weight", &(layer.ffn_key));
|
||||||
set_block_parameter(¶meters, i, "ffn.value.weight", &(layer.ffn_value));
|
rwkv_v2_set_block_parameter(¶meters, i, "ffn.value.weight", &(layer.ffn_value));
|
||||||
set_block_parameter(¶meters, i, "ffn.receptance.weight", &(layer.ffn_receptance));
|
rwkv_v2_set_block_parameter(¶meters, i, "ffn.receptance.weight", &(layer.ffn_receptance));
|
||||||
|
|
||||||
model->layers[i] = layer;
|
model->layers[i] = layer;
|
||||||
}
|
}
|
||||||
|
|
||||||
set_parameter(¶meters, "ln_out.weight", &(model->ln_out_weight));
|
rwkv_v2_set_parameter(¶meters, "ln_out.weight", &(model->ln_out_weight));
|
||||||
set_parameter(¶meters, "ln_out.bias", &(model->ln_out_bias));
|
rwkv_v2_set_parameter(¶meters, "ln_out.bias", &(model->ln_out_bias));
|
||||||
|
|
||||||
set_parameter(¶meters, "head.weight", &(model->head));
|
rwkv_v2_set_parameter(¶meters, "head.weight", &(model->head));
|
||||||
|
|
||||||
// Verify order of dimensions
|
// Verify order of dimensions
|
||||||
struct ggml_v2_tensor * emb = model->emb;
|
struct ggml_v2_tensor * emb = model->emb;
|
||||||
RWKV_ASSERT_NULL(emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims);
|
RWKV_V2_ASSERT_NULL(emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims);
|
||||||
RWKV_ASSERT_NULL(emb->ne[0] == model->n_embed, "Unexpected dimension of embedding matrix %lld", emb->ne[0]);
|
RWKV_V2_ASSERT_NULL(emb->ne[0] == model->n_embed, "Unexpected dimension of embedding matrix %lld", emb->ne[0]);
|
||||||
RWKV_ASSERT_NULL(emb->ne[1] == model->n_vocab, "Unexpected dimension of embedding matrix %lld", emb->ne[1]);
|
RWKV_V2_ASSERT_NULL(emb->ne[1] == model->n_vocab, "Unexpected dimension of embedding matrix %lld", emb->ne[1]);
|
||||||
|
|
||||||
int32_t n_embed = model->n_embed;
|
int32_t n_embed = model->n_embed;
|
||||||
int32_t n_layer = model->n_layer;
|
int32_t n_layer = model->n_layer;
|
||||||
|
@ -381,7 +381,7 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
struct ggml_v2_tensor * x = ggml_v2_get_rows(ctx, model->emb, token_index);
|
struct ggml_v2_tensor * x = ggml_v2_get_rows(ctx, model->emb, token_index);
|
||||||
|
|
||||||
// x = self.layer_norm(x, self.w.blocks[0].ln0)
|
// x = self.layer_norm(x, self.w.blocks[0].ln0)
|
||||||
x = rwkv_layer_norm(ctx, x, model->ln0_weight, model->ln0_bias);
|
x = rwkv_v2_layer_norm(ctx, x, model->ln0_weight, model->ln0_bias);
|
||||||
|
|
||||||
// We collect parts of new state here. Each part is (n_embed) vector.
|
// We collect parts of new state here. Each part is (n_embed) vector.
|
||||||
struct ggml_v2_tensor ** state_parts = new ggml_v2_tensor * [n_layer * 5];
|
struct ggml_v2_tensor ** state_parts = new ggml_v2_tensor * [n_layer * 5];
|
||||||
|
@ -392,7 +392,7 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
// RWKV/time mixing
|
// RWKV/time mixing
|
||||||
{
|
{
|
||||||
// self.layer_norm(x, self.w.blocks[i].ln1)
|
// self.layer_norm(x, self.w.blocks[i].ln1)
|
||||||
struct ggml_v2_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
|
struct ggml_v2_tensor * x0 = rwkv_v2_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
|
||||||
// state[5 * i + 1]
|
// state[5 * i + 1]
|
||||||
struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * sizeof(float));
|
struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 1) * n_embed * sizeof(float));
|
||||||
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
|
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
|
||||||
|
@ -401,23 +401,23 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
struct ggml_v2_tensor * xk = ggml_v2_add(
|
struct ggml_v2_tensor * xk = ggml_v2_add(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_v2_mul(ctx, x0, layer.att_time_mix_k),
|
ggml_v2_mul(ctx, x0, layer.att_time_mix_k),
|
||||||
ggml_v2_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_k))
|
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_k))
|
||||||
);
|
);
|
||||||
struct ggml_v2_tensor * xv = ggml_v2_add(
|
struct ggml_v2_tensor * xv = ggml_v2_add(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_v2_mul(ctx, x0, layer.att_time_mix_v),
|
ggml_v2_mul(ctx, x0, layer.att_time_mix_v),
|
||||||
ggml_v2_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_v))
|
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_v))
|
||||||
);
|
);
|
||||||
struct ggml_v2_tensor * xr = ggml_v2_add(
|
struct ggml_v2_tensor * xr = ggml_v2_add(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_v2_mul(ctx, x0, layer.att_time_mix_r),
|
ggml_v2_mul(ctx, x0, layer.att_time_mix_r),
|
||||||
ggml_v2_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_r))
|
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.att_time_mix_r))
|
||||||
);
|
);
|
||||||
// state[5 * i + 1] = x
|
// state[5 * i + 1] = x
|
||||||
state_parts[5 * i + 1] = x0;
|
state_parts[5 * i + 1] = x0;
|
||||||
|
|
||||||
// r = torch.sigmoid(rw @ xr)
|
// r = torch.sigmoid(rw @ xr)
|
||||||
struct ggml_v2_tensor * r = rwkv_sigmoid(
|
struct ggml_v2_tensor * r = rwkv_v2_sigmoid(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_v2_mul_mat(ctx, layer.att_receptance, xr)
|
ggml_v2_mul_mat(ctx, layer.att_receptance, xr)
|
||||||
);
|
);
|
||||||
|
@ -436,11 +436,11 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
// ww = time_first + k
|
// ww = time_first + k
|
||||||
struct ggml_v2_tensor * ww = ggml_v2_add(ctx, layer.att_time_first, k);
|
struct ggml_v2_tensor * ww = ggml_v2_add(ctx, layer.att_time_first, k);
|
||||||
// qq = torch.maximum(pp, ww)
|
// qq = torch.maximum(pp, ww)
|
||||||
struct ggml_v2_tensor * qq = rwkv_max(ctx, pp, ww);
|
struct ggml_v2_tensor * qq = rwkv_v2_max(ctx, pp, ww);
|
||||||
// e1 = torch.exp(pp - qq)
|
// e1 = torch.exp(pp - qq)
|
||||||
struct ggml_v2_tensor * e1 = rwkv_exp(ctx, ggml_v2_sub(ctx, pp, qq));
|
struct ggml_v2_tensor * e1 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, pp, qq));
|
||||||
// e2 = torch.exp(ww - qq)
|
// e2 = torch.exp(ww - qq)
|
||||||
struct ggml_v2_tensor * e2 = rwkv_exp(ctx, ggml_v2_sub(ctx, ww, qq));
|
struct ggml_v2_tensor * e2 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, ww, qq));
|
||||||
// a = e1 * aa + e2 * v
|
// a = e1 * aa + e2 * v
|
||||||
struct ggml_v2_tensor * a = ggml_v2_add(
|
struct ggml_v2_tensor * a = ggml_v2_add(
|
||||||
ctx,
|
ctx,
|
||||||
|
@ -458,11 +458,11 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
// ww = pp + time_decay
|
// ww = pp + time_decay
|
||||||
ww = ggml_v2_add(ctx, pp, layer.att_time_decay);
|
ww = ggml_v2_add(ctx, pp, layer.att_time_decay);
|
||||||
// qq = torch.maximum(ww, k)
|
// qq = torch.maximum(ww, k)
|
||||||
qq = rwkv_max(ctx, ww, k);
|
qq = rwkv_v2_max(ctx, ww, k);
|
||||||
// e1 = torch.exp(ww - qq)
|
// e1 = torch.exp(ww - qq)
|
||||||
e1 = rwkv_exp(ctx, ggml_v2_sub(ctx, ww, qq));
|
e1 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, ww, qq));
|
||||||
// e2 = torch.exp(k - qq)
|
// e2 = torch.exp(k - qq)
|
||||||
e2 = rwkv_exp(ctx, ggml_v2_sub(ctx, k, qq));
|
e2 = rwkv_v2_exp(ctx, ggml_v2_sub(ctx, k, qq));
|
||||||
// state[5 * i + 2] = e1 * aa + e2 * v
|
// state[5 * i + 2] = e1 * aa + e2 * v
|
||||||
state_parts[5 * i + 2] = ggml_v2_add(
|
state_parts[5 * i + 2] = ggml_v2_add(
|
||||||
ctx,
|
ctx,
|
||||||
|
@ -492,7 +492,7 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
// FFN/channel mixing
|
// FFN/channel mixing
|
||||||
{
|
{
|
||||||
// self.layer_norm(x, self.w.blocks[i].ln2)
|
// self.layer_norm(x, self.w.blocks[i].ln2)
|
||||||
struct ggml_v2_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias);
|
struct ggml_v2_tensor * x0 = rwkv_v2_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias);
|
||||||
// state[5 * i + 0]
|
// state[5 * i + 0]
|
||||||
struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * sizeof(float));
|
struct ggml_v2_tensor * x_prev = ggml_v2_view_1d(ctx, state, n_embed, (5 * i + 0) * n_embed * sizeof(float));
|
||||||
// xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
|
// xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
|
||||||
|
@ -500,18 +500,18 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
struct ggml_v2_tensor * xk = ggml_v2_add(
|
struct ggml_v2_tensor * xk = ggml_v2_add(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_v2_mul(ctx, x0, layer.ffn_time_mix_k),
|
ggml_v2_mul(ctx, x0, layer.ffn_time_mix_k),
|
||||||
ggml_v2_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_k))
|
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.ffn_time_mix_k))
|
||||||
);
|
);
|
||||||
struct ggml_v2_tensor * xr = ggml_v2_add(
|
struct ggml_v2_tensor * xr = ggml_v2_add(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_v2_mul(ctx, x0, layer.ffn_time_mix_r),
|
ggml_v2_mul(ctx, x0, layer.ffn_time_mix_r),
|
||||||
ggml_v2_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_r))
|
ggml_v2_mul(ctx, x_prev, rwkv_v2_1_minus_x(ctx, layer.ffn_time_mix_r))
|
||||||
);
|
);
|
||||||
// state[5 * i + 0] = x
|
// state[5 * i + 0] = x
|
||||||
state_parts[5 * i + 0] = x0;
|
state_parts[5 * i + 0] = x0;
|
||||||
|
|
||||||
// r = torch.sigmoid(rw @ xr)
|
// r = torch.sigmoid(rw @ xr)
|
||||||
struct ggml_v2_tensor * r = rwkv_sigmoid(
|
struct ggml_v2_tensor * r = rwkv_v2_sigmoid(
|
||||||
ctx,
|
ctx,
|
||||||
ggml_v2_mul_mat(ctx, layer.ffn_receptance, xr)
|
ggml_v2_mul_mat(ctx, layer.ffn_receptance, xr)
|
||||||
);
|
);
|
||||||
|
@ -534,7 +534,7 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
}
|
}
|
||||||
|
|
||||||
// x = self.layer_norm(x, self.w.ln_out)
|
// x = self.layer_norm(x, self.w.ln_out)
|
||||||
x = rwkv_layer_norm(ctx, x, model->ln_out_weight, model->ln_out_bias);
|
x = rwkv_v2_layer_norm(ctx, x, model->ln_out_weight, model->ln_out_bias);
|
||||||
|
|
||||||
// x = (self.w.head.weight @ x).float()
|
// x = (self.w.head.weight @ x).float()
|
||||||
struct ggml_v2_tensor * logits = ggml_v2_mul_mat(ctx, model->head, x);
|
struct ggml_v2_tensor * logits = ggml_v2_mul_mat(ctx, model->head, x);
|
||||||
|
@ -549,7 +549,7 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
|
|
||||||
graph->n_threads = n_threads;
|
graph->n_threads = n_threads;
|
||||||
|
|
||||||
struct rwkv_context * rwkv_ctx = (struct rwkv_context *) calloc(1, sizeof(struct rwkv_context));
|
struct rwkv_v2_context * rwkv_ctx = (struct rwkv_v2_context *) calloc(1, sizeof(struct rwkv_v2_context));
|
||||||
rwkv_ctx->model = model;
|
rwkv_ctx->model = model;
|
||||||
rwkv_ctx->token_index = token_index;
|
rwkv_ctx->token_index = token_index;
|
||||||
rwkv_ctx->state = state;
|
rwkv_ctx->state = state;
|
||||||
|
@ -560,23 +560,23 @@ struct rwkv_context * rwkv_init_from_file(const char * file_path, uint32_t n_thr
|
||||||
return rwkv_ctx;
|
return rwkv_ctx;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t rwkv_get_state_buffer_element_count(struct rwkv_context * ctx) {
|
uint32_t rwkv_v2_get_state_buffer_element_count(struct rwkv_v2_context * ctx) {
|
||||||
return ctx->model->n_layer * 5 * ctx->model->n_embed;
|
return ctx->model->n_layer * 5 * ctx->model->n_embed;
|
||||||
}
|
}
|
||||||
|
|
||||||
uint32_t rwkv_get_logits_buffer_element_count(struct rwkv_context * ctx) {
|
uint32_t rwkv_v2_get_logits_buffer_element_count(struct rwkv_v2_context * ctx) {
|
||||||
return ctx->model->n_vocab;
|
return ctx->model->n_vocab;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool rwkv_eval(struct rwkv_context * ctx, int32_t token, float * state_in, float * state_out, float * logits_out) {
|
bool rwkv_v2_eval(struct rwkv_v2_context * ctx, int32_t token, float * state_in, float * state_out, float * logits_out) {
|
||||||
RWKV_ASSERT_FALSE(state_out != NULL, "state_out is NULL");
|
RWKV_V2_ASSERT_FALSE(state_out != NULL, "state_out is NULL");
|
||||||
RWKV_ASSERT_FALSE(logits_out != NULL, "logits_out is NULL");
|
RWKV_V2_ASSERT_FALSE(logits_out != NULL, "logits_out is NULL");
|
||||||
|
|
||||||
int32_t n_layer = ctx->model->n_layer;
|
int32_t n_layer = ctx->model->n_layer;
|
||||||
int32_t n_embed = ctx->model->n_embed;
|
int32_t n_embed = ctx->model->n_embed;
|
||||||
int32_t n_vocab = ctx->model->n_vocab;
|
int32_t n_vocab = ctx->model->n_vocab;
|
||||||
|
|
||||||
RWKV_ASSERT_FALSE(token >= 0 && token < n_vocab, "Token is out of range 0..%d", n_vocab - 1);
|
RWKV_V2_ASSERT_FALSE(token >= 0 && token < n_vocab, "Token is out of range 0..%d", n_vocab - 1);
|
||||||
|
|
||||||
ggml_v2_set_i32_1d(ctx->token_index, 0, token);
|
ggml_v2_set_i32_1d(ctx->token_index, 0, token);
|
||||||
|
|
||||||
|
@ -607,7 +607,7 @@ bool rwkv_eval(struct rwkv_context * ctx, int32_t token, float * state_in, float
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
void rwkv_free(struct rwkv_context * ctx) {
|
void rwkv_v2_free(struct rwkv_v2_context * ctx) {
|
||||||
ctx->model->layers.~vector();
|
ctx->model->layers.~vector();
|
||||||
free(ctx->model);
|
free(ctx->model);
|
||||||
delete[] ctx->state_parts;
|
delete[] ctx->state_parts;
|
||||||
|
@ -616,14 +616,14 @@ void rwkv_free(struct rwkv_context * ctx) {
|
||||||
free(ctx);
|
free(ctx);
|
||||||
}
|
}
|
||||||
|
|
||||||
bool rwkv_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name) {
|
bool rwkv_v2_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name) {
|
||||||
int32_t format_type = format_name_to_format_type(format_name);
|
int32_t format_type = rwkv_v2_format_name_to_format_type(format_name);
|
||||||
|
|
||||||
RWKV_ASSERT_FALSE(format_type != -1, "Unsupported format \"%s\"", format_name);
|
RWKV_V2_ASSERT_FALSE(format_type != -1, "Unsupported format \"%s\"", format_name);
|
||||||
|
|
||||||
ggml_v2_type type = FORMAT_TYPE_TO_GGML_V2_TYPE[format_type];
|
ggml_v2_type type = FORMAT_TYPE_TO_GGML_V2_TYPE[format_type];
|
||||||
|
|
||||||
RWKV_ASSERT_FALSE(type != GGML_V2_TYPE_UNKNOWN, "Unsupported format \"%s\"", format_name);
|
RWKV_V2_ASSERT_FALSE(type != GGML_V2_TYPE_UNKNOWN, "Unsupported format \"%s\"", format_name);
|
||||||
|
|
||||||
// Needed to initialize FP16 lookup table
|
// Needed to initialize FP16 lookup table
|
||||||
{
|
{
|
||||||
|
@ -635,21 +635,21 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
||||||
printf("Loading model from '%s'\n", model_file_path_in);
|
printf("Loading model from '%s'\n", model_file_path_in);
|
||||||
|
|
||||||
auto finp = std::ifstream(model_file_path_in, std::ios::binary);
|
auto finp = std::ifstream(model_file_path_in, std::ios::binary);
|
||||||
RWKV_ASSERT_FALSE(finp, "Failed to open %s for reading", model_file_path_in);
|
RWKV_V2_ASSERT_FALSE(finp, "Failed to open %s for reading", model_file_path_in);
|
||||||
|
|
||||||
auto fout = std::ofstream(model_file_path_out, std::ios::binary);
|
auto fout = std::ofstream(model_file_path_out, std::ios::binary);
|
||||||
RWKV_ASSERT_FALSE(fout, "Failed to open %s for writing", model_file_path_out);
|
RWKV_V2_ASSERT_FALSE(fout, "Failed to open %s for writing", model_file_path_out);
|
||||||
|
|
||||||
// Process header
|
// Process header
|
||||||
{
|
{
|
||||||
uint32_t magic;
|
uint32_t magic;
|
||||||
finp.read((char *) &magic, sizeof(magic));
|
finp.read((char *) &magic, sizeof(magic));
|
||||||
RWKV_ASSERT_FALSE(magic == RWKV_FILE_MAGIC, "Unexpected magic value %d", magic);
|
RWKV_V2_ASSERT_FALSE(magic == RWKV_V2_FILE_MAGIC, "Unexpected magic value %d", magic);
|
||||||
fout.write((char *) &magic, sizeof(magic));
|
fout.write((char *) &magic, sizeof(magic));
|
||||||
|
|
||||||
uint32_t format_version;
|
uint32_t format_version;
|
||||||
finp.read((char *) &format_version, sizeof(format_version));
|
finp.read((char *) &format_version, sizeof(format_version));
|
||||||
RWKV_ASSERT_FALSE(format_version == RWKV_FILE_VERSION, "Unsupported file version %d", format_version);
|
RWKV_V2_ASSERT_FALSE(format_version == RWKV_V2_FILE_VERSION, "Unsupported file version %d", format_version);
|
||||||
fout.write((char *) &format_version, sizeof(format_version));
|
fout.write((char *) &format_version, sizeof(format_version));
|
||||||
|
|
||||||
int32_t n_vocab;
|
int32_t n_vocab;
|
||||||
|
@ -662,7 +662,7 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
||||||
finp.read((char *) &n_layer, sizeof(n_layer));
|
finp.read((char *) &n_layer, sizeof(n_layer));
|
||||||
finp.read((char *) &data_type, sizeof(data_type));
|
finp.read((char *) &data_type, sizeof(data_type));
|
||||||
|
|
||||||
RWKV_ASSERT_FALSE(data_type == 0 || data_type == 1, "Unsupported data type %d, only FP32 and FP16 can be quantized", data_type);
|
RWKV_V2_ASSERT_FALSE(data_type == 0 || data_type == 1, "Unsupported data type %d, only FP32 and FP16 can be quantized", data_type);
|
||||||
|
|
||||||
data_type = format_type;
|
data_type = format_type;
|
||||||
|
|
||||||
|
@ -698,11 +698,11 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
|
|
||||||
RWKV_ASSERT_FALSE(parameter_data_type >= 0 && parameter_data_type < FORMAT_TYPE_COUNT, "Invalid parameter data type %d", parameter_data_type);
|
RWKV_V2_ASSERT_FALSE(parameter_data_type >= 0 && parameter_data_type < RWKV_V2_FORMAT_TYPE_COUNT, "Invalid parameter data type %d", parameter_data_type);
|
||||||
|
|
||||||
ggml_v2_type parameter_ggml_v2_type = FORMAT_TYPE_TO_GGML_V2_TYPE[parameter_data_type];
|
ggml_v2_type parameter_ggml_v2_type = FORMAT_TYPE_TO_GGML_V2_TYPE[parameter_data_type];
|
||||||
|
|
||||||
RWKV_ASSERT_FALSE(parameter_ggml_v2_type != GGML_V2_TYPE_UNKNOWN, "Invalid parameter data type %d", parameter_data_type);
|
RWKV_V2_ASSERT_FALSE(parameter_ggml_v2_type != GGML_V2_TYPE_UNKNOWN, "Invalid parameter data type %d", parameter_data_type);
|
||||||
|
|
||||||
int32_t nelements = 1;
|
int32_t nelements = 1;
|
||||||
int32_t ne[2] = { 1, 1 };
|
int32_t ne[2] = { 1, 1 };
|
||||||
|
@ -728,7 +728,7 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
||||||
name != std::string("head.weight");
|
name != std::string("head.weight");
|
||||||
|
|
||||||
if (quantize) {
|
if (quantize) {
|
||||||
RWKV_ASSERT_FALSE(
|
RWKV_V2_ASSERT_FALSE(
|
||||||
parameter_data_type == 0 || parameter_data_type == 1,
|
parameter_data_type == 0 || parameter_data_type == 1,
|
||||||
"Unsupported parameter data type %d, only FP32 and FP16 can be quantized",
|
"Unsupported parameter data type %d, only FP32 and FP16 can be quantized",
|
||||||
parameter_data_type
|
parameter_data_type
|
||||||
|
@ -844,7 +844,7 @@ bool rwkv_quantize_model_file(const char * model_file_path_in, const char * mode
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
const char * rwkv_get_system_info_string(void) {
|
const char * rwkv_v2_get_system_info_string(void) {
|
||||||
static std::string s;
|
static std::string s;
|
||||||
|
|
||||||
s = "";
|
s = "";
|
||||||
|
|
|
@ -1,56 +1,56 @@
|
||||||
#ifndef RWKV_H
|
#ifndef RWKV_H2
|
||||||
#define RWKV_H
|
#define RWKV_H2
|
||||||
|
|
||||||
#include <stddef.h>
|
#include <stddef.h>
|
||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
#include <stdbool.h>
|
#include <stdbool.h>
|
||||||
|
|
||||||
#ifdef RWKV_SHARED
|
#ifdef RWKV_SHARED2
|
||||||
# if defined(_WIN32) && !defined(__MINGW32__)
|
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||||
# ifdef RWKV_BUILD
|
# ifdef RWKV_BUILD
|
||||||
# define RWKV_API __declspec(dllexport)
|
# define RWKV_V2_API __declspec(dllexport)
|
||||||
# else
|
# else
|
||||||
# define RWKV_API __declspec(dllimport)
|
# define RWKV_V2_API __declspec(dllimport)
|
||||||
# endif
|
# endif
|
||||||
# else
|
# else
|
||||||
# define RWKV_API __attribute__ ((visibility ("default")))
|
# define RWKV_V2_API __attribute__ ((visibility ("default")))
|
||||||
# endif
|
# endif
|
||||||
#else
|
#else
|
||||||
# define RWKV_API
|
# define RWKV_V2_API
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
// 'ggmf' in hex.
|
// 'ggmf' in hex.
|
||||||
#define RWKV_FILE_MAGIC 0x67676d66
|
#define RWKV_V2_FILE_MAGIC 0x67676d66
|
||||||
#define RWKV_FILE_VERSION 100
|
#define RWKV_V2_FILE_VERSION 100
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
extern "C" {
|
extern "C" {
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
struct rwkv_context;
|
struct rwkv_v2_context;
|
||||||
|
|
||||||
// Loads the model from a file and prepares it for inference.
|
// Loads the model from a file and prepares it for inference.
|
||||||
// Returns NULL on any error. Error messages would be printed to stderr.
|
// Returns NULL on any error. Error messages would be printed to stderr.
|
||||||
// - model_file_path: path to model file in ggml format.
|
// - model_file_path: path to model file in ggml format.
|
||||||
// - n_threads: count of threads to use, must be positive.
|
// - n_threads: count of threads to use, must be positive.
|
||||||
RWKV_API struct rwkv_context * rwkv_init_from_file(const char * model_file_path, uint32_t n_threads);
|
RWKV_V2_API struct rwkv_v2_context * rwkv_v2_init_from_file(const char * model_file_path, uint32_t n_threads);
|
||||||
|
|
||||||
// Evaluates the model for a single token.
|
// Evaluates the model for a single token.
|
||||||
// Returns false on any error. Error messages would be printed to stderr.
|
// Returns false on any error. Error messages would be printed to stderr.
|
||||||
// - token: next token index, in range 0 <= token < n_vocab.
|
// - token: next token index, in range 0 <= token < n_vocab.
|
||||||
// - state_in: FP32 buffer of size rwkv_get_state_buffer_element_count; or NULL, if this is a first pass.
|
// - state_in: FP32 buffer of size rwkv_v2_get_state_buffer_element_count; or NULL, if this is a first pass.
|
||||||
// - state_out: FP32 buffer of size rwkv_get_state_buffer_element_count. This buffer will be written to.
|
// - state_out: FP32 buffer of size rwkv_v2_get_state_buffer_element_count. This buffer will be written to.
|
||||||
// - logits_out: FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
|
// - logits_out: FP32 buffer of size rwkv_v2_get_logits_buffer_element_count. This buffer will be written to.
|
||||||
RWKV_API bool rwkv_eval(struct rwkv_context * ctx, int32_t token, float * state_in, float * state_out, float * logits_out);
|
RWKV_V2_API bool rwkv_v2_eval(struct rwkv_v2_context * ctx, int32_t token, float * state_in, float * state_out, float * logits_out);
|
||||||
|
|
||||||
// Returns count of FP32 elements in state buffer.
|
// Returns count of FP32 elements in state buffer.
|
||||||
RWKV_API uint32_t rwkv_get_state_buffer_element_count(struct rwkv_context * ctx);
|
RWKV_V2_API uint32_t rwkv_v2_get_state_buffer_element_count(struct rwkv_v2_context * ctx);
|
||||||
|
|
||||||
// Returns count of FP32 elements in logits buffer.
|
// Returns count of FP32 elements in logits buffer.
|
||||||
RWKV_API uint32_t rwkv_get_logits_buffer_element_count(struct rwkv_context * ctx);
|
RWKV_V2_API uint32_t rwkv_v2_get_logits_buffer_element_count(struct rwkv_v2_context * ctx);
|
||||||
|
|
||||||
// Frees all allocated memory and the context.
|
// Frees all allocated memory and the context.
|
||||||
RWKV_API void rwkv_free(struct rwkv_context * ctx);
|
RWKV_V2_API void rwkv_v2_free(struct rwkv_v2_context * ctx);
|
||||||
|
|
||||||
// Quantizes FP32 or FP16 model to one of quantized formats.
|
// Quantizes FP32 or FP16 model to one of quantized formats.
|
||||||
// Returns false on any error. Error messages would be printed to stderr.
|
// Returns false on any error. Error messages would be printed to stderr.
|
||||||
|
@ -64,10 +64,10 @@ extern "C" {
|
||||||
// - Q5_0
|
// - Q5_0
|
||||||
// - Q5_1
|
// - Q5_1
|
||||||
// - Q8_0
|
// - Q8_0
|
||||||
RWKV_API bool rwkv_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name);
|
RWKV_V2_API bool rwkv_v2_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name);
|
||||||
|
|
||||||
// Returns system information string.
|
// Returns system information string.
|
||||||
RWKV_API const char * rwkv_get_system_info_string(void);
|
RWKV_V2_API const char * rwkv_v2_get_system_info_string(void);
|
||||||
|
|
||||||
#ifdef __cplusplus
|
#ifdef __cplusplus
|
||||||
}
|
}
|
||||||
|
|
948
otherarch/rwkv_v3.cpp
Normal file
948
otherarch/rwkv_v3.cpp
Normal file
|
@ -0,0 +1,948 @@
|
||||||
|
//adapted from RWKV.cpp repo under MIT license
|
||||||
|
// https://github.com/saharNooby/rwkv.cpp
|
||||||
|
|
||||||
|
#include "otherarch.h"
|
||||||
|
|
||||||
|
#include "rwkv_v3.h"
|
||||||
|
#include "ggml.h"
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include <thread>
|
||||||
|
#include <cassert>
|
||||||
|
#include <cinttypes>
|
||||||
|
#include <cmath>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
|
#include <fstream>
|
||||||
|
#include <iostream>
|
||||||
|
#include <unordered_map>
|
||||||
|
#include <memory>
|
||||||
|
|
||||||
|
#include <sys/stat.h> // fstat
|
||||||
|
|
||||||
|
#ifdef WIN32
|
||||||
|
#define stat64 _stat64
|
||||||
|
#define fstat64 _fstat64
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// --- Error handling ---
|
||||||
|
|
||||||
|
enum rwkv_error_flags global_last_error = RWKV_ERROR_NONE;
|
||||||
|
bool global_print_errors = true;
|
||||||
|
|
||||||
|
enum rwkv_error_flags operator|(enum rwkv_error_flags a, enum rwkv_error_flags b) {
|
||||||
|
return static_cast<enum rwkv_error_flags>(static_cast<int>(a) | static_cast<int>(b));
|
||||||
|
}
|
||||||
|
|
||||||
|
enum rwkv_error_flags operator|=(enum rwkv_error_flags & a, enum rwkv_error_flags b) {
|
||||||
|
return a = a | b;
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the condition x is false, adds ERR_VAL to the last error, prints a message to stderr, and returns RET_VAL.
|
||||||
|
#define RWKV_ASSERT_MSG(ERR_VAL, RET_VAL, x, ...) \
|
||||||
|
if (!(x)) { \
|
||||||
|
global_last_error |= ERR_VAL; \
|
||||||
|
if (global_print_errors) { \
|
||||||
|
fprintf(stderr, __VA_ARGS__); \
|
||||||
|
fprintf(stderr, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||||
|
} \
|
||||||
|
return RET_VAL; \
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the condition x is false, adds ERR_VAL to the last error, and returns RET_VAL.
|
||||||
|
#define RWKV_ASSERT(ERR_VAL, RET_VAL, x) \
|
||||||
|
if (!(x)) { \
|
||||||
|
global_last_error |= ERR_VAL; \
|
||||||
|
return RET_VAL; \
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the condition x is false, adds ERR_VAL to the ctx's last error, prints a message to stderr, and returns RET_VAL.
|
||||||
|
#define RWKV_CTX_ASSERT_MSG(ctx, ERR_VAL, RET_VAL, x, ...) \
|
||||||
|
if (!(x)) { \
|
||||||
|
((struct rwkv_context *) ctx)->last_error |= ERR_VAL; \
|
||||||
|
if (ctx->print_errors) { \
|
||||||
|
fprintf(stderr, __VA_ARGS__); \
|
||||||
|
fprintf(stderr, "\n%s:%d: %s\n", __FILE__, __LINE__, #x); \
|
||||||
|
} \
|
||||||
|
return RET_VAL; \
|
||||||
|
}
|
||||||
|
|
||||||
|
// If the condition x is false, adds ERR_VAL to the ctx's last error, and returns RET_VAL.
|
||||||
|
#define RWKV_CTX_ASSERT(ctx, ERR_VAL, RET_VAL, x) \
|
||||||
|
if (!(x)) { \
|
||||||
|
ctx->last_error |= ERR_VAL; \
|
||||||
|
return RET_VAL; \
|
||||||
|
}
|
||||||
|
|
||||||
|
#define RWKV_ASSERT_FALSE_MSG(ERR_VAL, x, ...) RWKV_ASSERT_MSG(ERR_VAL, false, x, __VA_ARGS__)
|
||||||
|
#define RWKV_ASSERT_NULL_MSG(ERR_VAL, x, ...) RWKV_ASSERT_MSG(ERR_VAL, NULL, x, __VA_ARGS__)
|
||||||
|
#define RWKV_CTX_ASSERT_FALSE_MSG(ctx, ERR_VAL, x, ...) RWKV_CTX_ASSERT_MSG(ctx, ERR_VAL, false, x, __VA_ARGS__)
|
||||||
|
#define RWKV_CTX_ASSERT_NULL_MSG(ctx, ERR_VAL, x, ...) RWKV_CTX_ASSERT_MSG(ctx, ERR_VAL, NULL, x, __VA_ARGS__)
|
||||||
|
|
||||||
|
#define RWKV_ASSERT_FALSE(ERR_VAL, x) RWKV_ASSERT(ERR_VAL, false, x)
|
||||||
|
#define RWKV_ASSERT_NULL(ERR_VAL, x) RWKV_ASSERT(ERR_VAL, NULL, x)
|
||||||
|
#define RWKV_CTX_ASSERT_FALSE(ctx, ERR_VAL, x) RWKV_CTX_ASSERT(ctx, ERR_VAL, false, x)
|
||||||
|
#define RWKV_CTX_ASSERT_NULL(ctx, ERR_VAL, x) RWKV_CTX_ASSERT(ctx, ERR_VAL, NULL, x)
|
||||||
|
|
||||||
|
// --- Utilities ---
|
||||||
|
|
||||||
|
// Reads single int32 value from a file.
|
||||||
|
bool read_int32(FILE * file, int32_t * dest, const char * name) {
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_READ, fread(dest, sizeof(int32_t), 1, file) == 1, "Failed to read an int32 value from a file (%s)", name);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Reads single uint32 value from a file.
|
||||||
|
bool read_uint32(FILE * file, uint32_t * dest, const char * name) {
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_READ, fread(dest, sizeof(uint32_t), 1, file) == 1, "Failed to read a uint32 value from a file (%s)", name);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Writes single int32 value to a file.
|
||||||
|
bool write_int32(FILE * file, int32_t value, const char * name) {
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_WRITE, fwrite((void *) &value, sizeof(int32_t), 1, file), "Failed to write an int32 value to a file (%s)", name);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Writes single uint32 value to a file.
|
||||||
|
bool write_uint32(FILE * file, uint32_t value, const char * name) {
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE_WRITE, fwrite((void *) &value, sizeof(uint32_t), 1, file), "Failed to write a uint32 value to a file (%s)", name);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
#define GGML_TYPE_UNKNOWN GGML_TYPE_COUNT
|
||||||
|
|
||||||
|
#define FORMAT_TYPE_COUNT 10
|
||||||
|
|
||||||
|
static const ggml_type FORMAT_TYPE_TO_GGML_TYPE[FORMAT_TYPE_COUNT] = {
|
||||||
|
GGML_TYPE_F32,
|
||||||
|
GGML_TYPE_F16,
|
||||||
|
GGML_TYPE_Q4_0,
|
||||||
|
GGML_TYPE_Q4_1,
|
||||||
|
GGML_TYPE_UNKNOWN, // Unused
|
||||||
|
GGML_TYPE_UNKNOWN, // Unused
|
||||||
|
GGML_TYPE_UNKNOWN, // Unused
|
||||||
|
GGML_TYPE_Q5_0,
|
||||||
|
GGML_TYPE_Q5_1,
|
||||||
|
GGML_TYPE_Q8_0
|
||||||
|
};
|
||||||
|
|
||||||
|
static bool is_non_quantized_format_type(int32_t format_type) {
|
||||||
|
return format_type == 0 || format_type == 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
static bool is_quantized_format_type(int32_t format_type) {
|
||||||
|
return format_type == 2 ||
|
||||||
|
format_type == 3 ||
|
||||||
|
format_type == 7 ||
|
||||||
|
format_type == 8 ||
|
||||||
|
format_type == 9;
|
||||||
|
}
|
||||||
|
|
||||||
|
static int32_t format_name_to_format_type(const char * format_name) {
|
||||||
|
if (strcmp(format_name, "Q4_0") == 0) return 2;
|
||||||
|
if (strcmp(format_name, "Q4_1") == 0) return 3;
|
||||||
|
if (strcmp(format_name, "Q5_0") == 0) return 7;
|
||||||
|
if (strcmp(format_name, "Q5_1") == 0) return 8;
|
||||||
|
if (strcmp(format_name, "Q8_0") == 0) return 9;
|
||||||
|
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// --- Model definition and loading utilities ---
|
||||||
|
|
||||||
|
struct rwkv_layer {
|
||||||
|
struct ggml_tensor * ln1_weight;
|
||||||
|
struct ggml_tensor * ln1_bias;
|
||||||
|
|
||||||
|
// RWKV, also called "attention" by the author.
|
||||||
|
struct ggml_tensor * att_time_mix_k;
|
||||||
|
struct ggml_tensor * att_time_mix_v;
|
||||||
|
struct ggml_tensor * att_time_mix_r;
|
||||||
|
struct ggml_tensor * att_time_first;
|
||||||
|
struct ggml_tensor * att_time_decay;
|
||||||
|
struct ggml_tensor * att_key;
|
||||||
|
struct ggml_tensor * att_value;
|
||||||
|
struct ggml_tensor * att_receptance;
|
||||||
|
struct ggml_tensor * att_output;
|
||||||
|
|
||||||
|
struct ggml_tensor * ln2_weight;
|
||||||
|
struct ggml_tensor * ln2_bias;
|
||||||
|
|
||||||
|
// FFN.
|
||||||
|
struct ggml_tensor * ffn_time_mix_k;
|
||||||
|
struct ggml_tensor * ffn_time_mix_r;
|
||||||
|
struct ggml_tensor * ffn_key;
|
||||||
|
struct ggml_tensor * ffn_value;
|
||||||
|
struct ggml_tensor * ffn_receptance;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct rwkv_model {
|
||||||
|
uint32_t n_vocab;
|
||||||
|
uint32_t n_layer;
|
||||||
|
uint32_t n_embed;
|
||||||
|
// 0 for float32, 1 for float16.
|
||||||
|
int32_t data_type;
|
||||||
|
|
||||||
|
struct ggml_tensor * emb;
|
||||||
|
|
||||||
|
struct ggml_tensor * ln0_weight;
|
||||||
|
struct ggml_tensor * ln0_bias;
|
||||||
|
|
||||||
|
std::vector<rwkv_layer> layers;
|
||||||
|
|
||||||
|
struct ggml_tensor * ln_out_weight;
|
||||||
|
struct ggml_tensor * ln_out_bias;
|
||||||
|
|
||||||
|
struct ggml_tensor * head;
|
||||||
|
};
|
||||||
|
|
||||||
|
// Finds model parameter by key and sets it into dest.
|
||||||
|
// If the parameter was not found, returns false.
|
||||||
|
bool set_parameter(std::unordered_map<std::string, struct ggml_tensor *> * parameters, std::string key, struct ggml_tensor ** dest) {
|
||||||
|
struct ggml_tensor * parameter = (*parameters)[key];
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_PARAM_MISSING, parameter != NULL, "Parameter %s not found in model file", key.c_str());
|
||||||
|
*dest = parameter;
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Finds block parameter by block index and key and sets it into dest.
|
||||||
|
// If the parameter was not found, returns false.
|
||||||
|
bool set_block_parameter(std::unordered_map<std::string, struct ggml_tensor *> * parameters, int32_t block_index, std::string key, struct ggml_tensor ** dest) {
|
||||||
|
char full_key[128];
|
||||||
|
sprintf(full_key, "blocks.%d.%s", block_index, key.c_str());
|
||||||
|
return set_parameter(parameters, full_key, dest);
|
||||||
|
}
|
||||||
|
|
||||||
|
// --- Operators ---
|
||||||
|
|
||||||
|
void rwkv_exp_impl(const int n_cols, float * dest, const float * src) {
|
||||||
|
for (int i = 0; i < n_cols; i++) {
|
||||||
|
dest[i] = expf(src[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void rwkv_1_minus_x_impl(const int n_cols, float * dest, const float * src) {
|
||||||
|
for (int i = 0; i < n_cols; i++) {
|
||||||
|
dest[i] = 1.0F - src[i];
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void rwkv_sigmoid_impl(const int n_cols, float * dest, const float * src) {
|
||||||
|
for (int i = 0; i < n_cols; i++) {
|
||||||
|
dest[i] = 1.0F / (1.0F + expf(-src[i]));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
void rwkv_max_impl(const int n_cols, float * dest, const float * src0, const float * src1) {
|
||||||
|
for (int i = 0; i < n_cols; i++) {
|
||||||
|
dest[i] = fmaxf(src0[i], src1[i]);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * rwkv_exp(ggml_context * ctx, struct ggml_tensor * x) {
|
||||||
|
return ggml_map_unary_f32(ctx, x, rwkv_exp_impl);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * rwkv_1_minus_x(ggml_context * ctx, struct ggml_tensor * x) {
|
||||||
|
return ggml_map_unary_f32(ctx, x, rwkv_1_minus_x_impl);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * rwkv_sigmoid(ggml_context * ctx, struct ggml_tensor * x) {
|
||||||
|
return ggml_map_unary_f32(ctx, x, rwkv_sigmoid_impl);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * rwkv_max(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * y) {
|
||||||
|
return ggml_map_binary_f32(ctx, x, y, rwkv_max_impl);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * rwkv_layer_norm(ggml_context * ctx, struct ggml_tensor * x, struct ggml_tensor * weight, struct ggml_tensor * bias) {
|
||||||
|
// LayerNorm in RWKV is `x = (x - mean(x)) / sqrt(variance(x) + 1e-5) * weight + bias`
|
||||||
|
// Looks like ggml_norm does the first part, we only need to apply weight & bias.
|
||||||
|
return ggml_add_inplace(ctx, ggml_mul(ctx, ggml_norm(ctx, x), weight), bias);
|
||||||
|
}
|
||||||
|
|
||||||
|
// --- Implementation ---
|
||||||
|
|
||||||
|
struct rwkv_graph {
|
||||||
|
struct ggml_tensor * state;
|
||||||
|
std::unique_ptr<struct ggml_tensor * []> state_parts;
|
||||||
|
struct ggml_tensor * token_index;
|
||||||
|
struct ggml_tensor * logits;
|
||||||
|
std::unique_ptr<struct ggml_cgraph> cgraph;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct rwkv_context {
|
||||||
|
std::unique_ptr<struct rwkv_model> model;
|
||||||
|
struct ggml_context * ctx;
|
||||||
|
struct rwkv_graph graph;
|
||||||
|
enum rwkv_error_flags last_error;
|
||||||
|
bool print_errors;
|
||||||
|
|
||||||
|
float * state_in = 0; //stores input state, or use null for a new state
|
||||||
|
float * state_out = 0; //stores address of output state buffer
|
||||||
|
float * logits_out = 0; //stores address of output logit buffer
|
||||||
|
};
|
||||||
|
|
||||||
|
void rwkv_set_print_errors(struct rwkv_context * ctx, bool print_errors) {
|
||||||
|
bool * ptr = ctx ? &ctx->print_errors : &global_print_errors;
|
||||||
|
*ptr = print_errors;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool rwkv_get_print_errors(struct rwkv_context * ctx) {
|
||||||
|
return ctx ? ctx->print_errors : global_print_errors;
|
||||||
|
}
|
||||||
|
|
||||||
|
enum rwkv_error_flags rwkv_get_last_error(struct rwkv_context * ctx) {
|
||||||
|
enum rwkv_error_flags * ptr = ctx ? &ctx->last_error : &global_last_error;
|
||||||
|
enum rwkv_error_flags value = *ptr;
|
||||||
|
*ptr = RWKV_ERROR_NONE;
|
||||||
|
return value;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool rwkv_build_graph(struct ggml_context * ctx, struct rwkv_model * model, const uint32_t n_threads, struct rwkv_graph * out) {
|
||||||
|
std::unique_ptr<struct ggml_cgraph> cgraph(new(std::nothrow) struct ggml_cgraph());
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, cgraph.get(), "Failed to allocate graph");
|
||||||
|
cgraph->n_threads = n_threads;
|
||||||
|
|
||||||
|
size_t n_embed = model->n_embed, n_layer = model->n_layer;
|
||||||
|
struct ggml_tensor * state = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_layer * 5 * n_embed);
|
||||||
|
|
||||||
|
// We collect parts of new state here. Each part is (n_embed) vector.
|
||||||
|
std::unique_ptr<struct ggml_tensor * []> state_parts(new(std::nothrow) ggml_tensor * [n_layer * 5]);
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ALLOC, state_parts.get(), "Failed to allocate state parts");
|
||||||
|
|
||||||
|
// x = self.w.emb.weight[token]
|
||||||
|
struct ggml_tensor * token_index = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, 1);
|
||||||
|
struct ggml_tensor * x = ggml_get_rows(ctx, model->emb, token_index);
|
||||||
|
|
||||||
|
// x = self.layer_norm(x, self.w.blocks[0].ln0)
|
||||||
|
x = rwkv_layer_norm(ctx, x, model->ln0_weight, model->ln0_bias);
|
||||||
|
|
||||||
|
for (size_t i = 0; i < n_layer; i++) {
|
||||||
|
struct rwkv_layer layer = model->layers[i];
|
||||||
|
size_t part_index = i * 5;
|
||||||
|
size_t state_part_size = n_embed * sizeof(float);
|
||||||
|
|
||||||
|
// RWKV/time mixing
|
||||||
|
{
|
||||||
|
// self.layer_norm(x, self.w.blocks[i].ln1)
|
||||||
|
struct ggml_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln1_weight, layer.ln1_bias);
|
||||||
|
|
||||||
|
// x0 = state[5 * i + 1]
|
||||||
|
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, (part_index + 1) * state_part_size);
|
||||||
|
// aa = state[5 * i + 2]
|
||||||
|
struct ggml_tensor * aa = ggml_view_1d(ctx, state, n_embed, (part_index + 2) * state_part_size);
|
||||||
|
// bb = state[5 * i + 3]
|
||||||
|
struct ggml_tensor * bb = ggml_view_1d(ctx, state, n_embed, (part_index + 3) * state_part_size);
|
||||||
|
// pp = state[5 * i + 4]
|
||||||
|
struct ggml_tensor * pp = ggml_view_1d(ctx, state, n_embed, (part_index + 4) * state_part_size);
|
||||||
|
|
||||||
|
// xk = x * time_mix_k + state[5 * i + 1] * (1 - time_mix_k)
|
||||||
|
struct ggml_tensor * xk = ggml_add_inplace(ctx,
|
||||||
|
ggml_mul(ctx, x0, layer.att_time_mix_k),
|
||||||
|
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_k))
|
||||||
|
);
|
||||||
|
|
||||||
|
// xv = x * time_mix_v + state[5 * i + 1] * (1 - time_mix_v)
|
||||||
|
struct ggml_tensor * xv = ggml_add_inplace(ctx,
|
||||||
|
ggml_mul(ctx, x0, layer.att_time_mix_v),
|
||||||
|
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_v))
|
||||||
|
);
|
||||||
|
|
||||||
|
// xr = x * time_mix_r + state[5 * i + 1] * (1 - time_mix_r)
|
||||||
|
struct ggml_tensor * xr = ggml_add_inplace(ctx,
|
||||||
|
ggml_mul(ctx, x0, layer.att_time_mix_r),
|
||||||
|
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.att_time_mix_r))
|
||||||
|
);
|
||||||
|
|
||||||
|
// r = torch.sigmoid(rw @ xr)
|
||||||
|
struct ggml_tensor * r = rwkv_sigmoid(ctx, ggml_mul_mat(ctx, layer.att_receptance, xr));
|
||||||
|
// k = kw @ xk
|
||||||
|
struct ggml_tensor * k = ggml_mul_mat(ctx, layer.att_key, xk);
|
||||||
|
// v = vw @ xv
|
||||||
|
struct ggml_tensor * v = ggml_mul_mat(ctx, layer.att_value, xv);
|
||||||
|
|
||||||
|
// ww = time_first + k
|
||||||
|
struct ggml_tensor * ww = ggml_add(ctx, layer.att_time_first, k);
|
||||||
|
// qq = torch.maximum(pp, ww)
|
||||||
|
struct ggml_tensor * qq = rwkv_max(ctx, pp, ww);
|
||||||
|
// e1 = torch.exp(pp - qq)
|
||||||
|
struct ggml_tensor * e1 = rwkv_exp(ctx, ggml_sub(ctx, pp, qq));
|
||||||
|
// e2 = torch.exp(ww - qq)
|
||||||
|
struct ggml_tensor * e2 = rwkv_exp(ctx, ggml_sub(ctx, ww, qq));
|
||||||
|
|
||||||
|
// a = e1 * aa + e2 * v
|
||||||
|
struct ggml_tensor * a = ggml_add_inplace(ctx, ggml_mul(ctx, e1, aa), ggml_mul(ctx, e2, v));
|
||||||
|
// b = e1 * bb + e2
|
||||||
|
struct ggml_tensor * b = ggml_add_inplace(ctx, ggml_mul(ctx, e1, bb), e2);
|
||||||
|
|
||||||
|
// ww = pp + time_decay
|
||||||
|
ww = ggml_add_inplace(ctx, pp, layer.att_time_decay);
|
||||||
|
// qq = torch.maximum(ww, k)
|
||||||
|
qq = rwkv_max(ctx, ww, k);
|
||||||
|
// e1 = torch.exp(ww - qq)
|
||||||
|
e1 = rwkv_exp(ctx, ggml_sub(ctx, ww, qq));
|
||||||
|
// e2 = torch.exp(k - qq)
|
||||||
|
e2 = rwkv_exp(ctx, ggml_sub(ctx, k, qq));
|
||||||
|
|
||||||
|
// state[5 * i + 1] = x0
|
||||||
|
// state[5 * i + 2] = e1 * aa + e2 * v
|
||||||
|
// state[5 * i + 3] = e1 * bb + e2
|
||||||
|
// state[5 * i + 4] = qq
|
||||||
|
state_parts[part_index + 1] = x0;
|
||||||
|
state_parts[part_index + 2] = ggml_add_inplace(ctx, ggml_mul(ctx, e1, aa), ggml_mul(ctx, e2, v));
|
||||||
|
state_parts[part_index + 3] = ggml_add_inplace(ctx, ggml_mul(ctx, e1, bb), e2);
|
||||||
|
state_parts[part_index + 4] = qq;
|
||||||
|
|
||||||
|
// wkv = a / b
|
||||||
|
struct ggml_tensor * wkv = ggml_div(ctx, a, b);
|
||||||
|
|
||||||
|
// ow @ (r * wkv)
|
||||||
|
x = ggml_add_inplace(ctx, x, ggml_mul_mat(ctx, layer.att_output, ggml_mul(ctx, r, wkv)));
|
||||||
|
}
|
||||||
|
|
||||||
|
// FFN/channel mixing
|
||||||
|
{
|
||||||
|
// self.layer_norm(x, self.w.blocks[i].ln2)
|
||||||
|
struct ggml_tensor * x0 = rwkv_layer_norm(ctx, x, layer.ln2_weight, layer.ln2_bias);
|
||||||
|
|
||||||
|
// x_prev = state[5 * i + 0]
|
||||||
|
struct ggml_tensor * x_prev = ggml_view_1d(ctx, state, n_embed, part_index * state_part_size);
|
||||||
|
|
||||||
|
// xk = x * time_mix_k + state[5 * i + 0] * (1 - time_mix_k)
|
||||||
|
struct ggml_tensor * xk = ggml_add_inplace(
|
||||||
|
ctx,
|
||||||
|
ggml_mul(ctx, x0, layer.ffn_time_mix_k),
|
||||||
|
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_k))
|
||||||
|
);
|
||||||
|
|
||||||
|
// xr = x * time_mix_r + state[5 * i + 0] * (1 - time_mix_r)
|
||||||
|
struct ggml_tensor * xr = ggml_add_inplace(
|
||||||
|
ctx,
|
||||||
|
ggml_mul(ctx, x0, layer.ffn_time_mix_r),
|
||||||
|
ggml_mul(ctx, x_prev, rwkv_1_minus_x(ctx, layer.ffn_time_mix_r))
|
||||||
|
);
|
||||||
|
|
||||||
|
// state[5 * i + 0] = x
|
||||||
|
state_parts[part_index] = x0;
|
||||||
|
|
||||||
|
// r = torch.sigmoid(rw @ xr)
|
||||||
|
struct ggml_tensor * r = rwkv_sigmoid(ctx, ggml_mul_mat(ctx, layer.ffn_receptance, xr));
|
||||||
|
|
||||||
|
// k = torch.square(torch.relu(kw @ xk))
|
||||||
|
struct ggml_tensor * k = ggml_sqr(ctx, ggml_relu(ctx, ggml_mul_mat(ctx, layer.ffn_key, xk)));
|
||||||
|
|
||||||
|
// r * (vw @ k)
|
||||||
|
x = ggml_add_inplace(ctx, x, ggml_mul(ctx, r, ggml_mul_mat(ctx, layer.ffn_value, k)));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// x = self.layer_norm(x, self.w.ln_out)
|
||||||
|
x = rwkv_layer_norm(ctx, x, model->ln_out_weight, model->ln_out_bias);
|
||||||
|
|
||||||
|
// x = (self.w.head.weight @ x).float()
|
||||||
|
struct ggml_tensor * logits = ggml_mul_mat(ctx, model->head, x);
|
||||||
|
|
||||||
|
ggml_build_forward_expand(cgraph.get(), logits);
|
||||||
|
|
||||||
|
for (uint32_t i = 0; i < n_layer * 5; i++) {
|
||||||
|
ggml_build_forward_expand(cgraph.get(), state_parts[i]);
|
||||||
|
}
|
||||||
|
|
||||||
|
out->state = state;
|
||||||
|
out->state_parts = std::move(state_parts);
|
||||||
|
out->token_index = token_index;
|
||||||
|
out->logits = logits;
|
||||||
|
out->cgraph = std::move(cgraph);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct rwkv_file_guard {
|
||||||
|
FILE * file;
|
||||||
|
~rwkv_file_guard() { if (file) fclose(file); }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct rwkv_ggml_guard {
|
||||||
|
struct ggml_context * ctx;
|
||||||
|
~rwkv_ggml_guard() { if (ctx) ggml_free(ctx); }
|
||||||
|
};
|
||||||
|
|
||||||
|
struct rwkv_context * rwkv_init_from_file(const char * file_path, const uint32_t n_threads) {
|
||||||
|
global_last_error = RWKV_ERROR_NONE;
|
||||||
|
|
||||||
|
FILE * file = fopen(file_path, "rb");
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, file, "Failed to open file %s", file_path);
|
||||||
|
rwkv_file_guard file_guard { file };
|
||||||
|
|
||||||
|
// Be very careful when changing this code. It must support files larger than 2 GB by using 64-bit functions to the get file length.
|
||||||
|
struct stat64 file_stat;
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_STAT, fstat64(fileno(file), &file_stat) == 0, "Failed to stat file %s", file_path);
|
||||||
|
|
||||||
|
int32_t magic;
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_FILE, read_int32(file, &magic, "magic"));
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_MAGIC, magic == RWKV_FILE_MAGIC, "Unexpected magic value %d", magic);
|
||||||
|
|
||||||
|
int32_t version;
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_FILE, read_int32(file, &version, "version"));
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_VERSION, version >= RWKV_FILE_VERSION_MIN && version <= RWKV_FILE_VERSION_MAX, "Unsupported file version %d", version);
|
||||||
|
|
||||||
|
std::unique_ptr<rwkv_model> model(new(std::nothrow) struct rwkv_model());
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL | RWKV_ERROR_ALLOC, model.get(), "Failed to allocate model");
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL, read_uint32(file, &model->n_vocab, "n_vocab"));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL, read_uint32(file, &model->n_embed, "n_embed"));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL, read_uint32(file, &model->n_layer, "n_layer"));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL, read_int32(file, &model->data_type, "data_type"));
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL | RWKV_ERROR_DATA_TYPE, model->data_type >= 0 && model->data_type < FORMAT_TYPE_COUNT, "Unsupported model data type %d", model->data_type);
|
||||||
|
|
||||||
|
const char * unsupported_type_msg = "Models in %s format cannot be loaded anymore because the format was removed.\n"
|
||||||
|
"You need to quantize the model into another format or use an older version of rwkv.cpp.\n"
|
||||||
|
"See https://github.com/saharNooby/rwkv.cpp#compatibility for more info";
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL | RWKV_ERROR_UNSUPPORTED, model->data_type != 4, unsupported_type_msg, "Q4_1_O");
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL | RWKV_ERROR_UNSUPPORTED, model->data_type != 5, unsupported_type_msg, "Q4_2");
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL | RWKV_ERROR_UNSUPPORTED, model->data_type != 6, unsupported_type_msg, "Q4_3");
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL_MSG(
|
||||||
|
RWKV_ERROR_MODEL | RWKV_ERROR_UNSUPPORTED,
|
||||||
|
!is_quantized_format_type(model->data_type) || version >= RWKV_FILE_VERSION_1,
|
||||||
|
"The quantized model file was created with an old version of rwkv.cpp and can not be loaded anymore.\n"
|
||||||
|
"You need to requantize the model or use an older version of rwkv.cpp.\n"
|
||||||
|
"See https://github.com/saharNooby/rwkv.cpp#compatibility for more info"
|
||||||
|
);
|
||||||
|
|
||||||
|
size_t memory_required = file_stat.st_size +
|
||||||
|
// Intermediary vectors for calculation; there are around 100 calls to ggml
|
||||||
|
size_t(100) * model->n_embed * sizeof(float) +
|
||||||
|
// State, in and out
|
||||||
|
size_t(2) * 5 * model->n_layer * model->n_embed * sizeof(float) +
|
||||||
|
// Logits
|
||||||
|
size_t(model->n_vocab) * sizeof(float) +
|
||||||
|
// +256 MB just for any overhead
|
||||||
|
// TODO This is too much for smaller models; need a more proper and robust way of measuring required memory
|
||||||
|
size_t(256) * 1024 * 1024;
|
||||||
|
|
||||||
|
struct ggml_context * ctx = ggml_init({ memory_required, NULL, false });
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL | RWKV_ERROR_ALLOC, ctx, "Failed to allocate GGML context");
|
||||||
|
rwkv_ggml_guard ggml_guard { ctx };
|
||||||
|
|
||||||
|
std::unordered_map<std::string, struct ggml_tensor *> parameters;
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
int32_t dim_count, key_length, data_type;
|
||||||
|
RWKV_ASSERT_NULL_MSG(
|
||||||
|
RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_FILE_READ,
|
||||||
|
fread(&dim_count, sizeof(int32_t), 1, file) == 1 || feof(file),
|
||||||
|
"Failed to read an int32 value from a file (dim_count)"
|
||||||
|
);
|
||||||
|
|
||||||
|
if (feof(file)) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, read_int32(file, &key_length, "key_length"));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, read_int32(file, &data_type, "data_type"));
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_SHAPE, dim_count == 1 || dim_count == 2, "Unsupported dimension count %d", dim_count);
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_KEY, key_length > 0, "Non-positive key length %d", key_length);
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_UNSUPPORTED, data_type >= 0 && data_type < FORMAT_TYPE_COUNT, "Unsupported parameter data type %d", data_type);
|
||||||
|
|
||||||
|
ggml_type ggml_data_type = FORMAT_TYPE_TO_GGML_TYPE[data_type];
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_UNSUPPORTED, ggml_data_type != GGML_TYPE_UNKNOWN, "Unsupported parameter data type %d", data_type);
|
||||||
|
|
||||||
|
struct ggml_tensor * tensor;
|
||||||
|
|
||||||
|
if (dim_count == 1) {
|
||||||
|
int32_t x;
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, read_int32(file, &x, "x"), "Failed to read parameter length");
|
||||||
|
tensor = ggml_new_tensor_1d(ctx, ggml_data_type, x);
|
||||||
|
} else {
|
||||||
|
int32_t x, y;
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, read_int32(file, &x, "x"), "Failed to read parameter width");
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, read_int32(file, &y, "y"), "Failed to read parameter height");
|
||||||
|
tensor = ggml_new_tensor_2d(ctx, ggml_data_type, x, y);
|
||||||
|
}
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_ALLOC, tensor, "Failed to allocate tensor");
|
||||||
|
|
||||||
|
std::string key(key_length, 0);
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_KEY, fread(&key[0], key_length, 1, file) == 1, "Failed to read parameter key");
|
||||||
|
|
||||||
|
size_t nbytes = ggml_nbytes(tensor);
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DATA, fread(tensor->data, nbytes, 1, file) == 1, "Failed to read parameter data");
|
||||||
|
|
||||||
|
parameters[key] = tensor;
|
||||||
|
}
|
||||||
|
|
||||||
|
file_guard = { NULL }; // close file
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_parameter(¶meters, "emb.weight", &model->emb));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_parameter(¶meters, "blocks.0.ln0.weight", &model->ln0_weight));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_parameter(¶meters, "blocks.0.ln0.bias", &model->ln0_bias));
|
||||||
|
|
||||||
|
model->layers.resize(model->n_layer);
|
||||||
|
|
||||||
|
for (uint32_t i = 0; i < model->n_layer; i++) {
|
||||||
|
rwkv_layer * layer = &model->layers[i];
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "ln1.weight", &layer->ln1_weight));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "ln1.bias", &layer->ln1_bias));
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "att.time_mix_k", &layer->att_time_mix_k));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "att.time_mix_v", &layer->att_time_mix_v));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "att.time_mix_r", &layer->att_time_mix_r));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "att.time_first", &layer->att_time_first));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "att.time_decay", &layer->att_time_decay));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "att.key.weight", &layer->att_key));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "att.value.weight", &layer->att_value));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "att.receptance.weight", &layer->att_receptance));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "att.output.weight", &layer->att_output));
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "ln2.weight", &layer->ln2_weight));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "ln2.bias", &layer->ln2_bias));
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "ffn.time_mix_k", &layer->ffn_time_mix_k));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "ffn.time_mix_r", &layer->ffn_time_mix_r));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "ffn.key.weight", &layer->ffn_key));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "ffn.value.weight", &layer->ffn_value));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_block_parameter(¶meters, i, "ffn.receptance.weight", &layer->ffn_receptance));
|
||||||
|
}
|
||||||
|
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_parameter(¶meters, "ln_out.weight", &model->ln_out_weight));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_parameter(¶meters, "ln_out.bias", &model->ln_out_bias));
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_MODEL_PARAMS, set_parameter(¶meters, "head.weight", &model->head));
|
||||||
|
|
||||||
|
// Verify order of dimensions
|
||||||
|
struct ggml_tensor * emb = model->emb;
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_SHAPE, emb->n_dims == 2, "Unexpected dimension count of embedding matrix %d", emb->n_dims);
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[0] == model->n_embed, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[0]);
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DIMENSION, emb->ne[1] == model->n_vocab, "Unexpected dimension of embedding matrix %" PRId64, emb->ne[1]);
|
||||||
|
|
||||||
|
// Build graph
|
||||||
|
struct rwkv_graph graph;
|
||||||
|
RWKV_ASSERT_NULL(RWKV_ERROR_GRAPH, rwkv_build_graph(ctx, model.get(), n_threads, &graph));
|
||||||
|
|
||||||
|
std::unique_ptr<struct rwkv_context> rwkv_ctx(new(std::nothrow) struct rwkv_context());
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_CTX | RWKV_ERROR_ALLOC, rwkv_ctx.get(), "Failed to allocate context");
|
||||||
|
rwkv_ctx->model = std::move(model);
|
||||||
|
rwkv_ctx->ctx = ctx;
|
||||||
|
rwkv_ctx->graph = std::move(graph);
|
||||||
|
rwkv_ctx->last_error = RWKV_ERROR_NONE;
|
||||||
|
rwkv_ctx->print_errors = global_print_errors;
|
||||||
|
// Don't free ggml context
|
||||||
|
ggml_guard.ctx = NULL;
|
||||||
|
return rwkv_ctx.release();
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t rwkv_get_state_buffer_element_count(const struct rwkv_context * ctx) {
|
||||||
|
return ctx->model->n_layer * 5 * ctx->model->n_embed;
|
||||||
|
}
|
||||||
|
|
||||||
|
uint32_t rwkv_get_logits_buffer_element_count(const struct rwkv_context * ctx) {
|
||||||
|
return ctx->model->n_vocab;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool rwkv_eval(const struct rwkv_context * ctx, const uint32_t token, const float * state_in, float * state_out, float * logits_out) {
|
||||||
|
((struct rwkv_context *) ctx)->last_error = RWKV_ERROR_NONE;
|
||||||
|
|
||||||
|
RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, state_out != NULL, "state_out is NULL");
|
||||||
|
RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, logits_out != NULL, "logits_out is NULL");
|
||||||
|
RWKV_CTX_ASSERT_FALSE_MSG(ctx, RWKV_ERROR_ARGS, token < ctx->model->n_vocab, "Token is out of range 0..%d", ctx->model->n_vocab - 1);
|
||||||
|
|
||||||
|
const struct rwkv_graph * graph = &ctx->graph;
|
||||||
|
size_t n_layer = ctx->model->n_layer;
|
||||||
|
size_t n_embed = ctx->model->n_embed;
|
||||||
|
|
||||||
|
ggml_set_i32_1d(graph->token_index, 0, token);
|
||||||
|
|
||||||
|
if (state_in == NULL) {
|
||||||
|
ggml_set_f32(graph->state, 0.0F);
|
||||||
|
|
||||||
|
for (size_t i = 0; i < n_layer; i++) {
|
||||||
|
// state[5 * i + 4] = -1e30
|
||||||
|
ggml_set_f32(
|
||||||
|
ggml_view_1d(ctx->ctx, graph->state, n_embed, (5 * i + 4) * n_embed * sizeof(float)),
|
||||||
|
-1e30F
|
||||||
|
);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
memcpy(graph->state->data, state_in, graph->state->ne[0] * sizeof(float));
|
||||||
|
}
|
||||||
|
|
||||||
|
ggml_graph_compute(ctx->ctx, graph->cgraph.get());
|
||||||
|
|
||||||
|
for (size_t i = 0; i < n_layer * 5; i++) {
|
||||||
|
struct ggml_tensor * part = graph->state_parts[i];
|
||||||
|
memcpy(state_out + i * n_embed, part->data, part->ne[0] * sizeof(float));
|
||||||
|
}
|
||||||
|
|
||||||
|
memcpy(logits_out, graph->logits->data, graph->logits->ne[0] * sizeof(float));
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
void rwkv_free(struct rwkv_context * ctx) {
|
||||||
|
std::unique_ptr<struct rwkv_context> rwkv_ctx(ctx);
|
||||||
|
ggml_free(ctx->ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
bool rwkv_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name) {
|
||||||
|
global_last_error = RWKV_ERROR_NONE;
|
||||||
|
|
||||||
|
int32_t format_data_type = format_name_to_format_type(format_name);
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ARGS | RWKV_ERROR_DATA_TYPE, format_data_type != -1, "Unsupported format \"%s\"", format_name);
|
||||||
|
|
||||||
|
ggml_type format_ggml_type = FORMAT_TYPE_TO_GGML_TYPE[format_data_type];
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ARGS | RWKV_ERROR_DATA_TYPE, format_ggml_type != GGML_TYPE_UNKNOWN, "Unsupported format \"%s\"", format_name);
|
||||||
|
|
||||||
|
// Needed to initialize FP16 lookup table
|
||||||
|
ggml_free(ggml_init({ 0, NULL, false }));
|
||||||
|
|
||||||
|
printf("Loading model from '%s'\n", model_file_path_in);
|
||||||
|
|
||||||
|
FILE * file_in = fopen(model_file_path_in, "rb");
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, file_in, "Failed to open %s for reading", model_file_path_in);
|
||||||
|
FILE * file_out = fopen(model_file_path_out, "wb");
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_OPEN, file_out, "Failed to open %s for writing", model_file_path_out);
|
||||||
|
|
||||||
|
rwkv_file_guard file_in_guard { file_in };
|
||||||
|
rwkv_file_guard file_out_guard { file_out };
|
||||||
|
|
||||||
|
// Process header
|
||||||
|
{
|
||||||
|
uint32_t magic, version;
|
||||||
|
int32_t n_vocab, n_embed, n_layer, data_type;
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, read_uint32(file_in, &magic, "magic"));
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_MAGIC, magic == RWKV_FILE_MAGIC, "Unexpected magic value %d", magic);
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, read_uint32(file_in, &version, "version"));
|
||||||
|
RWKV_ASSERT_FALSE_MSG(
|
||||||
|
RWKV_ERROR_FILE | RWKV_ERROR_FILE_VERSION,
|
||||||
|
version >= RWKV_FILE_VERSION_MIN && version <= RWKV_FILE_VERSION_MAX,
|
||||||
|
"Unsupported file version %d",
|
||||||
|
version
|
||||||
|
);
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, read_int32(file_in, &n_vocab, "n_vocab"));
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, read_int32(file_in, &n_embed, "n_embed"));
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, read_int32(file_in, &n_layer, "n_layer"));
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, read_int32(file_in, &data_type, "data_type"));
|
||||||
|
RWKV_ASSERT_FALSE_MSG(
|
||||||
|
RWKV_ERROR_FILE | RWKV_ERROR_DATA_TYPE,
|
||||||
|
is_non_quantized_format_type(data_type),
|
||||||
|
"Unsupported data type %d, only FP32 and FP16 can be quantized",
|
||||||
|
data_type
|
||||||
|
);
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_uint32(file_out, magic, "magic"));
|
||||||
|
// Always write latest version number when saving files
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_uint32(file_out, RWKV_FILE_VERSION_MAX, "version"));
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_int32(file_out, n_vocab, "n_vocab"));
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_int32(file_out, n_embed, "n_embed"));
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_int32(file_out, n_layer, "n_layer"));
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_int32(file_out, format_data_type, "data_type"));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Process parameters
|
||||||
|
size_t total_size_orig = 0;
|
||||||
|
size_t total_size_new = 0;
|
||||||
|
|
||||||
|
std::vector<float> work;
|
||||||
|
|
||||||
|
std::vector<uint8_t> data_u8;
|
||||||
|
std::vector<ggml_fp16_t> data_f16;
|
||||||
|
std::vector<float> data_f32;
|
||||||
|
|
||||||
|
std::vector<int64_t> hist_all(1 << 4, 0);
|
||||||
|
|
||||||
|
while (true) {
|
||||||
|
int32_t n_dims, key_length, parameter_data_type;
|
||||||
|
RWKV_ASSERT_FALSE_MSG(
|
||||||
|
RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_FILE_READ,
|
||||||
|
fread(&n_dims, sizeof(int32_t), 1, file_in) == 1 || feof(file_in),
|
||||||
|
"Failed to read an int32 value from a file (n_dims)"
|
||||||
|
);
|
||||||
|
|
||||||
|
if (feof(file_in)) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_MODEL_PARAMS, read_int32(file_in, &key_length, "key_length"));
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_MODEL_PARAMS, read_int32(file_in, ¶meter_data_type, "parameter_data_type"));
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_SHAPE, n_dims == 1 || n_dims == 2, "Unsupported dimension count %d", n_dims);
|
||||||
|
RWKV_ASSERT_FALSE_MSG(
|
||||||
|
RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_UNSUPPORTED,
|
||||||
|
parameter_data_type >= 0 && parameter_data_type < FORMAT_TYPE_COUNT,
|
||||||
|
"Unsupported parameter data type %d",
|
||||||
|
parameter_data_type
|
||||||
|
);
|
||||||
|
|
||||||
|
ggml_type parameter_ggml_type = FORMAT_TYPE_TO_GGML_TYPE[parameter_data_type];
|
||||||
|
RWKV_ASSERT_FALSE_MSG(
|
||||||
|
RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_UNSUPPORTED,
|
||||||
|
parameter_ggml_type != GGML_TYPE_UNKNOWN,
|
||||||
|
"Unsupported parameter data type %d",
|
||||||
|
parameter_data_type
|
||||||
|
);
|
||||||
|
|
||||||
|
int32_t nelements, x, y;
|
||||||
|
|
||||||
|
if (n_dims == 1) {
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_MODEL_PARAMS, read_int32(file_in, &x, "x"));
|
||||||
|
y = 1;
|
||||||
|
nelements = x;
|
||||||
|
} else {
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_MODEL_PARAMS, read_int32(file_in, &x, "x"));
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_MODEL_PARAMS, read_int32(file_in, &y, "y"));
|
||||||
|
nelements = x * y;
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string name(key_length, 0);
|
||||||
|
RWKV_ASSERT_NULL_MSG(RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_KEY, fread(&name[0], key_length, 1, file_in) == 1, "Failed to read parameter key");
|
||||||
|
|
||||||
|
printf("%48s - [%5d, %5d], type = %6s ", name.data(), x, y, ggml_type_name(parameter_ggml_type));
|
||||||
|
total_size_orig += (size_t) (nelements * ggml_type_sizef(parameter_ggml_type));
|
||||||
|
|
||||||
|
// Quantize only 2D tensors, except embedding and head matrices.
|
||||||
|
// Embedding and head take not too much space, especially in bigger models;
|
||||||
|
// but they significantly increase perplexity when quantized.
|
||||||
|
bool quantize = n_dims == 2 && name != "emb.weight" && name != "head.weight";
|
||||||
|
|
||||||
|
if (quantize) {
|
||||||
|
RWKV_ASSERT_FALSE_MSG(
|
||||||
|
RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DATA_TYPE,
|
||||||
|
parameter_ggml_type == GGML_TYPE_F32 || parameter_data_type == GGML_TYPE_F16,
|
||||||
|
"Unsupported parameter data type %d, only FP32 and FP16 can be quantized",
|
||||||
|
parameter_ggml_type
|
||||||
|
);
|
||||||
|
|
||||||
|
data_f32.resize(nelements);
|
||||||
|
|
||||||
|
if (parameter_data_type == GGML_TYPE_F16) {
|
||||||
|
data_f16.resize(nelements);
|
||||||
|
RWKV_ASSERT_FALSE_MSG(
|
||||||
|
RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DATA,
|
||||||
|
fread(data_f16.data(), nelements * sizeof(ggml_fp16_t), 1, file_in) == 1,
|
||||||
|
"Failed to read parameter data"
|
||||||
|
);
|
||||||
|
|
||||||
|
for (int i = 0; i < nelements; ++i) {
|
||||||
|
data_f32[i] = ggml_fp16_to_fp32(data_f16[i]);
|
||||||
|
}
|
||||||
|
} else {
|
||||||
|
RWKV_ASSERT_FALSE_MSG(
|
||||||
|
RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DATA,
|
||||||
|
fread(data_f32.data(), nelements * sizeof(float), 1, file_in) == 1,
|
||||||
|
"Failed to read parameter data"
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
parameter_data_type = format_data_type;
|
||||||
|
parameter_ggml_type = format_ggml_type;
|
||||||
|
} else {
|
||||||
|
const size_t element_size = ggml_type_size(parameter_ggml_type);
|
||||||
|
data_u8.resize(nelements * element_size);
|
||||||
|
RWKV_ASSERT_FALSE_MSG(
|
||||||
|
RWKV_ERROR_MODEL_PARAMS | RWKV_ERROR_DATA,
|
||||||
|
fread(data_u8.data(), nelements * element_size, 1, file_in) == 1,
|
||||||
|
"Failed to read parameter data"
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_int32(file_out, n_dims, "n_dims"));
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_int32(file_out, key_length, "key_length"));
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_int32(file_out, parameter_data_type, "parameter_data_type"));
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_int32(file_out, x, "x"));
|
||||||
|
|
||||||
|
if (n_dims == 2) {
|
||||||
|
RWKV_ASSERT_FALSE(RWKV_ERROR_FILE, write_int32(file_out, y, "y"));
|
||||||
|
}
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_WRITE, fwrite(&name[0], key_length, 1, file_out) == 1, "Failed to write parameter key");
|
||||||
|
|
||||||
|
if (quantize) {
|
||||||
|
printf("quantizing... ");
|
||||||
|
// For quantization
|
||||||
|
work.resize(nelements);
|
||||||
|
|
||||||
|
// This is a histogram of quantized values. If it shows single 1.0, then all 0.0, something went very wrong!
|
||||||
|
std::vector<int64_t> hist_cur(1 << 4, 0);
|
||||||
|
|
||||||
|
size_t (*f)(const float * src, void * dst, int n, int k, int64_t * hist) =
|
||||||
|
format_ggml_type == GGML_TYPE_Q4_0 ? ggml_quantize_q4_0 :
|
||||||
|
format_ggml_type == GGML_TYPE_Q4_1 ? ggml_quantize_q4_1 :
|
||||||
|
format_ggml_type == GGML_TYPE_Q5_0 ? ggml_quantize_q5_0 :
|
||||||
|
format_ggml_type == GGML_TYPE_Q5_1 ? ggml_quantize_q5_1 :
|
||||||
|
format_ggml_type == GGML_TYPE_Q8_0 ? ggml_quantize_q8_0 :
|
||||||
|
NULL;
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_ARGS | RWKV_ERROR_UNSUPPORTED, f, "Unsupported quantization type %d\n", format_ggml_type);
|
||||||
|
|
||||||
|
size_t cur_size = (*f)(data_f32.data(), work.data(), nelements, x, hist_cur.data());
|
||||||
|
total_size_new += cur_size;
|
||||||
|
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_WRITE, fwrite(work.data(), cur_size, 1, file_out) == 1, "Failed to write parameter data");
|
||||||
|
|
||||||
|
printf("size = %8.2f MB -> %8.2f MB | hist: ", nelements * sizeof(float) / 1024.0 / 1024.0, cur_size / 1024.0 / 1024.0);
|
||||||
|
|
||||||
|
for (int i = 0; i < (int) hist_cur.size(); ++i) {
|
||||||
|
hist_all[i] += hist_cur[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < (int) hist_cur.size(); ++i) {
|
||||||
|
printf("%5.3f ", hist_cur[i] / float(nelements));
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("\n");
|
||||||
|
} else {
|
||||||
|
printf("size = %8.3f MB\n", data_u8.size() / 1024.0 / 1024.0);
|
||||||
|
RWKV_ASSERT_FALSE_MSG(RWKV_ERROR_FILE | RWKV_ERROR_FILE_WRITE, fwrite(data_u8.data(), data_u8.size(), 1, file_out) == 1, "Failed to write parameter data");
|
||||||
|
total_size_new += data_u8.size();
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("original size = %8.2f MB\n", total_size_orig / 1024.0 / 1024.0);
|
||||||
|
printf("quantized size = %8.2f MB\n", total_size_new / 1024.0 / 1024.0);
|
||||||
|
printf("compression ratio = %8.2f\n", 1.0 * total_size_orig / total_size_new);
|
||||||
|
|
||||||
|
int64_t sum_all = 0;
|
||||||
|
|
||||||
|
for (int i = 0; i < (int) hist_all.size(); ++i) {
|
||||||
|
sum_all += hist_all[i];
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("hist: ");
|
||||||
|
|
||||||
|
for (int i = 0; i < (int) hist_all.size(); ++i) {
|
||||||
|
printf("%5.3f ", hist_all[i] / float(sum_all));
|
||||||
|
}
|
||||||
|
|
||||||
|
printf("\n");
|
||||||
|
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
|
const char * rwkv_get_system_info_string(void) {
|
||||||
|
static std::string s;
|
||||||
|
|
||||||
|
s = "";
|
||||||
|
s += "AVX = " + std::to_string(ggml_cpu_has_avx()) + " | ";
|
||||||
|
s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | ";
|
||||||
|
s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | ";
|
||||||
|
s += "FMA = " + std::to_string(ggml_cpu_has_fma()) + " | ";
|
||||||
|
s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | ";
|
||||||
|
s += "ARM_FMA = " + std::to_string(ggml_cpu_has_arm_fma()) + " | ";
|
||||||
|
s += "F16C = " + std::to_string(ggml_cpu_has_f16c()) + " | ";
|
||||||
|
s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | ";
|
||||||
|
s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | ";
|
||||||
|
s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | ";
|
||||||
|
s += "SSE3 = " + std::to_string(ggml_cpu_has_sse3()) + " | ";
|
||||||
|
s += "VSX = " + std::to_string(ggml_cpu_has_vsx()) + " | ";
|
||||||
|
|
||||||
|
return s.c_str();
|
||||||
|
}
|
125
otherarch/rwkv_v3.h
Normal file
125
otherarch/rwkv_v3.h
Normal file
|
@ -0,0 +1,125 @@
|
||||||
|
#ifndef RWKV_H
|
||||||
|
#define RWKV_H
|
||||||
|
|
||||||
|
#include <stddef.h>
|
||||||
|
#include <stdint.h>
|
||||||
|
#include <stdbool.h>
|
||||||
|
|
||||||
|
#ifdef RWKV_SHARED
|
||||||
|
# if defined(_WIN32) && !defined(__MINGW32__)
|
||||||
|
# ifdef RWKV_BUILD
|
||||||
|
# define RWKV_API __declspec(dllexport)
|
||||||
|
# else
|
||||||
|
# define RWKV_API __declspec(dllimport)
|
||||||
|
# endif
|
||||||
|
# else
|
||||||
|
# define RWKV_API __attribute__ ((visibility ("default")))
|
||||||
|
# endif
|
||||||
|
#else
|
||||||
|
# define RWKV_API
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// 'ggmf' in hex.
|
||||||
|
#define RWKV_FILE_MAGIC 0x67676d66
|
||||||
|
|
||||||
|
#define RWKV_FILE_VERSION_0 100
|
||||||
|
#define RWKV_FILE_VERSION_1 101
|
||||||
|
#define RWKV_FILE_VERSION_MIN RWKV_FILE_VERSION_0
|
||||||
|
#define RWKV_FILE_VERSION_MAX RWKV_FILE_VERSION_1
|
||||||
|
// Default file version is the latest version.
|
||||||
|
#define RWKV_FILE_VERSION RWKV_FILE_VERSION_MAX
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
// Represents an error encountered during a function call.
|
||||||
|
// These are flags, so an actual value might contain multiple errors.
|
||||||
|
enum rwkv_error_flags {
|
||||||
|
RWKV_ERROR_NONE = 0,
|
||||||
|
|
||||||
|
RWKV_ERROR_ARGS = 1 << 8,
|
||||||
|
RWKV_ERROR_FILE = 2 << 8,
|
||||||
|
RWKV_ERROR_MODEL = 3 << 8,
|
||||||
|
RWKV_ERROR_MODEL_PARAMS = 4 << 8,
|
||||||
|
RWKV_ERROR_GRAPH = 5 << 8,
|
||||||
|
RWKV_ERROR_CTX = 6 << 8,
|
||||||
|
|
||||||
|
RWKV_ERROR_ALLOC = 1,
|
||||||
|
RWKV_ERROR_FILE_OPEN = 2,
|
||||||
|
RWKV_ERROR_FILE_STAT = 3,
|
||||||
|
RWKV_ERROR_FILE_READ = 4,
|
||||||
|
RWKV_ERROR_FILE_WRITE = 5,
|
||||||
|
RWKV_ERROR_FILE_MAGIC = 6,
|
||||||
|
RWKV_ERROR_FILE_VERSION = 7,
|
||||||
|
RWKV_ERROR_DATA_TYPE = 8,
|
||||||
|
RWKV_ERROR_UNSUPPORTED = 9,
|
||||||
|
RWKV_ERROR_SHAPE = 10,
|
||||||
|
RWKV_ERROR_DIMENSION = 11,
|
||||||
|
RWKV_ERROR_KEY = 12,
|
||||||
|
RWKV_ERROR_DATA = 13,
|
||||||
|
RWKV_ERROR_PARAM_MISSING = 14
|
||||||
|
};
|
||||||
|
|
||||||
|
struct rwkv_context;
|
||||||
|
|
||||||
|
// Sets whether errors are automatically printed to stderr.
|
||||||
|
// If this is set to false, you are responsible for calling rwkv_last_error manually if an operation fails.
|
||||||
|
// - ctx: the context to suppress error messages for.
|
||||||
|
// If NULL, affects model load (rwkv_init_from_file) and quantization (rwkv_quantize_model_file) errors,
|
||||||
|
// as well as the default for new context.
|
||||||
|
// - print_errors: whether error messages should be automatically printed.
|
||||||
|
RWKV_API void rwkv_set_print_errors(struct rwkv_context * ctx, bool print_errors);
|
||||||
|
|
||||||
|
// Gets whether errors are automatically printed to stderr.
|
||||||
|
// - ctx: the context to retrieve the setting for, or NULL for the global setting.
|
||||||
|
RWKV_API bool rwkv_get_print_errors(struct rwkv_context * ctx);
|
||||||
|
|
||||||
|
// Retrieves and clears the error flags.
|
||||||
|
// - ctx: the context the retrieve the error for, or NULL for the global error.
|
||||||
|
RWKV_API enum rwkv_error_flags rwkv_get_last_error(struct rwkv_context * ctx);
|
||||||
|
|
||||||
|
// Loads the model from a file and prepares it for inference.
|
||||||
|
// Returns NULL on any error. Error messages would be printed to stderr.
|
||||||
|
// - model_file_path: path to model file in ggml format.
|
||||||
|
// - n_threads: count of threads to use, must be positive.
|
||||||
|
RWKV_API struct rwkv_context * rwkv_init_from_file(const char * model_file_path, const uint32_t n_threads);
|
||||||
|
|
||||||
|
// Evaluates the model for a single token.
|
||||||
|
// Returns false on any error. Error messages would be printed to stderr.
|
||||||
|
// - token: next token index, in range 0 <= token < n_vocab.
|
||||||
|
// - state_in: FP32 buffer of size rwkv_get_state_buffer_element_count; or NULL, if this is a first pass.
|
||||||
|
// - state_out: FP32 buffer of size rwkv_get_state_buffer_element_count. This buffer will be written to.
|
||||||
|
// - logits_out: FP32 buffer of size rwkv_get_logits_buffer_element_count. This buffer will be written to.
|
||||||
|
RWKV_API bool rwkv_eval(const struct rwkv_context * ctx, const uint32_t token, const float * state_in, float * state_out, float * logits_out);
|
||||||
|
|
||||||
|
// Returns count of FP32 elements in state buffer.
|
||||||
|
RWKV_API uint32_t rwkv_get_state_buffer_element_count(const struct rwkv_context * ctx);
|
||||||
|
|
||||||
|
// Returns count of FP32 elements in logits buffer.
|
||||||
|
RWKV_API uint32_t rwkv_get_logits_buffer_element_count(const struct rwkv_context * ctx);
|
||||||
|
|
||||||
|
// Frees all allocated memory and the context.
|
||||||
|
RWKV_API void rwkv_free(struct rwkv_context * ctx);
|
||||||
|
|
||||||
|
// Quantizes FP32 or FP16 model to one of quantized formats.
|
||||||
|
// Returns false on any error. Error messages would be printed to stderr.
|
||||||
|
// - model_file_path_in: path to model file in ggml format, must be either FP32 or FP16.
|
||||||
|
// - model_file_path_out: quantized model will be written here.
|
||||||
|
// - format_name: must be one of available format names below.
|
||||||
|
// Available format names:
|
||||||
|
// - Q4_0
|
||||||
|
// - Q4_1
|
||||||
|
// - Q5_0
|
||||||
|
// - Q5_1
|
||||||
|
// - Q8_0
|
||||||
|
RWKV_API bool rwkv_quantize_model_file(const char * model_file_path_in, const char * model_file_path_out, const char * format_name);
|
||||||
|
|
||||||
|
// Returns system information string.
|
||||||
|
RWKV_API const char * rwkv_get_system_info_string(void);
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif
|
|
@ -1,48 +1,15 @@
|
||||||
# Converts an RWKV model checkpoint to an rwkv.cpp compatible file.
|
# Converts an RWKV model checkpoint in PyTorch format to an rwkv.cpp compatible file.
|
||||||
# Usage: python convert_pytorch_to_ggml.py C:\RWKV-4-Pile-169M-20220807-8023.pth C:\rwkv.cpp-169M.bin float32
|
# Usage: python convert_pytorch_to_ggml.py C:\RWKV-4-Pile-169M-20220807-8023.pth C:\rwkv.cpp-169M.bin float32
|
||||||
# Get model checkpoints from https://huggingface.co/BlinkDL
|
# Get model checkpoints from https://huggingface.co/BlinkDL
|
||||||
|
# See FILE_FORMAT.md for the documentation on the file format.
|
||||||
|
|
||||||
# File format:
|
|
||||||
#
|
|
||||||
# RWKVModelFile {
|
|
||||||
# // All ints and floats are in machine byte order.
|
|
||||||
# // Magic is "ggml" string bytes.
|
|
||||||
# int32 magic = 0x67676d66;
|
|
||||||
# int32 version = 100;
|
|
||||||
# int32 n_vocab;
|
|
||||||
# int32 n_embed;
|
|
||||||
# int32 n_layer;
|
|
||||||
# // 0 if float32, 1 if float16, 2 if Q4_0, 3 if Q4_1, 4 if Q4_1_O.
|
|
||||||
# int32 data_type;
|
|
||||||
# // Read until EOF.
|
|
||||||
# Parameter[] parameters;
|
|
||||||
# }
|
|
||||||
#
|
|
||||||
# Parameter {
|
|
||||||
# int32 dim_count;
|
|
||||||
# int32 key_length;
|
|
||||||
# // 0 if float32, 1 if float16, 2 if Q4_0, 3 if Q4_1, 4 if Q4_1_O.
|
|
||||||
# int32 data_type;
|
|
||||||
# // Compared to PyTorch's tensor.shape, dimension order is reversed here!
|
|
||||||
# int32[dim_count] shape;
|
|
||||||
# // Keys are like "emb.weight", "block.0.ln1.weight".
|
|
||||||
# uint8[key_length] key_utf8;
|
|
||||||
# // float32: 4 * element_count bytes.
|
|
||||||
# // float16: 2 * element_count bytes.
|
|
||||||
# // Q4_0: element_count / 32 * 20 bytes.
|
|
||||||
# // Q4_1: element_count / 32 * 24 bytes.
|
|
||||||
# // Q4_1_O: element_count / 32 * 24 bytes.
|
|
||||||
# byte[] data;
|
|
||||||
# }
|
|
||||||
|
|
||||||
import os
|
|
||||||
import argparse
|
import argparse
|
||||||
import struct
|
import struct
|
||||||
import torch
|
import torch
|
||||||
from typing import Dict
|
from typing import Dict
|
||||||
|
|
||||||
def parse_args():
|
def parse_args():
|
||||||
parser = argparse.ArgumentParser(description='Convert an RWKV model checkpoint to an rwkv.cpp compatible file')
|
parser = argparse.ArgumentParser(description='Convert an RWKV model checkpoint in PyTorch format to an rwkv.cpp compatible file')
|
||||||
parser.add_argument('src_path', help='Path to PyTorch checkpoint file')
|
parser.add_argument('src_path', help='Path to PyTorch checkpoint file')
|
||||||
parser.add_argument('dest_path', help='Path to rwkv.cpp checkpoint file, will be overwritten')
|
parser.add_argument('dest_path', help='Path to rwkv.cpp checkpoint file, will be overwritten')
|
||||||
parser.add_argument('data_type', help='Data type, float16 or float32', type=str, choices=['float16', 'float32'], default='float32')
|
parser.add_argument('data_type', help='Data type, float16 or float32', type=str, choices=['float16', 'float32'], default='float32')
|
||||||
|
@ -71,8 +38,7 @@ def write_state_dict(state_dict: Dict[str, torch.Tensor], dest_path: str, data_t
|
||||||
'=iiiiii',
|
'=iiiiii',
|
||||||
# Magic: 'ggmf' in hex
|
# Magic: 'ggmf' in hex
|
||||||
0x67676d66,
|
0x67676d66,
|
||||||
# llama.cpp uses file versions 1+, let's use 100+ for rwkv.cpp
|
101,
|
||||||
100,
|
|
||||||
n_vocab,
|
n_vocab,
|
||||||
n_embed,
|
n_embed,
|
||||||
n_layer,
|
n_layer,
|
||||||
|
@ -129,53 +95,5 @@ def main() -> None:
|
||||||
|
|
||||||
print('Done')
|
print('Done')
|
||||||
|
|
||||||
# --- Tests ---
|
|
||||||
|
|
||||||
def test() -> None:
|
|
||||||
test_file_path = 'convert_pytorch_rwkv_to_ggml_test.tmp'
|
|
||||||
|
|
||||||
try:
|
|
||||||
state_dict: Dict[str, torch.Tensor] = {
|
|
||||||
'emb.weight': torch.tensor([[1, 2], [3, 4], [5, 6]], dtype=torch.float32),
|
|
||||||
'blocks.0.ln1.weight': torch.tensor([1], dtype=torch.float32)
|
|
||||||
}
|
|
||||||
|
|
||||||
write_state_dict(state_dict, dest_path=test_file_path, data_type='float32')
|
|
||||||
|
|
||||||
with open(test_file_path, 'rb') as input:
|
|
||||||
actual_bytes: bytes = input.read()
|
|
||||||
|
|
||||||
expected_bytes: bytes = struct.pack(
|
|
||||||
'=iiiiii' + 'iiiii10sffffff' + 'iiii19sf',
|
|
||||||
0x67676d66,
|
|
||||||
100,
|
|
||||||
3,
|
|
||||||
2,
|
|
||||||
1,
|
|
||||||
0,
|
|
||||||
# emb.weight
|
|
||||||
2,
|
|
||||||
10,
|
|
||||||
0,
|
|
||||||
2, 3,
|
|
||||||
'emb.weight'.encode('utf-8'),
|
|
||||||
1.0, 2.0, 3.0,
|
|
||||||
4.0, 5.0, 6.0,
|
|
||||||
# blocks.0.ln1.weight
|
|
||||||
1,
|
|
||||||
19,
|
|
||||||
0,
|
|
||||||
1,
|
|
||||||
'blocks.0.ln1.weight'.encode('utf-8'),
|
|
||||||
1.0
|
|
||||||
)
|
|
||||||
|
|
||||||
assert list(actual_bytes) == list(expected_bytes), f'\nActual: {list(actual_bytes)}\nExpected: {list(expected_bytes)}'
|
|
||||||
|
|
||||||
print('All tests pass')
|
|
||||||
finally:
|
|
||||||
if os.path.isfile(test_file_path):
|
|
||||||
os.remove(test_file_path)
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
main()
|
main()
|
Loading…
Add table
Add a link
Reference in a new issue