Merge branch 'ggerganov:master' into master
This commit is contained in:
commit
5624a29c1f
15 changed files with 882 additions and 299 deletions
46
Makefile
46
Makefile
|
@ -142,6 +142,28 @@ ifeq ($(UNAME_M),$(filter $(UNAME_M),x86_64 i686 amd64))
|
||||||
#CXXFLAGS += -mssse3
|
#CXXFLAGS += -mssse3
|
||||||
endif
|
endif
|
||||||
|
|
||||||
|
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
||||||
|
# Apple M1, M2, etc.
|
||||||
|
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
||||||
|
CFLAGS += -mcpu=native
|
||||||
|
CXXFLAGS += -mcpu=native
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifneq ($(filter armv6%,$(UNAME_M)),)
|
||||||
|
# Raspberry Pi 1, Zero
|
||||||
|
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifneq ($(filter armv7%,$(UNAME_M)),)
|
||||||
|
# Raspberry Pi 2
|
||||||
|
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
||||||
|
endif
|
||||||
|
|
||||||
|
ifneq ($(filter armv8%,$(UNAME_M)),)
|
||||||
|
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||||
|
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
||||||
|
endif
|
||||||
|
|
||||||
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
ifneq ($(filter ppc64%,$(UNAME_M)),)
|
||||||
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
POWER9_M := $(shell grep "POWER9" /proc/cpuinfo)
|
||||||
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
ifneq (,$(findstring POWER9,$(POWER9_M)))
|
||||||
|
@ -270,28 +292,6 @@ ifdef LLAMA_METAL
|
||||||
OBJS += ggml-metal.o
|
OBJS += ggml-metal.o
|
||||||
endif # LLAMA_METAL
|
endif # LLAMA_METAL
|
||||||
|
|
||||||
ifneq ($(filter aarch64%,$(UNAME_M)),)
|
|
||||||
# Apple M1, M2, etc.
|
|
||||||
# Raspberry Pi 3, 4, Zero 2 (64-bit)
|
|
||||||
CFLAGS += -mcpu=native
|
|
||||||
CXXFLAGS += -mcpu=native
|
|
||||||
endif
|
|
||||||
|
|
||||||
ifneq ($(filter armv6%,$(UNAME_M)),)
|
|
||||||
# Raspberry Pi 1, Zero
|
|
||||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access
|
|
||||||
endif
|
|
||||||
|
|
||||||
ifneq ($(filter armv7%,$(UNAME_M)),)
|
|
||||||
# Raspberry Pi 2
|
|
||||||
CFLAGS += -mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations
|
|
||||||
endif
|
|
||||||
|
|
||||||
ifneq ($(filter armv8%,$(UNAME_M)),)
|
|
||||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
|
||||||
CFLAGS += -mfp16-format=ieee -mno-unaligned-access
|
|
||||||
endif
|
|
||||||
|
|
||||||
ifdef LLAMA_METAL
|
ifdef LLAMA_METAL
|
||||||
ggml-metal.o: ggml-metal.m ggml-metal.h
|
ggml-metal.o: ggml-metal.m ggml-metal.h
|
||||||
$(CC) $(CFLAGS) -c $< -o $@
|
$(CC) $(CFLAGS) -c $< -o $@
|
||||||
|
@ -380,7 +380,7 @@ embedding: examples/embedding/embedding.cpp build-info.h ggml.
|
||||||
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
save-load-state: examples/save-load-state/save-load-state.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o $(OBJS)
|
server: examples/server/server.cpp examples/server/httplib.h examples/server/json.hpp examples/server/index.html.hpp examples/server/index.js.hpp examples/server/completion.js.hpp build-info.h ggml.o llama.o common.o grammar-parser.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
$(CXX) $(CXXFLAGS) -Iexamples/server $(filter-out %.h,$(filter-out %.hpp,$^)) -o $@ $(LDFLAGS) $(LWINSOCK2)
|
||||||
|
|
||||||
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
$(LIB_PRE)embdinput$(DSO_EXT): examples/embd-input/embd-input.h examples/embd-input/embd-input-lib.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
|
|
139
build.zig
139
build.zig
|
@ -1,68 +1,87 @@
|
||||||
|
// Compatible with Zig Version 0.11.0
|
||||||
const std = @import("std");
|
const std = @import("std");
|
||||||
const commit_hash = @embedFile(".git/refs/heads/master");
|
const Compile = std.Build.Step.Compile;
|
||||||
|
const ConfigHeader = std.Build.Step.ConfigHeader;
|
||||||
|
const Mode = std.builtin.Mode;
|
||||||
|
const CrossTarget = std.zig.CrossTarget;
|
||||||
|
|
||||||
|
const Maker = struct {
|
||||||
|
builder: *std.build.Builder,
|
||||||
|
target: CrossTarget,
|
||||||
|
optimize: Mode,
|
||||||
|
config_header: *ConfigHeader,
|
||||||
|
|
||||||
|
const cflags = .{"-std=c11"};
|
||||||
|
const cxxflags = .{"-std=c++11"};
|
||||||
|
|
||||||
|
fn init(builder: *std.build.Builder) Maker {
|
||||||
|
const commit_hash = @embedFile(".git/refs/heads/master");
|
||||||
|
const config_header = builder.addConfigHeader(
|
||||||
|
.{ .style = .blank, .include_path = "build-info.h" },
|
||||||
|
.{
|
||||||
|
.BUILD_NUMBER = 0,
|
||||||
|
.BUILD_COMMIT = commit_hash[0 .. commit_hash.len - 1], // omit newline
|
||||||
|
},
|
||||||
|
);
|
||||||
|
return Maker{
|
||||||
|
.builder = builder,
|
||||||
|
.target = builder.standardTargetOptions(.{}),
|
||||||
|
.optimize = builder.standardOptimizeOption(.{}),
|
||||||
|
.config_header = config_header,
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
|
||||||
|
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||||
|
if (std.mem.endsWith(u8, src, ".c")) {
|
||||||
|
o.addCSourceFiles(&.{src}, &cflags);
|
||||||
|
o.linkLibC();
|
||||||
|
} else {
|
||||||
|
o.addCSourceFiles(&.{src}, &cxxflags);
|
||||||
|
o.linkLibCpp();
|
||||||
|
}
|
||||||
|
o.addIncludePath(.{ .path = "." });
|
||||||
|
o.addIncludePath(.{ .path = "./examples" });
|
||||||
|
return o;
|
||||||
|
}
|
||||||
|
|
||||||
|
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
|
||||||
|
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
|
||||||
|
e.addIncludePath(.{ .path = "." });
|
||||||
|
e.addIncludePath(.{ .path = "./examples" });
|
||||||
|
e.addCSourceFiles(&.{src}, &cxxflags);
|
||||||
|
for (deps) |d| e.addObject(d);
|
||||||
|
e.linkLibC();
|
||||||
|
e.linkLibCpp();
|
||||||
|
e.addConfigHeader(m.config_header);
|
||||||
|
m.builder.installArtifact(e);
|
||||||
|
|
||||||
|
// Currently a bug is preventing correct linking for optimized builds for Windows:
|
||||||
|
// https://github.com/ziglang/zig/issues/15958
|
||||||
|
if (e.target.isWindows()) {
|
||||||
|
e.want_lto = false;
|
||||||
|
}
|
||||||
|
return e;
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
// Zig Version: 0.11.0-dev.3986+e05c242cd
|
|
||||||
pub fn build(b: *std.build.Builder) void {
|
pub fn build(b: *std.build.Builder) void {
|
||||||
const target = b.standardTargetOptions(.{});
|
const make = Maker.init(b);
|
||||||
const optimize = b.standardOptimizeOption(.{});
|
|
||||||
|
|
||||||
const config_header = b.addConfigHeader(
|
const ggml = make.obj("ggml", "ggml.c");
|
||||||
.{ .style = .blank, .include_path = "build-info.h" },
|
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
|
||||||
.{
|
const llama = make.obj("llama", "llama.cpp");
|
||||||
.BUILD_NUMBER = 0,
|
const common = make.obj("common", "examples/common.cpp");
|
||||||
.BUILD_COMMIT = commit_hash[0 .. commit_hash.len - 1], // omit newline
|
const grammar_parser = make.obj("grammar-parser", "examples/grammar-parser.cpp");
|
||||||
},
|
|
||||||
);
|
|
||||||
|
|
||||||
const lib = b.addStaticLibrary(.{
|
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser });
|
||||||
.name = "llama",
|
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, ggml_alloc, llama });
|
||||||
.target = target,
|
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, ggml_alloc, llama, common });
|
||||||
.optimize = optimize,
|
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, ggml_alloc, llama, common });
|
||||||
});
|
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, ggml_alloc, llama });
|
||||||
lib.linkLibC();
|
|
||||||
lib.linkLibCpp();
|
|
||||||
lib.addIncludePath(".");
|
|
||||||
lib.addIncludePath("./examples");
|
|
||||||
lib.addConfigHeader(config_header);
|
|
||||||
lib.addCSourceFiles(&.{"ggml.c"}, &.{"-std=c11"});
|
|
||||||
lib.addCSourceFiles(&.{"llama.cpp"}, &.{"-std=c++11"});
|
|
||||||
b.installArtifact(lib);
|
|
||||||
|
|
||||||
const examples = .{
|
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, ggml_alloc, llama, common, grammar_parser });
|
||||||
"main",
|
if (server.target.isWindows()) {
|
||||||
"baby-llama",
|
server.linkSystemLibrary("ws2_32");
|
||||||
"embedding",
|
|
||||||
"metal",
|
|
||||||
"perplexity",
|
|
||||||
"quantize",
|
|
||||||
"quantize-stats",
|
|
||||||
"save-load-state",
|
|
||||||
"server",
|
|
||||||
"simple",
|
|
||||||
"train-text-from-scratch",
|
|
||||||
};
|
|
||||||
|
|
||||||
inline for (examples) |example_name| {
|
|
||||||
const exe = b.addExecutable(.{
|
|
||||||
.name = example_name,
|
|
||||||
.target = target,
|
|
||||||
.optimize = optimize,
|
|
||||||
});
|
|
||||||
exe.addIncludePath(".");
|
|
||||||
exe.addIncludePath("./examples");
|
|
||||||
exe.addConfigHeader(config_header);
|
|
||||||
exe.addCSourceFiles(&.{
|
|
||||||
std.fmt.comptimePrint("examples/{s}/{s}.cpp", .{ example_name, example_name }),
|
|
||||||
"examples/common.cpp",
|
|
||||||
}, &.{"-std=c++11"});
|
|
||||||
exe.linkLibrary(lib);
|
|
||||||
b.installArtifact(exe);
|
|
||||||
|
|
||||||
const run_cmd = b.addRunArtifact(exe);
|
|
||||||
run_cmd.step.dependOn(b.getInstallStep());
|
|
||||||
if (b.args) |args| run_cmd.addArgs(args);
|
|
||||||
|
|
||||||
const run_step = b.step("run-" ++ example_name, "Run the app");
|
|
||||||
run_step.dependOn(&run_cmd.step);
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
|
@ -465,6 +465,13 @@ class GGMLQuantizedTensor(Tensor):
|
||||||
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'GGMLQuantizedTensor':
|
def permute(self, n_head: int, n_kv_head: Optional[int] = None) -> 'GGMLQuantizedTensor':
|
||||||
return GGMLQuantizedTensor(permute(self.ndarray, n_head, n_kv_head), self.shape, self.data_type)
|
return GGMLQuantizedTensor(permute(self.ndarray, n_head, n_kv_head), self.shape, self.data_type)
|
||||||
|
|
||||||
|
def permute_part(self, n_part: int, n_head: int) -> 'UnquantizedTensor':
|
||||||
|
r = self.ndarray.shape[0] // 3
|
||||||
|
return UnquantizedTensor(permute(self.ndarray[r * n_part : r * n_part + r, ...], n_head))
|
||||||
|
|
||||||
|
def part(self, n_part: int) -> 'UnquantizedTensor':
|
||||||
|
r = self.ndarray.shape[0] // 3
|
||||||
|
return UnquantizedTensor(self.ndarray[r * n_part : r * n_part + r, ...])
|
||||||
|
|
||||||
GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor]
|
GGMLCompatibleTensor = Union[UnquantizedTensor, GGMLQuantizedTensor]
|
||||||
|
|
||||||
|
|
|
@ -203,6 +203,12 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.rope_freq_scale = std::stof(argv[i]);
|
params.rope_freq_scale = std::stof(argv[i]);
|
||||||
|
} else if (arg == "--rope-scale") {
|
||||||
|
if (++i >= argc) {
|
||||||
|
invalid_param = true;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
params.rope_freq_scale = 1.0f/std::stof(argv[i]);
|
||||||
} else if (arg == "--memory-f32") {
|
} else if (arg == "--memory-f32") {
|
||||||
params.memory_f16 = false;
|
params.memory_f16 = false;
|
||||||
} else if (arg == "--top-p") {
|
} else if (arg == "--top-p") {
|
||||||
|
@ -575,8 +581,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
||||||
fprintf(stdout, " --cfg-negative-prompt PROMPT \n");
|
fprintf(stdout, " --cfg-negative-prompt PROMPT \n");
|
||||||
fprintf(stdout, " negative prompt to use for guidance. (default: empty)\n");
|
fprintf(stdout, " negative prompt to use for guidance. (default: empty)\n");
|
||||||
fprintf(stdout, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
fprintf(stdout, " --cfg-scale N strength of guidance (default: %f, 1.0 = disable)\n", params.cfg_scale);
|
||||||
fprintf(stdout, " --rope-freq-base N RoPE base frequency (default: %.1f)\n", params.rope_freq_base);
|
fprintf(stdout, " --rope-scale N RoPE context linear scaling factor, inverse of --rope-freq-scale (default: %g)\n", 1.0f/params.rope_freq_scale);
|
||||||
fprintf(stdout, " --rope-freq-scale N RoPE frequency scaling factor (default: %g)\n", params.rope_freq_scale);
|
fprintf(stdout, " --rope-freq-base N RoPE base frequency, used by NTK-aware scaling (default: %.1f)\n", params.rope_freq_base);
|
||||||
|
fprintf(stdout, " --rope-freq-scale N RoPE frequency linear scaling factor, inverse of --rope-scale (default: %g)\n", params.rope_freq_scale);
|
||||||
fprintf(stdout, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
fprintf(stdout, " --ignore-eos ignore end of stream token and continue generating (implies --logit-bias 2-inf)\n");
|
||||||
fprintf(stdout, " --no-penalize-nl do not penalize newline token\n");
|
fprintf(stdout, " --no-penalize-nl do not penalize newline token\n");
|
||||||
fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
fprintf(stdout, " --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||||
|
|
|
@ -80,8 +80,10 @@ namespace console {
|
||||||
// Set console input codepage to UTF16
|
// Set console input codepage to UTF16
|
||||||
_setmode(_fileno(stdin), _O_WTEXT);
|
_setmode(_fileno(stdin), _O_WTEXT);
|
||||||
|
|
||||||
if (!simple_io) {
|
// Set ICANON (ENABLE_LINE_INPUT) and ECHO (ENABLE_ECHO_INPUT)
|
||||||
// Turn off ICANON (ENABLE_LINE_INPUT) and ECHO (ENABLE_ECHO_INPUT)
|
if (simple_io) {
|
||||||
|
dwMode |= ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT;
|
||||||
|
} else {
|
||||||
dwMode &= ~(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT);
|
dwMode &= ~(ENABLE_LINE_INPUT | ENABLE_ECHO_INPUT);
|
||||||
}
|
}
|
||||||
if (!SetConsoleMode(hConIn, dwMode)) {
|
if (!SetConsoleMode(hConIn, dwMode)) {
|
||||||
|
|
132
examples/llama.vim
Normal file
132
examples/llama.vim
Normal file
|
@ -0,0 +1,132 @@
|
||||||
|
" Requires an already running llama.cpp server
|
||||||
|
" To install either copy or symlink to ~/.vim/autoload/llama.vim
|
||||||
|
" Then start with either :call llama#doLlamaGen(),
|
||||||
|
" or add a keybind to your vimrc such as
|
||||||
|
" nnoremap Z :call llama#doLlamaGen()<CR>
|
||||||
|
" Similarly, you could add an insert mode keybind with
|
||||||
|
" inoremap <C-B> <Cmd>call llama#doLlamaGen()<CR>
|
||||||
|
"
|
||||||
|
" g:llama_api_url and g:llama_overrides can be configured in your .vimrc
|
||||||
|
" let g:llama_api_url = "192.168.1.10:8080"
|
||||||
|
" llama_overrides can also be set through buffer/window scopes. For instance
|
||||||
|
" autocmd filetype python let b:llama_overrides = {"temp": 0.2}
|
||||||
|
" Could be added to your .vimrc to automatically set a lower temperature when
|
||||||
|
" editing a python script
|
||||||
|
" Additionally, an override dict can be stored at the top of a file
|
||||||
|
" !*{"stop": ["User:"]}
|
||||||
|
" Could be added to the start of your chatlog.txt to set the stopping token
|
||||||
|
" These parameter dicts are merged together from lowest to highest priority:
|
||||||
|
" server default -> g:llama_overrides -> w:llama_overrides ->
|
||||||
|
" b:llama_overrides -> in file (!*) overrides
|
||||||
|
"
|
||||||
|
" Sublists (like logit_bias and stop) are overridden, not merged
|
||||||
|
" Example override:
|
||||||
|
" !*{"logit_bias": [[13, -5], [2, false]], "temperature": 1, "top_k": 5, "top_p": 0.5, "n_predict": 256, "repeat_last_n": 256, "repeat_penalty": 1.17647}
|
||||||
|
if !exists("g:llama_api_url")
|
||||||
|
let g:llama_api_url= "127.0.0.1:8080"
|
||||||
|
endif
|
||||||
|
if !exists("g:llama_overrides")
|
||||||
|
let g:llama_overrides = {}
|
||||||
|
endif
|
||||||
|
const s:querydata = {"n_predict": 256, "stop": [ "\n" ], "stream": v:true }
|
||||||
|
const s:curlcommand = ['curl','--data-raw', "{\"prompt\":\"### System:\"}", '--silent', '--no-buffer', '--request', 'POST', '--url', g:llama_api_url .. '/completion', '--header', "Content-Type: application/json"]
|
||||||
|
let s:linedict = {}
|
||||||
|
|
||||||
|
func s:callbackHandler(bufn, channel, msg)
|
||||||
|
if len(a:msg) < 3
|
||||||
|
return
|
||||||
|
elseif a:msg[0] == "d"
|
||||||
|
let l:msg = a:msg[6:-1]
|
||||||
|
else
|
||||||
|
let l:msg = a:msg
|
||||||
|
endif
|
||||||
|
let l:decoded_msg = json_decode(l:msg)
|
||||||
|
let l:newtext = split(l:decoded_msg['content'], "\n", 1)
|
||||||
|
if len(l:newtext) > 0
|
||||||
|
call setbufline(a:bufn, s:linedict[a:bufn], getbufline(a:bufn, s:linedict[a:bufn])[0] .. newtext[0])
|
||||||
|
else
|
||||||
|
echo "nothing genned"
|
||||||
|
endif
|
||||||
|
if len(newtext) > 1
|
||||||
|
let l:failed = appendbufline(a:bufn, s:linedict[a:bufn], newtext[1:-1])
|
||||||
|
let s:linedict[a:bufn] = s:linedict[a:bufn] + len(newtext)-1
|
||||||
|
endif
|
||||||
|
if has_key(l:decoded_msg, "stop") && l:decoded_msg.stop
|
||||||
|
echo "Finished generation"
|
||||||
|
endif
|
||||||
|
endfunction
|
||||||
|
|
||||||
|
func llama#doLlamaGen()
|
||||||
|
if exists("b:job")
|
||||||
|
if job_status(b:job) == "run"
|
||||||
|
call job_stop(b:job)
|
||||||
|
return
|
||||||
|
endif
|
||||||
|
endif
|
||||||
|
|
||||||
|
let l:cbuffer = bufnr("%")
|
||||||
|
let s:linedict[l:cbuffer] = line('$')
|
||||||
|
let l:buflines = getbufline(l:cbuffer, 1, 1000)
|
||||||
|
let l:querydata = copy(s:querydata)
|
||||||
|
call extend(l:querydata, g:llama_overrides)
|
||||||
|
if exists("w:llama_overrides")
|
||||||
|
call extend(l:querydata, w:llama_overrides)
|
||||||
|
endif
|
||||||
|
if exists("b:llama_overrides")
|
||||||
|
call extend(l:querydata, b:llama_overrides)
|
||||||
|
endif
|
||||||
|
if l:buflines[0][0:1] == '!*'
|
||||||
|
let l:userdata = json_decode(l:buflines[0][2:-1])
|
||||||
|
call extend(l:querydata, l:userdata)
|
||||||
|
let l:buflines = l:buflines[1:-1]
|
||||||
|
endif
|
||||||
|
let l:querydata.prompt = join(l:buflines, "\n")
|
||||||
|
let l:curlcommand = copy(s:curlcommand)
|
||||||
|
let l:curlcommand[2] = json_encode(l:querydata)
|
||||||
|
let b:job = job_start(l:curlcommand, {"callback": function("s:callbackHandler", [l:cbuffer])})
|
||||||
|
endfunction
|
||||||
|
|
||||||
|
" Echos the tokkenization of the provided string , or cursor to end of word
|
||||||
|
" Onus is placed on the user to include the preceding space
|
||||||
|
func llama#tokenizeWord(...)
|
||||||
|
if (a:0 > 0)
|
||||||
|
let l:input = a:1
|
||||||
|
else
|
||||||
|
exe "normal \"*ye"
|
||||||
|
let l:input = @*
|
||||||
|
endif
|
||||||
|
let l:querydata = {"content": l:input}
|
||||||
|
let l:curlcommand = copy(s:curlcommand)
|
||||||
|
let l:curlcommand[2] = json_encode(l:querydata)
|
||||||
|
let l:curlcommand[8] = g:llama_api_url .. "/tokenize"
|
||||||
|
let s:token_job = job_start(l:curlcommand, {"callback": function("s:tokenizeWordCallback", [l:input])})
|
||||||
|
endfunction
|
||||||
|
|
||||||
|
func s:tokenizeWordCallback(plaintext, channel, msg)
|
||||||
|
echo '"' .. a:plaintext ..'" - ' .. string(json_decode(a:msg).tokens)
|
||||||
|
endfunction
|
||||||
|
|
||||||
|
|
||||||
|
" Echos the token count of the entire buffer (or provided string)
|
||||||
|
" Example usage :echo llama#tokenCount()
|
||||||
|
func llama#tokenCount(...)
|
||||||
|
if (a:0 > 0)
|
||||||
|
let l:buflines = a:1
|
||||||
|
else
|
||||||
|
let l:buflines = getline(1,1000)
|
||||||
|
if l:buflines[0][0:1] == '!*'
|
||||||
|
let l:buflines = l:buflines[1:-1]
|
||||||
|
endif
|
||||||
|
let l:buflines = join(l:buflines, "\n")
|
||||||
|
endif
|
||||||
|
let l:querydata = {"content": l:buflines}
|
||||||
|
let l:curlcommand = copy(s:curlcommand)
|
||||||
|
let l:curlcommand[2] = json_encode(l:querydata)
|
||||||
|
let l:curlcommand[8] = g:llama_api_url .. "/tokenize"
|
||||||
|
let s:token_job = job_start(l:curlcommand, {"callback": "s:tokenCountCallback"})
|
||||||
|
endfunction
|
||||||
|
|
||||||
|
func s:tokenCountCallback(channel, msg)
|
||||||
|
let resp = json_decode(a:msg)
|
||||||
|
echo len(resp.tokens)
|
||||||
|
endfunction
|
|
@ -1,3 +1,5 @@
|
||||||
|
" Basic plugin example
|
||||||
|
|
||||||
function! Llm()
|
function! Llm()
|
||||||
|
|
||||||
let url = "http://127.0.0.1:8080/completion"
|
let url = "http://127.0.0.1:8080/completion"
|
||||||
|
@ -16,8 +18,10 @@ function! Llm()
|
||||||
" Extract the content field from the response
|
" Extract the content field from the response
|
||||||
let content = json_decode(response).content
|
let content = json_decode(response).content
|
||||||
|
|
||||||
|
let split_newlines = split(content, '\n', 1)
|
||||||
|
|
||||||
" Insert the content at the cursor position
|
" Insert the content at the cursor position
|
||||||
call setline(line('.'), getline('.') . content)
|
call setline(line('.'), [ getline('.') . split_newlines[0] ] + split_newlines[1:])
|
||||||
endfunction
|
endfunction
|
||||||
|
|
||||||
command! Llm call Llm()
|
command! Llm call Llm()
|
||||||
|
|
|
@ -140,6 +140,12 @@ The `--ctx-size` option allows you to set the size of the prompt context used by
|
||||||
|
|
||||||
- `-c N, --ctx-size N`: Set the size of the prompt context (default: 512). The LLaMA models were built with a context of 2048, which will yield the best results on longer input/inference. However, increasing the context size beyond 2048 may lead to unpredictable results.
|
- `-c N, --ctx-size N`: Set the size of the prompt context (default: 512). The LLaMA models were built with a context of 2048, which will yield the best results on longer input/inference. However, increasing the context size beyond 2048 may lead to unpredictable results.
|
||||||
|
|
||||||
|
### Extended Context Size
|
||||||
|
|
||||||
|
Some fine-tuned models have extened the context length by scaling RoPE. For example, if the original pretrained model have a context length (max sequence length) of 4096 (4k) and the fine-tuned model have 32k. That is a scaling factor of 8, and should work by setting the above `--ctx-size` to 32768 (32k) and `--rope-scale` to 8.
|
||||||
|
|
||||||
|
- `--rope-scale N`: Where N is the linear scaling factor used by the fine-tuned model.
|
||||||
|
|
||||||
### Keep Prompt
|
### Keep Prompt
|
||||||
|
|
||||||
The `--keep` option allows users to retain the original prompt when the model runs out of context, ensuring a connection to the initial instruction or conversation topic is maintained.
|
The `--keep` option allows users to retain the original prompt when the model runs out of context, ensuring a connection to the initial instruction or conversation topic is maintained.
|
||||||
|
|
|
@ -151,6 +151,8 @@ node .
|
||||||
|
|
||||||
`mirostat_eta`: Set the Mirostat learning rate, parameter eta (default: 0.1).
|
`mirostat_eta`: Set the Mirostat learning rate, parameter eta (default: 0.1).
|
||||||
|
|
||||||
|
`grammar`: Set grammar for grammar-based sampling (default: no grammar)
|
||||||
|
|
||||||
`seed`: Set the random number generator (RNG) seed (default: -1, -1 = random seed).
|
`seed`: Set the random number generator (RNG) seed (default: -1, -1 = random seed).
|
||||||
|
|
||||||
`ignore_eos`: Ignore end of stream token and continue generating (default: false).
|
`ignore_eos`: Ignore end of stream token and continue generating (default: false).
|
||||||
|
|
|
@ -1,6 +1,7 @@
|
||||||
#include "common.h"
|
#include "common.h"
|
||||||
#include "llama.h"
|
#include "llama.h"
|
||||||
#include "build-info.h"
|
#include "build-info.h"
|
||||||
|
#include "grammar-parser.h"
|
||||||
|
|
||||||
#ifndef NDEBUG
|
#ifndef NDEBUG
|
||||||
// crash the server in debug mode, otherwise send an http 500 error
|
// crash the server in debug mode, otherwise send an http 500 error
|
||||||
|
@ -195,6 +196,8 @@ struct llama_server_context
|
||||||
llama_context *ctx = nullptr;
|
llama_context *ctx = nullptr;
|
||||||
gpt_params params;
|
gpt_params params;
|
||||||
|
|
||||||
|
llama_grammar *grammar = nullptr;
|
||||||
|
|
||||||
bool truncated = false;
|
bool truncated = false;
|
||||||
bool stopped_eos = false;
|
bool stopped_eos = false;
|
||||||
bool stopped_word = false;
|
bool stopped_word = false;
|
||||||
|
@ -226,6 +229,7 @@ struct llama_server_context
|
||||||
void rewind()
|
void rewind()
|
||||||
{
|
{
|
||||||
params.antiprompt.clear();
|
params.antiprompt.clear();
|
||||||
|
params.grammar.clear();
|
||||||
num_prompt_tokens = 0;
|
num_prompt_tokens = 0;
|
||||||
num_tokens_predicted = 0;
|
num_tokens_predicted = 0;
|
||||||
generated_text = "";
|
generated_text = "";
|
||||||
|
@ -237,6 +241,7 @@ struct llama_server_context
|
||||||
stopped_limit = false;
|
stopped_limit = false;
|
||||||
stopping_word = "";
|
stopping_word = "";
|
||||||
multibyte_pending = 0;
|
multibyte_pending = 0;
|
||||||
|
grammar = nullptr;
|
||||||
|
|
||||||
n_remain = 0;
|
n_remain = 0;
|
||||||
n_past = 0;
|
n_past = 0;
|
||||||
|
@ -257,6 +262,33 @@ struct llama_server_context
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
bool loadGrammar()
|
||||||
|
{
|
||||||
|
if (!params.grammar.empty()) {
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
|
|
||||||
|
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||||
|
// will be empty (default) if there are parse errors
|
||||||
|
if (parsed_grammar.rules.empty()) {
|
||||||
|
LOG_ERROR("grammar parse error", {{"grammar", params.grammar}});
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||||
|
|
||||||
|
{
|
||||||
|
auto it = params.logit_bias.find(llama_token_eos());
|
||||||
|
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||||
|
LOG_WARNING("EOS token is disabled, which will cause most grammars to fail", {});
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||||
|
grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||||
|
}
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
|
||||||
void loadPrompt()
|
void loadPrompt()
|
||||||
{
|
{
|
||||||
params.prompt.insert(0, 1, ' '); // always add a first space
|
params.prompt.insert(0, 1, ' '); // always add a first space
|
||||||
|
@ -420,6 +452,10 @@ struct llama_server_context
|
||||||
logits[llama_token_nl()] = nl_logit;
|
logits[llama_token_nl()] = nl_logit;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (grammar != nullptr) {
|
||||||
|
llama_sample_grammar(ctx, &candidates_p, grammar);
|
||||||
|
}
|
||||||
|
|
||||||
if (temp <= 0)
|
if (temp <= 0)
|
||||||
{
|
{
|
||||||
// Greedy sampling
|
// Greedy sampling
|
||||||
|
@ -457,10 +493,15 @@ struct llama_server_context
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (grammar != nullptr) {
|
||||||
|
llama_grammar_accept_token(ctx, grammar, result.tok);
|
||||||
|
}
|
||||||
|
|
||||||
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
for (size_t i = 0; i < std::min(candidates_p.size, (size_t)n_probs); ++i)
|
||||||
{
|
{
|
||||||
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
result.probs.push_back({candidates_p.data[i].id, candidates_p.data[i].p});
|
||||||
}
|
}
|
||||||
|
|
||||||
last_n_tokens.erase(last_n_tokens.begin());
|
last_n_tokens.erase(last_n_tokens.begin());
|
||||||
last_n_tokens.push_back(result.tok);
|
last_n_tokens.push_back(result.tok);
|
||||||
num_tokens_predicted++;
|
num_tokens_predicted++;
|
||||||
|
@ -947,6 +988,7 @@ static json format_generation_settings(llama_server_context &llama)
|
||||||
{"stream", llama.stream},
|
{"stream", llama.stream},
|
||||||
{"logit_bias", llama.params.logit_bias},
|
{"logit_bias", llama.params.logit_bias},
|
||||||
{"n_probs", llama.params.n_probs},
|
{"n_probs", llama.params.n_probs},
|
||||||
|
{"grammar", llama.params.grammar},
|
||||||
};
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -1048,6 +1090,7 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
||||||
llama.params.n_keep = body.value("n_keep", default_params.n_keep);
|
llama.params.n_keep = body.value("n_keep", default_params.n_keep);
|
||||||
llama.params.seed = body.value("seed", default_params.seed);
|
llama.params.seed = body.value("seed", default_params.seed);
|
||||||
llama.params.prompt = body.value("prompt", default_params.prompt);
|
llama.params.prompt = body.value("prompt", default_params.prompt);
|
||||||
|
llama.params.grammar = body.value("grammar", default_params.grammar);
|
||||||
llama.params.n_probs = body.value("n_probs", default_params.n_probs);
|
llama.params.n_probs = body.value("n_probs", default_params.n_probs);
|
||||||
|
|
||||||
llama.params.logit_bias.clear();
|
llama.params.logit_bias.clear();
|
||||||
|
@ -1179,6 +1222,12 @@ int main(int argc, char **argv)
|
||||||
|
|
||||||
parse_options_completion(json::parse(req.body), llama);
|
parse_options_completion(json::parse(req.body), llama);
|
||||||
|
|
||||||
|
if (!llama.loadGrammar())
|
||||||
|
{
|
||||||
|
res.status = 400;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
llama.loadPrompt();
|
llama.loadPrompt();
|
||||||
llama.beginCompletion();
|
llama.beginCompletion();
|
||||||
|
|
||||||
|
@ -1334,8 +1383,12 @@ int main(int argc, char **argv)
|
||||||
|
|
||||||
svr.set_error_handler([](const Request &, Response &res)
|
svr.set_error_handler([](const Request &, Response &res)
|
||||||
{
|
{
|
||||||
res.set_content("File Not Found", "text/plain");
|
if (res.status == 400) {
|
||||||
res.status = 404; });
|
res.set_content("Invalid request", "text/plain");
|
||||||
|
} else {
|
||||||
|
res.set_content("File Not Found", "text/plain");
|
||||||
|
res.status = 404;
|
||||||
|
} });
|
||||||
|
|
||||||
// set timeouts and change hostname and port
|
// set timeouts and change hostname and port
|
||||||
svr.set_read_timeout(sparams.read_timeout);
|
svr.set_read_timeout(sparams.read_timeout);
|
||||||
|
@ -1363,6 +1416,9 @@ int main(int argc, char **argv)
|
||||||
return 1;
|
return 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
if (llama.grammar != nullptr) {
|
||||||
|
llama_grammar_free(llama.grammar);
|
||||||
|
}
|
||||||
llama_backend_free();
|
llama_backend_free();
|
||||||
|
|
||||||
return 0;
|
return 0;
|
||||||
|
|
57
ggml-metal.m
57
ggml-metal.m
|
@ -7,6 +7,11 @@
|
||||||
#import <Metal/Metal.h>
|
#import <Metal/Metal.h>
|
||||||
#import <MetalPerformanceShaders/MetalPerformanceShaders.h>
|
#import <MetalPerformanceShaders/MetalPerformanceShaders.h>
|
||||||
|
|
||||||
|
#undef MIN
|
||||||
|
#undef MAX
|
||||||
|
#define MIN(a, b) ((a) < (b) ? (a) : (b))
|
||||||
|
#define MAX(a, b) ((a) > (b) ? (a) : (b))
|
||||||
|
|
||||||
#ifdef GGML_METAL_NDEBUG
|
#ifdef GGML_METAL_NDEBUG
|
||||||
#define metal_printf(...)
|
#define metal_printf(...)
|
||||||
#else
|
#else
|
||||||
|
@ -15,6 +20,8 @@
|
||||||
|
|
||||||
#define UNUSED(x) (void)(x)
|
#define UNUSED(x) (void)(x)
|
||||||
|
|
||||||
|
#define GGML_MAX_CONCUR (2*GGML_MAX_NODES)
|
||||||
|
|
||||||
struct ggml_metal_buffer {
|
struct ggml_metal_buffer {
|
||||||
const char * name;
|
const char * name;
|
||||||
|
|
||||||
|
@ -36,7 +43,7 @@ struct ggml_metal_context {
|
||||||
int n_buffers;
|
int n_buffers;
|
||||||
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
struct ggml_metal_buffer buffers[GGML_METAL_MAX_BUFFERS];
|
||||||
|
|
||||||
int concur_list[GGML_MAX_NODES];
|
int concur_list[GGML_MAX_CONCUR];
|
||||||
int concur_list_len;
|
int concur_list_len;
|
||||||
|
|
||||||
// custom kernels
|
// custom kernels
|
||||||
|
@ -370,15 +377,15 @@ void ggml_metal_graph_find_concurrency(
|
||||||
struct ggml_metal_context * ctx,
|
struct ggml_metal_context * ctx,
|
||||||
struct ggml_cgraph * gf) {
|
struct ggml_cgraph * gf) {
|
||||||
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
|
int search_depth = gf->n_nodes; //we only find concurrency in this range to avoid wasting too much time
|
||||||
int nodes_unused[GGML_MAX_NODES];
|
int nodes_unused[GGML_MAX_CONCUR];
|
||||||
|
|
||||||
for (int i = 0; i < GGML_MAX_NODES; i++) {ctx->concur_list[i] = 0;}
|
for (int i = 0; i < GGML_MAX_CONCUR; i++) { ctx->concur_list[i] = 0; }
|
||||||
for (int i = 0; i < gf->n_nodes; i++) {nodes_unused[i] = 1;}
|
for (int i = 0; i < gf->n_nodes; i++) { nodes_unused[i] = 1; }
|
||||||
ctx->concur_list_len = 0;
|
ctx->concur_list_len = 0;
|
||||||
|
|
||||||
int n_left = gf->n_nodes;
|
int n_left = gf->n_nodes;
|
||||||
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
|
int n_start = 0; // all nodes before n_start at nodes_unused array have been sorted and store back to ctx->concur_list
|
||||||
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
|
int level_pos = 0; // at ctx->concur_list, the last layer (level) ends at level_pos
|
||||||
|
|
||||||
while (n_left > 0) {
|
while (n_left > 0) {
|
||||||
// number of nodes at a layer (that can be issued concurrently)
|
// number of nodes at a layer (that can be issued concurrently)
|
||||||
|
@ -386,28 +393,40 @@ void ggml_metal_graph_find_concurrency(
|
||||||
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
|
for (int i = n_start; i < ((n_start + search_depth > gf->n_nodes) ? gf->n_nodes : n_start + search_depth); i++) {
|
||||||
if (nodes_unused[i]) {
|
if (nodes_unused[i]) {
|
||||||
// if the requirements for gf->nodes[i] are satisfied
|
// if the requirements for gf->nodes[i] are satisfied
|
||||||
int exe_flag=1;
|
int exe_flag = 1;
|
||||||
|
|
||||||
// scan all srcs
|
// scan all srcs
|
||||||
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
|
for (int src_ind = 0; src_ind < GGML_MAX_SRC; src_ind++) {
|
||||||
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
|
struct ggml_tensor * src_cur = gf->nodes[i]->src[src_ind];
|
||||||
if (src_cur) {
|
if (src_cur) {
|
||||||
// if is leaf nodes it's satisfied.
|
// if is leaf nodes it's satisfied.
|
||||||
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {continue;}
|
// TODO: ggml_is_leaf()
|
||||||
|
if (src_cur->op == GGML_OP_NONE && src_cur->grad == NULL) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
|
||||||
// otherwise this src should be the output from previous nodes.
|
// otherwise this src should be the output from previous nodes.
|
||||||
int is_found = 0;
|
int is_found = 0;
|
||||||
|
|
||||||
// scan 2*search_depth back because we inserted barrier.
|
// scan 2*search_depth back because we inserted barrier.
|
||||||
for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
|
//for (int j = ((level_pos - 2*search_depth) < 0 ? 0 : (level_pos - 2*search_depth)); j < level_pos; j++) {
|
||||||
if (gf->nodes[ctx->concur_list[j]] == src_cur) {is_found = 1; break;}
|
for (int j = MAX(0, level_pos - 2*search_depth); j < level_pos; j++) {
|
||||||
|
if (ctx->concur_list[j] >= 0 && gf->nodes[ctx->concur_list[j]] == src_cur) {
|
||||||
|
is_found = 1;
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (is_found == 0) {
|
||||||
|
exe_flag = 0;
|
||||||
|
break;
|
||||||
}
|
}
|
||||||
if (is_found == 0) {exe_flag = 0; break;}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
if (exe_flag) {
|
if (exe_flag) {
|
||||||
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
|
// check if nodes[i]'s data will be overwritten by a node before nodes[i].
|
||||||
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
|
// if node[5] and node[3] write to the same memory region, then we can't issue node[5] before node[3]
|
||||||
int64_t data_start = (int64_t) gf->nodes[i]->data;
|
int64_t data_start = (int64_t) gf->nodes[i]->data;
|
||||||
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
|
int64_t length = (int64_t) ggml_nbytes(gf->nodes[i]);
|
||||||
for (int j = n_start; j < i; j++) {
|
for (int j = n_start; j < i; j++) {
|
||||||
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
|
if (nodes_unused[j] && gf->nodes[j]->op != GGML_OP_RESHAPE \
|
||||||
&& gf->nodes[j]->op != GGML_OP_VIEW \
|
&& gf->nodes[j]->op != GGML_OP_VIEW \
|
||||||
|
@ -416,9 +435,9 @@ void ggml_metal_graph_find_concurrency(
|
||||||
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
|
if (((int64_t)gf->nodes[j]->data) >= data_start + length || \
|
||||||
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
|
((int64_t)gf->nodes[j]->data) + (int64_t) ggml_nbytes(gf->nodes[j]) <= data_start) {
|
||||||
continue;
|
continue;
|
||||||
} else {
|
|
||||||
exe_flag = 0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
exe_flag = 0;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -435,11 +454,13 @@ void ggml_metal_graph_find_concurrency(
|
||||||
ctx->concur_list[level_pos + concurrency] = -1;
|
ctx->concur_list[level_pos + concurrency] = -1;
|
||||||
ctx->concur_list_len++;
|
ctx->concur_list_len++;
|
||||||
// jump all sorted nodes at nodes_bak
|
// jump all sorted nodes at nodes_bak
|
||||||
while (!nodes_unused[n_start]) {n_start++;}
|
while (!nodes_unused[n_start]) {
|
||||||
|
n_start++;
|
||||||
|
}
|
||||||
level_pos += concurrency + 1;
|
level_pos += concurrency + 1;
|
||||||
}
|
}
|
||||||
|
|
||||||
if (ctx->concur_list_len > GGML_MAX_NODES) {
|
if (ctx->concur_list_len > GGML_MAX_CONCUR) {
|
||||||
fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__);
|
fprintf(stderr, "%s: too many elements for metal ctx->concur_list!\n", __func__);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -453,7 +474,7 @@ void ggml_metal_graph_compute(
|
||||||
// else fallback to serial dispatch
|
// else fallback to serial dispatch
|
||||||
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
|
MTLComputePassDescriptor * edesc = MTLComputePassDescriptor.computePassDescriptor;
|
||||||
|
|
||||||
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_NODES;
|
const bool has_concur = ctx->concur_list_len && ctx->concur_list_len <= GGML_MAX_CONCUR;
|
||||||
|
|
||||||
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
|
const int n_nodes = has_concur ? ctx->concur_list_len : gf->n_nodes;
|
||||||
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
|
edesc.dispatchType = has_concur ? MTLDispatchTypeConcurrent : MTLDispatchTypeSerial;
|
||||||
|
|
544
ggml.c
544
ggml.c
|
@ -195,8 +195,8 @@ typedef void * thread_ret_t;
|
||||||
#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
|
#define GGML_ALIGNED_MALLOC(size) _aligned_malloc(size, GGML_MEM_ALIGN)
|
||||||
#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
|
#define GGML_ALIGNED_FREE(ptr) _aligned_free(ptr)
|
||||||
#else
|
#else
|
||||||
inline static void* ggml_aligned_malloc(size_t size) {
|
inline static void * ggml_aligned_malloc(size_t size) {
|
||||||
void* aligned_memory = NULL;
|
void * aligned_memory = NULL;
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
int result = posix_memalign(&aligned_memory, getpagesize(), size);
|
int result = posix_memalign(&aligned_memory, getpagesize(), size);
|
||||||
#else
|
#else
|
||||||
|
@ -3811,7 +3811,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
|
||||||
"CROSS_ENTROPY_LOSS_BACK",
|
"CROSS_ENTROPY_LOSS_BACK",
|
||||||
};
|
};
|
||||||
|
|
||||||
static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
|
static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
|
||||||
|
|
||||||
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||||
"none",
|
"none",
|
||||||
|
@ -3883,7 +3883,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
|
||||||
"cross_entropy_loss_back(x,y)",
|
"cross_entropy_loss_back(x,y)",
|
||||||
};
|
};
|
||||||
|
|
||||||
static_assert(GGML_OP_COUNT == 59, "GGML_OP_COUNT != 59");
|
static_assert(GGML_OP_COUNT == 62, "GGML_OP_COUNT != 62");
|
||||||
|
|
||||||
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
|
||||||
|
|
||||||
|
@ -4110,7 +4110,7 @@ size_t ggml_nbytes(const struct ggml_tensor * tensor) {
|
||||||
//
|
//
|
||||||
// is enough, but just in case, adding the second part
|
// is enough, but just in case, adding the second part
|
||||||
|
|
||||||
return MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]);
|
return GGML_PAD(MAX(tensor->ne[3]*tensor->nb[3], (ggml_nelements(tensor)*GGML_TYPE_SIZE[tensor->type])/GGML_BLCK_SIZE[tensor->type]), GGML_MEM_ALIGN);
|
||||||
}
|
}
|
||||||
|
|
||||||
size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
|
size_t ggml_nbytes_split(const struct ggml_tensor * tensor, int nrows_split) {
|
||||||
|
@ -4253,7 +4253,7 @@ static inline bool ggml_is_padded_1d(const struct ggml_tensor * tensor) {
|
||||||
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
tensor->nb[3] == tensor->nb[2]*tensor->ne[2];
|
||||||
}
|
}
|
||||||
|
|
||||||
static inline bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1) {
|
||||||
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
static_assert(GGML_MAX_DIMS == 4, "GGML_MAX_DIMS is not 4 - update this function");
|
||||||
|
|
||||||
return
|
return
|
||||||
|
@ -4602,7 +4602,7 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||||
/*.ne =*/ { 1, 1, 1, 1 },
|
/*.ne =*/ { 1, 1, 1, 1 },
|
||||||
/*.nb =*/ { 0, 0, 0, 0 },
|
/*.nb =*/ { 0, 0, 0, 0 },
|
||||||
/*.op =*/ GGML_OP_NONE,
|
/*.op =*/ GGML_OP_NONE,
|
||||||
/*.op_params =*/ {0},
|
/*.op_params =*/ { 0 },
|
||||||
/*.is_param =*/ false,
|
/*.is_param =*/ false,
|
||||||
/*.grad =*/ NULL,
|
/*.grad =*/ NULL,
|
||||||
/*.src =*/ { NULL },
|
/*.src =*/ { NULL },
|
||||||
|
@ -4634,6 +4634,7 @@ static struct ggml_tensor * ggml_new_tensor_impl(
|
||||||
}
|
}
|
||||||
|
|
||||||
static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
|
static void ggml_set_op_params(struct ggml_tensor * tensor, const void * params, size_t params_size) {
|
||||||
|
GGML_ASSERT(tensor != NULL); // silence -Warray-bounds warnings
|
||||||
assert(params_size <= GGML_MAX_OP_PARAMS);
|
assert(params_size <= GGML_MAX_OP_PARAMS);
|
||||||
memcpy(tensor->op_params, params, params_size);
|
memcpy(tensor->op_params, params, params_size);
|
||||||
}
|
}
|
||||||
|
@ -6439,7 +6440,7 @@ struct ggml_tensor * ggml_permute(
|
||||||
result->src[0] = a;
|
result->src[0] = a;
|
||||||
|
|
||||||
int32_t params[] = { axis0, axis1, axis2, axis3 };
|
int32_t params[] = { axis0, axis1, axis2, axis3 };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
@ -6565,7 +6566,7 @@ static struct ggml_tensor * ggml_diag_mask_inf_impl(
|
||||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||||
|
|
||||||
int32_t params[] = { n_past, inplace ? 1 : 0 };
|
int32_t params[] = { n_past, inplace ? 1 : 0 };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_DIAG_MASK_INF;
|
result->op = GGML_OP_DIAG_MASK_INF;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -6605,7 +6606,7 @@ static struct ggml_tensor * ggml_diag_mask_zero_impl(
|
||||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||||
|
|
||||||
int32_t params[] = { n_past, inplace ? 1 : 0 };
|
int32_t params[] = { n_past, inplace ? 1 : 0 };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_DIAG_MASK_ZERO;
|
result->op = GGML_OP_DIAG_MASK_ZERO;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -6721,9 +6722,9 @@ static struct ggml_tensor * ggml_rope_impl(
|
||||||
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||||
|
|
||||||
int32_t params[6] = { n_past, n_dims, mode, n_ctx };
|
int32_t params[6] = { n_past, n_dims, mode, n_ctx };
|
||||||
memcpy(params + 4, &freq_base, sizeof(float));
|
memcpy(params + 4, &freq_base, sizeof(float));
|
||||||
memcpy(params + 5, &freq_scale, sizeof(float));
|
memcpy(params + 5, &freq_scale, sizeof(float));
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_ROPE;
|
result->op = GGML_OP_ROPE;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -6797,7 +6798,7 @@ struct ggml_tensor * ggml_rope_back(
|
||||||
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
|
||||||
|
|
||||||
int32_t params[] = { n_past, n_dims, mode, n_ctx };
|
int32_t params[] = { n_past, n_dims, mode, n_ctx };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_ROPE_BACK;
|
result->op = GGML_OP_ROPE_BACK;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -6828,7 +6829,7 @@ struct ggml_tensor * ggml_alibi(
|
||||||
|
|
||||||
int32_t op_params[3] = { n_past, n_head };
|
int32_t op_params[3] = { n_past, n_head };
|
||||||
memcpy(op_params + 2, &bias_max, sizeof(float));
|
memcpy(op_params + 2, &bias_max, sizeof(float));
|
||||||
ggml_set_op_params(result, &op_params, sizeof(op_params));
|
ggml_set_op_params(result, op_params, sizeof(op_params));
|
||||||
|
|
||||||
result->op = GGML_OP_ALIBI;
|
result->op = GGML_OP_ALIBI;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -6855,7 +6856,7 @@ struct ggml_tensor * ggml_clamp(
|
||||||
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
struct ggml_tensor * result = ggml_view_tensor(ctx, a);
|
||||||
|
|
||||||
float params[] = { min, max };
|
float params[] = { min, max };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_CLAMP;
|
result->op = GGML_OP_CLAMP;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -6890,10 +6891,10 @@ GGML_API struct ggml_tensor * ggml_conv_1d(
|
||||||
ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
|
ggml_calc_conv_output_size(b->ne[0], a->ne[0], s0, p0, d0),
|
||||||
a->ne[2], 1, 1,
|
a->ne[2], 1, 1,
|
||||||
};
|
};
|
||||||
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
||||||
|
|
||||||
int32_t params[] = { s0, p0, d0 };
|
int32_t params[] = { s0, p0, d0 };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_CONV_1D;
|
result->op = GGML_OP_CONV_1D;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -6905,10 +6906,10 @@ GGML_API struct ggml_tensor * ggml_conv_1d(
|
||||||
|
|
||||||
// ggml_conv_2d
|
// ggml_conv_2d
|
||||||
|
|
||||||
struct ggml_tensor* ggml_conv_2d(
|
struct ggml_tensor * ggml_conv_2d(
|
||||||
struct ggml_context* ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
int s0,
|
int s0,
|
||||||
int s1,
|
int s1,
|
||||||
int p0,
|
int p0,
|
||||||
|
@ -6929,10 +6930,10 @@ struct ggml_tensor* ggml_conv_2d(
|
||||||
ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
|
ggml_calc_conv_output_size(b->ne[1], a->ne[1], s1, p1, d1),
|
||||||
a->ne[3], b->ne[3],
|
a->ne[3], b->ne[3],
|
||||||
};
|
};
|
||||||
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||||||
|
|
||||||
int32_t params[] = { s0, s1, p0, p1, d0, d1 };
|
int32_t params[] = { s0, s1, p0, p1, d0, d1 };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_CONV_2D;
|
result->op = GGML_OP_CONV_2D;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -6945,7 +6946,7 @@ struct ggml_tensor* ggml_conv_2d(
|
||||||
|
|
||||||
// ggml_conv_1d_ph
|
// ggml_conv_1d_ph
|
||||||
|
|
||||||
struct ggml_tensor* ggml_conv_1d_ph(
|
struct ggml_tensor * ggml_conv_1d_ph(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
|
@ -6963,7 +6964,7 @@ static int64_t ggml_calc_pool_output_size(int64_t ins, int ks, int s, int p) {
|
||||||
|
|
||||||
// ggml_pool_1d
|
// ggml_pool_1d
|
||||||
|
|
||||||
struct ggml_tensor* ggml_pool_1d(
|
struct ggml_tensor * ggml_pool_1d(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
enum ggml_op_pool op,
|
enum ggml_op_pool op,
|
||||||
|
@ -6982,10 +6983,10 @@ struct ggml_tensor* ggml_pool_1d(
|
||||||
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
|
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
|
||||||
a->ne[1],
|
a->ne[1],
|
||||||
};
|
};
|
||||||
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 2, ne);
|
||||||
|
|
||||||
int32_t params[] = { op, k0, s0, p0 };
|
int32_t params[] = { op, k0, s0, p0 };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_POOL_1D;
|
result->op = GGML_OP_POOL_1D;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -6996,7 +6997,7 @@ struct ggml_tensor* ggml_pool_1d(
|
||||||
|
|
||||||
// ggml_pool_2d
|
// ggml_pool_2d
|
||||||
|
|
||||||
struct ggml_tensor* ggml_pool_2d(
|
struct ggml_tensor * ggml_pool_2d(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
enum ggml_op_pool op,
|
enum ggml_op_pool op,
|
||||||
|
@ -7019,10 +7020,10 @@ struct ggml_tensor* ggml_pool_2d(
|
||||||
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
|
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
|
||||||
a->ne[2],
|
a->ne[2],
|
||||||
};
|
};
|
||||||
struct ggml_tensor* result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
||||||
|
|
||||||
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
|
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_POOL_2D;
|
result->op = GGML_OP_POOL_2D;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -7190,7 +7191,7 @@ struct ggml_tensor * ggml_win_part(
|
||||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 4, ne);
|
||||||
|
|
||||||
int32_t params[] = { npx, npy, w };
|
int32_t params[] = { npx, npy, w };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_WIN_PART;
|
result->op = GGML_OP_WIN_PART;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -7220,7 +7221,7 @@ struct ggml_tensor * ggml_win_unpart(
|
||||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
||||||
|
|
||||||
int32_t params[] = { w };
|
int32_t params[] = { w };
|
||||||
ggml_set_op_params(result, ¶ms, sizeof(params));
|
ggml_set_op_params(result, params, sizeof(params));
|
||||||
|
|
||||||
result->op = GGML_OP_WIN_UNPART;
|
result->op = GGML_OP_WIN_UNPART;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
@ -7349,7 +7350,7 @@ struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||||||
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
|
return ggml_map_binary_impl_f32(ctx, a, b, fun, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml_map_custom1
|
// ggml_map_custom1_f32
|
||||||
|
|
||||||
static struct ggml_tensor * ggml_map_custom1_impl_f32(
|
static struct ggml_tensor * ggml_map_custom1_impl_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
|
@ -7366,7 +7367,7 @@ static struct ggml_tensor * ggml_map_custom1_impl_f32(
|
||||||
|
|
||||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||||
|
|
||||||
result->op = GGML_OP_MAP_CUSTOM1;
|
result->op = GGML_OP_MAP_CUSTOM1_F32;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
result->src[0] = a;
|
result->src[0] = a;
|
||||||
|
|
||||||
|
@ -7387,7 +7388,7 @@ struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||||||
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
|
return ggml_map_custom1_impl_f32(ctx, a, fun, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml_map_custom2
|
// ggml_map_custom2_f32
|
||||||
|
|
||||||
static struct ggml_tensor * ggml_map_custom2_impl_f32(
|
static struct ggml_tensor * ggml_map_custom2_impl_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
|
@ -7405,7 +7406,7 @@ static struct ggml_tensor * ggml_map_custom2_impl_f32(
|
||||||
|
|
||||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||||
|
|
||||||
result->op = GGML_OP_MAP_CUSTOM2;
|
result->op = GGML_OP_MAP_CUSTOM2_F32;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
result->src[0] = a;
|
result->src[0] = a;
|
||||||
result->src[1] = b;
|
result->src[1] = b;
|
||||||
|
@ -7429,7 +7430,7 @@ struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||||||
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
|
return ggml_map_custom2_impl_f32(ctx, a, b, fun, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml_map_custom3
|
// ggml_map_custom3_f32
|
||||||
|
|
||||||
static struct ggml_tensor * ggml_map_custom3_impl_f32(
|
static struct ggml_tensor * ggml_map_custom3_impl_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
|
@ -7448,7 +7449,7 @@ static struct ggml_tensor * ggml_map_custom3_impl_f32(
|
||||||
|
|
||||||
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
ggml_set_op_params(result, (const void *) &fun, sizeof(fun));
|
||||||
|
|
||||||
result->op = GGML_OP_MAP_CUSTOM3;
|
result->op = GGML_OP_MAP_CUSTOM3_F32;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
result->src[0] = a;
|
result->src[0] = a;
|
||||||
result->src[1] = b;
|
result->src[1] = b;
|
||||||
|
@ -7475,6 +7476,190 @@ struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||||||
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
|
return ggml_map_custom3_impl_f32(ctx, a, b, c, fun, true);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ggml_map_custom1
|
||||||
|
struct ggml_map_custom1_op_params {
|
||||||
|
ggml_custom1_op_t fun;
|
||||||
|
int n_tasks;
|
||||||
|
void * userdata;
|
||||||
|
};
|
||||||
|
|
||||||
|
static struct ggml_tensor * ggml_map_custom1_impl(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
const ggml_custom1_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata,
|
||||||
|
bool inplace) {
|
||||||
|
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
|
||||||
|
|
||||||
|
bool is_node = false;
|
||||||
|
|
||||||
|
if (!inplace && a->grad) {
|
||||||
|
is_node = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||||
|
|
||||||
|
struct ggml_map_custom1_op_params params = {
|
||||||
|
/*.fun =*/ fun,
|
||||||
|
/*.n_tasks =*/ n_tasks,
|
||||||
|
/*.userdata =*/ userdata
|
||||||
|
};
|
||||||
|
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||||||
|
|
||||||
|
result->op = GGML_OP_MAP_CUSTOM1;
|
||||||
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
result->src[0] = a;
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_map_custom1(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
const ggml_custom1_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata) {
|
||||||
|
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, false);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_map_custom1_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
const ggml_custom1_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata) {
|
||||||
|
return ggml_map_custom1_impl(ctx, a, fun, n_tasks, userdata, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
// ggml_map_custom2
|
||||||
|
|
||||||
|
struct ggml_map_custom2_op_params {
|
||||||
|
ggml_custom2_op_t fun;
|
||||||
|
int n_tasks;
|
||||||
|
void * userdata;
|
||||||
|
};
|
||||||
|
|
||||||
|
static struct ggml_tensor * ggml_map_custom2_impl(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
const ggml_custom2_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata,
|
||||||
|
bool inplace) {
|
||||||
|
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
|
||||||
|
|
||||||
|
bool is_node = false;
|
||||||
|
|
||||||
|
if (!inplace && (a->grad || b->grad)) {
|
||||||
|
is_node = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||||
|
|
||||||
|
struct ggml_map_custom2_op_params params = {
|
||||||
|
/*.fun =*/ fun,
|
||||||
|
/*.n_tasks =*/ n_tasks,
|
||||||
|
/*.userdata =*/ userdata
|
||||||
|
};
|
||||||
|
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||||||
|
|
||||||
|
result->op = GGML_OP_MAP_CUSTOM2;
|
||||||
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
result->src[0] = a;
|
||||||
|
result->src[1] = b;
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_map_custom2(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
const ggml_custom2_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata) {
|
||||||
|
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, false);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_map_custom2_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
const ggml_custom2_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata) {
|
||||||
|
return ggml_map_custom2_impl(ctx, a, b, fun, n_tasks, userdata, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
// ggml_map_custom3
|
||||||
|
|
||||||
|
struct ggml_map_custom3_op_params {
|
||||||
|
ggml_custom3_op_t fun;
|
||||||
|
int n_tasks;
|
||||||
|
void * userdata;
|
||||||
|
};
|
||||||
|
|
||||||
|
static struct ggml_tensor * ggml_map_custom3_impl(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
struct ggml_tensor * c,
|
||||||
|
const ggml_custom3_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata,
|
||||||
|
bool inplace) {
|
||||||
|
GGML_ASSERT(n_tasks == GGML_N_TASKS_MAX || n_tasks > 0);
|
||||||
|
|
||||||
|
bool is_node = false;
|
||||||
|
|
||||||
|
if (!inplace && (a->grad || b->grad || c->grad)) {
|
||||||
|
is_node = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * result = inplace ? ggml_view_tensor(ctx, a) : ggml_dup_tensor(ctx, a);
|
||||||
|
|
||||||
|
struct ggml_map_custom3_op_params params = {
|
||||||
|
/*.fun =*/ fun,
|
||||||
|
/*.n_tasks =*/ n_tasks,
|
||||||
|
/*.userdata =*/ userdata
|
||||||
|
};
|
||||||
|
ggml_set_op_params(result, (const void *) ¶ms, sizeof(params));
|
||||||
|
|
||||||
|
result->op = GGML_OP_MAP_CUSTOM3;
|
||||||
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
|
result->src[0] = a;
|
||||||
|
result->src[1] = b;
|
||||||
|
result->src[2] = c;
|
||||||
|
|
||||||
|
return result;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_map_custom3(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
struct ggml_tensor * c,
|
||||||
|
const ggml_custom3_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata) {
|
||||||
|
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, false);
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_tensor * ggml_map_custom3_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
struct ggml_tensor * c,
|
||||||
|
const ggml_custom3_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata) {
|
||||||
|
return ggml_map_custom3_impl(ctx, a, b, c, fun, n_tasks, userdata, true);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
// ggml_cross_entropy_loss
|
// ggml_cross_entropy_loss
|
||||||
|
|
||||||
struct ggml_tensor * ggml_cross_entropy_loss(
|
struct ggml_tensor * ggml_cross_entropy_loss(
|
||||||
|
@ -9283,8 +9468,8 @@ static void ggml_compute_forward_sum_rows_f32(
|
||||||
for (int64_t i3 = 0; i3 < ne03; i3++) {
|
for (int64_t i3 = 0; i3 < ne03; i3++) {
|
||||||
for (int64_t i2 = 0; i2 < ne02; i2++) {
|
for (int64_t i2 = 0; i2 < ne02; i2++) {
|
||||||
for (int64_t i1 = 0; i1 < ne01; i1++) {
|
for (int64_t i1 = 0; i1 < ne01; i1++) {
|
||||||
float* src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
|
float * src_row = (float *) ((char *) src0->data + i1*nb01 + i2*nb02 + i3*nb03);
|
||||||
float* dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
|
float * dst_row = (float *) ((char *) dst->data + i1*nb1 + i2*nb2 + i3*nb3);
|
||||||
float row_sum = 0;
|
float row_sum = 0;
|
||||||
ggml_vec_sum_f32(ne00, &row_sum, src_row);
|
ggml_vec_sum_f32(ne00, &row_sum, src_row);
|
||||||
dst_row[0] = row_sum;
|
dst_row[0] = row_sum;
|
||||||
|
@ -10546,72 +10731,96 @@ static void ggml_compute_forward_mul_mat(
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
// parallelize by src0 rows
|
|
||||||
const int64_t dr = (ne01 + nth - 1)/nth;
|
|
||||||
|
|
||||||
const int64_t ir10 = dr*ith;
|
|
||||||
const int64_t ir11 = MIN(ir10 + dr, ne01);
|
|
||||||
|
|
||||||
// src1 rows
|
|
||||||
const int64_t nr1 = ne11*ne12*ne13;
|
|
||||||
|
|
||||||
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
const void * wdata = (src1->type == vec_dot_type) ? src1->data : params->wdata;
|
||||||
const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
|
const size_t row_size = ne10*GGML_TYPE_SIZE[vec_dot_type]/GGML_BLCK_SIZE[vec_dot_type];
|
||||||
|
|
||||||
for (int64_t ir1 = 0; ir1 < nr1; ++ir1) {
|
const int64_t nr0 = ne01; // src0 rows
|
||||||
const int64_t i13 = (ir1/(ne12*ne11));
|
const int64_t nr1 = ne11*ne12*ne13; // src1 rows
|
||||||
const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
|
|
||||||
const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
|
|
||||||
|
|
||||||
const int64_t ir0 = (ir1/ne11)%(ne02*ne03);
|
//printf("nr0 = %lld, nr1 = %lld\n", nr0, nr1);
|
||||||
const int64_t i03 = (ir0/(ne02));
|
|
||||||
// Hack for "Falcon multi-query-attention key stutter" / alternative to ggml_repeat2.
|
|
||||||
// See https://github.com/ggerganov/llama.cpp/issues/1602#issuecomment-1606087470:
|
|
||||||
// GG: this is likely the correct way to broadcast, though need some more thought
|
|
||||||
// therefore leaving the comments to remind us for now
|
|
||||||
const int64_t i02 = (i12 / (ne12 / ne02));
|
|
||||||
// Original from PR/224 (and also essential/correct for non-broadcast matmuls in Falcon)
|
|
||||||
// const int64_t i02 = (ir0 - i03*ne02);
|
|
||||||
|
|
||||||
const int64_t i1 = i11;
|
// distribute the thread work across the inner or outer loop based on which one is larger
|
||||||
const int64_t i2 = i12;
|
|
||||||
const int64_t i3 = i13;
|
|
||||||
|
|
||||||
const char * src0_row = (const char *) src0->data + ( 0 + i02*nb02 + i03*nb03 );
|
const int64_t nth0 = nr0 > nr1 ? nth : 1; // parallelize by src0 rows
|
||||||
|
const int64_t nth1 = nr0 > nr1 ? 1 : nth; // parallelize by src1 rows
|
||||||
|
|
||||||
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
|
const int64_t ith0 = ith % nth0;
|
||||||
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
|
const int64_t ith1 = ith / nth0;
|
||||||
// the original src1 data pointer, so we should index using the indices directly
|
|
||||||
// TODO: this is a bit of a hack, we should probably have a better way to handle this
|
|
||||||
const char * src1_col = (const char *) wdata +
|
|
||||||
(src1_cont || src1->type != vec_dot_type
|
|
||||||
? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
|
|
||||||
: (i11*nb11 + i12*nb12 + i13*nb13));
|
|
||||||
|
|
||||||
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
|
const int64_t dr0 = (nr0 + nth0 - 1)/nth0;
|
||||||
|
const int64_t dr1 = (nr1 + nth1 - 1)/nth1;
|
||||||
|
|
||||||
for (int64_t ir = ir10; ir < ir11; ++ir) {
|
const int64_t ir010 = dr0*ith0;
|
||||||
vec_dot(ne00, &dst_col[ir], src0_row + ir*nb01, src1_col);
|
const int64_t ir011 = MIN(ir010 + dr0, nr0);
|
||||||
}
|
|
||||||
|
const int64_t ir110 = dr1*ith1;
|
||||||
|
const int64_t ir111 = MIN(ir110 + dr1, nr1);
|
||||||
|
|
||||||
|
//printf("ir010 = %6lld, ir011 = %6lld, ir110 = %6lld, ir111 = %6lld\n", ir010, ir011, ir110, ir111);
|
||||||
|
|
||||||
|
// threads with no work simply yield (not sure if it helps)
|
||||||
|
if (ir010 >= ir011 || ir110 >= ir111) {
|
||||||
|
sched_yield();
|
||||||
|
return;
|
||||||
}
|
}
|
||||||
|
|
||||||
//int64_t t1 = ggml_time_us();
|
assert(ne12 % ne02 == 0);
|
||||||
//static int64_t acc = 0;
|
assert(ne13 % ne03 == 0);
|
||||||
//acc += t1 - t0;
|
|
||||||
//if (t1 - t0 > 10) {
|
|
||||||
// printf("\n");
|
|
||||||
// printf("ne00 = %5d, ne01 = %5d, ne02 = %5d, ne03 = %5d\n", ne00, ne01, ne02, ne03);
|
|
||||||
// printf("nb00 = %5d, nb01 = %5d, nb02 = %5d, nb03 = %5d\n", nb00, nb01, nb02, nb03);
|
|
||||||
// printf("ne10 = %5d, ne11 = %5d, ne12 = %5d, ne13 = %5d\n", ne10, ne11, ne12, ne13);
|
|
||||||
|
|
||||||
// printf("XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX task %d/%d: %d us, acc = %d\n", ith, nth, (int) (t1 - t0), (int) acc);
|
// broadcast factors
|
||||||
//}
|
const int64_t r2 = ne12/ne02;
|
||||||
|
const int64_t r3 = ne13/ne03;
|
||||||
|
|
||||||
|
// block-tiling attempt
|
||||||
|
const int64_t blck_0 = 16;
|
||||||
|
const int64_t blck_1 = 16;
|
||||||
|
|
||||||
|
// attempt to reduce false-sharing (does not seem to make a difference)
|
||||||
|
float tmp[16];
|
||||||
|
|
||||||
|
for (int64_t iir1 = ir110; iir1 < ir111; iir1 += blck_1) {
|
||||||
|
for (int64_t iir0 = ir010; iir0 < ir011; iir0 += blck_0) {
|
||||||
|
for (int64_t ir1 = iir1; ir1 < iir1 + blck_1 && ir1 < ir111; ++ir1) {
|
||||||
|
const int64_t i13 = (ir1/(ne12*ne11));
|
||||||
|
const int64_t i12 = (ir1 - i13*ne12*ne11)/ne11;
|
||||||
|
const int64_t i11 = (ir1 - i13*ne12*ne11 - i12*ne11);
|
||||||
|
|
||||||
|
// broadcast src0 into src1
|
||||||
|
const int64_t i03 = i13/r3;
|
||||||
|
const int64_t i02 = i12/r2;
|
||||||
|
|
||||||
|
const int64_t i1 = i11;
|
||||||
|
const int64_t i2 = i12;
|
||||||
|
const int64_t i3 = i13;
|
||||||
|
|
||||||
|
const char * src0_row = (const char *) src0->data + (0 + i02*nb02 + i03*nb03);
|
||||||
|
|
||||||
|
// desc: when src1 is not a contiguous memory block we have to calculate the offset using the strides
|
||||||
|
// if it is, then we have either copied the data to params->wdata and made it contiguous or we are using
|
||||||
|
// the original src1 data pointer, so we should index using the indices directly
|
||||||
|
// TODO: this is a bit of a hack, we should probably have a better way to handle this
|
||||||
|
const char * src1_col = (const char *) wdata +
|
||||||
|
(src1_cont || src1->type != vec_dot_type
|
||||||
|
? (i11 + i12*ne11 + i13*ne12*ne11)*row_size
|
||||||
|
: (i11*nb11 + i12*nb12 + i13*nb13));
|
||||||
|
|
||||||
|
float * dst_col = (float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3));
|
||||||
|
|
||||||
|
//for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
|
||||||
|
// vec_dot(ne00, &dst_col[ir0], src0_row + ir0*nb01, src1_col);
|
||||||
|
//}
|
||||||
|
|
||||||
|
for (int64_t ir0 = iir0; ir0 < iir0 + blck_0 && ir0 < ir011; ++ir0) {
|
||||||
|
vec_dot(ne00, &tmp[ir0 - iir0], src0_row + ir0*nb01, src1_col);
|
||||||
|
}
|
||||||
|
memcpy(&dst_col[iir0], tmp, (MIN(iir0 + blck_0, ir011) - iir0)*sizeof(float));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
// ggml_compute_forward_out_prod
|
// ggml_compute_forward_out_prod
|
||||||
|
|
||||||
|
|
||||||
static void ggml_compute_forward_out_prod_f32(
|
static void ggml_compute_forward_out_prod_f32(
|
||||||
const struct ggml_compute_params * params,
|
const struct ggml_compute_params * params,
|
||||||
const struct ggml_tensor * src0,
|
const struct ggml_tensor * src0,
|
||||||
|
@ -12894,7 +13103,7 @@ static void ggml_compute_forward_pool_1d(
|
||||||
const struct ggml_tensor * src0,
|
const struct ggml_tensor * src0,
|
||||||
struct ggml_tensor * dst) {
|
struct ggml_tensor * dst) {
|
||||||
|
|
||||||
const int32_t* opts = (const int32_t*)dst->op_params;
|
const int32_t * opts = (const int32_t *)dst->op_params;
|
||||||
enum ggml_op_pool op = opts[0];
|
enum ggml_op_pool op = opts[0];
|
||||||
const int k0 = opts[1];
|
const int k0 = opts[1];
|
||||||
const int s0 = opts[2];
|
const int s0 = opts[2];
|
||||||
|
@ -14227,24 +14436,6 @@ static void ggml_compute_forward_map_custom1_f32(
|
||||||
fun(dst, a);
|
fun(dst, a);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static void ggml_compute_forward_map_custom1(
|
|
||||||
const struct ggml_compute_params * params,
|
|
||||||
const struct ggml_tensor * a,
|
|
||||||
struct ggml_tensor * dst,
|
|
||||||
const ggml_custom1_op_f32_t fun) {
|
|
||||||
switch (a->type) {
|
|
||||||
case GGML_TYPE_F32:
|
|
||||||
{
|
|
||||||
ggml_compute_forward_map_custom1_f32(params, a, dst, fun);
|
|
||||||
} break;
|
|
||||||
default:
|
|
||||||
{
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
} break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// ggml_compute_forward_map_custom2
|
// ggml_compute_forward_map_custom2
|
||||||
|
|
||||||
static void ggml_compute_forward_map_custom2_f32(
|
static void ggml_compute_forward_map_custom2_f32(
|
||||||
|
@ -14263,24 +14454,6 @@ static void ggml_compute_forward_map_custom2_f32(
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
static void ggml_compute_forward_map_custom2(
|
|
||||||
const struct ggml_compute_params * params,
|
|
||||||
const struct ggml_tensor * a,
|
|
||||||
const struct ggml_tensor * b,
|
|
||||||
struct ggml_tensor * dst,
|
|
||||||
const ggml_custom2_op_f32_t fun) {
|
|
||||||
switch (a->type) {
|
|
||||||
case GGML_TYPE_F32:
|
|
||||||
{
|
|
||||||
ggml_compute_forward_map_custom2_f32(params, a, b, dst, fun);
|
|
||||||
} break;
|
|
||||||
default:
|
|
||||||
{
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
} break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// ggml_compute_forward_map_custom3
|
// ggml_compute_forward_map_custom3
|
||||||
|
|
||||||
static void ggml_compute_forward_map_custom3_f32(
|
static void ggml_compute_forward_map_custom3_f32(
|
||||||
|
@ -14299,24 +14472,52 @@ static void ggml_compute_forward_map_custom3_f32(
|
||||||
fun(dst, a, b, c);
|
fun(dst, a, b, c);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
// ggml_compute_forward_map_custom1
|
||||||
|
|
||||||
|
static void ggml_compute_forward_map_custom1(
|
||||||
|
const struct ggml_compute_params * params,
|
||||||
|
const struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * dst) {
|
||||||
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) dst->op_params;
|
||||||
|
|
||||||
|
p->fun(dst, a, params->ith, params->nth, p->userdata);
|
||||||
|
}
|
||||||
|
|
||||||
|
// ggml_compute_forward_map_custom2
|
||||||
|
|
||||||
|
static void ggml_compute_forward_map_custom2(
|
||||||
|
const struct ggml_compute_params * params,
|
||||||
|
const struct ggml_tensor * a,
|
||||||
|
const struct ggml_tensor * b,
|
||||||
|
struct ggml_tensor * dst) {
|
||||||
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) dst->op_params;
|
||||||
|
|
||||||
|
p->fun(dst, a, b, params->ith, params->nth, p->userdata);
|
||||||
|
}
|
||||||
|
|
||||||
|
// ggml_compute_forward_map_custom3
|
||||||
|
|
||||||
static void ggml_compute_forward_map_custom3(
|
static void ggml_compute_forward_map_custom3(
|
||||||
const struct ggml_compute_params * params,
|
const struct ggml_compute_params * params,
|
||||||
const struct ggml_tensor * a,
|
const struct ggml_tensor * a,
|
||||||
const struct ggml_tensor * b,
|
const struct ggml_tensor * b,
|
||||||
const struct ggml_tensor * c,
|
const struct ggml_tensor * c,
|
||||||
struct ggml_tensor * dst,
|
struct ggml_tensor * dst) {
|
||||||
const ggml_custom3_op_f32_t fun) {
|
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||||
switch (a->type) {
|
return;
|
||||||
case GGML_TYPE_F32:
|
|
||||||
{
|
|
||||||
ggml_compute_forward_map_custom3_f32(params, a, b, c, dst, fun);
|
|
||||||
} break;
|
|
||||||
default:
|
|
||||||
{
|
|
||||||
GGML_ASSERT(false);
|
|
||||||
} break;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
|
struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) dst->op_params;
|
||||||
|
|
||||||
|
p->fun(dst, a, b, c, params->ith, params->nth, p->userdata);
|
||||||
}
|
}
|
||||||
|
|
||||||
// ggml_compute_forward_cross_entropy_loss
|
// ggml_compute_forward_cross_entropy_loss
|
||||||
|
@ -14838,25 +15039,40 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
|
||||||
ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
|
ggml_compute_forward_map_binary(params, tensor->src[0], tensor->src[1], tensor, fun);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case GGML_OP_MAP_CUSTOM1:
|
case GGML_OP_MAP_CUSTOM1_F32:
|
||||||
{
|
{
|
||||||
ggml_custom1_op_f32_t fun;
|
ggml_custom1_op_f32_t fun;
|
||||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||||
ggml_compute_forward_map_custom1(params, tensor->src[0], tensor, fun);
|
ggml_compute_forward_map_custom1_f32(params, tensor->src[0], tensor, fun);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case GGML_OP_MAP_CUSTOM2_F32:
|
||||||
|
{
|
||||||
|
ggml_custom2_op_f32_t fun;
|
||||||
|
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||||
|
ggml_compute_forward_map_custom2_f32(params, tensor->src[0], tensor->src[1], tensor, fun);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case GGML_OP_MAP_CUSTOM3_F32:
|
||||||
|
{
|
||||||
|
ggml_custom3_op_f32_t fun;
|
||||||
|
memcpy(&fun, tensor->op_params, sizeof(fun));
|
||||||
|
ggml_compute_forward_map_custom3_f32(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
|
||||||
|
}
|
||||||
|
break;
|
||||||
|
case GGML_OP_MAP_CUSTOM1:
|
||||||
|
{
|
||||||
|
ggml_compute_forward_map_custom1(params, tensor->src[0], tensor);
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case GGML_OP_MAP_CUSTOM2:
|
case GGML_OP_MAP_CUSTOM2:
|
||||||
{
|
{
|
||||||
ggml_custom2_op_f32_t fun;
|
ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor);
|
||||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
|
||||||
ggml_compute_forward_map_custom2(params, tensor->src[0], tensor->src[1], tensor, fun);
|
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case GGML_OP_MAP_CUSTOM3:
|
case GGML_OP_MAP_CUSTOM3:
|
||||||
{
|
{
|
||||||
ggml_custom3_op_f32_t fun;
|
ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor);
|
||||||
memcpy(&fun, tensor->op_params, sizeof(fun));
|
|
||||||
ggml_compute_forward_map_custom3(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor, fun);
|
|
||||||
}
|
}
|
||||||
break;
|
break;
|
||||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||||
|
@ -15664,6 +15880,9 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
|
||||||
} break;
|
} break;
|
||||||
case GGML_OP_MAP_UNARY:
|
case GGML_OP_MAP_UNARY:
|
||||||
case GGML_OP_MAP_BINARY:
|
case GGML_OP_MAP_BINARY:
|
||||||
|
case GGML_OP_MAP_CUSTOM1_F32:
|
||||||
|
case GGML_OP_MAP_CUSTOM2_F32:
|
||||||
|
case GGML_OP_MAP_CUSTOM3_F32:
|
||||||
case GGML_OP_MAP_CUSTOM1:
|
case GGML_OP_MAP_CUSTOM1:
|
||||||
case GGML_OP_MAP_CUSTOM2:
|
case GGML_OP_MAP_CUSTOM2:
|
||||||
case GGML_OP_MAP_CUSTOM3:
|
case GGML_OP_MAP_CUSTOM3:
|
||||||
|
@ -16449,12 +16668,39 @@ struct ggml_cplan ggml_graph_plan(struct ggml_cgraph * cgraph, int n_threads) {
|
||||||
case GGML_OP_WIN_UNPART:
|
case GGML_OP_WIN_UNPART:
|
||||||
case GGML_OP_MAP_UNARY:
|
case GGML_OP_MAP_UNARY:
|
||||||
case GGML_OP_MAP_BINARY:
|
case GGML_OP_MAP_BINARY:
|
||||||
case GGML_OP_MAP_CUSTOM1:
|
case GGML_OP_MAP_CUSTOM1_F32:
|
||||||
case GGML_OP_MAP_CUSTOM2:
|
case GGML_OP_MAP_CUSTOM2_F32:
|
||||||
case GGML_OP_MAP_CUSTOM3:
|
case GGML_OP_MAP_CUSTOM3_F32:
|
||||||
{
|
{
|
||||||
n_tasks = 1;
|
n_tasks = 1;
|
||||||
} break;
|
} break;
|
||||||
|
case GGML_OP_MAP_CUSTOM1:
|
||||||
|
{
|
||||||
|
struct ggml_map_custom1_op_params * p = (struct ggml_map_custom1_op_params *) node->op_params;
|
||||||
|
if (p->n_tasks == GGML_N_TASKS_MAX) {
|
||||||
|
n_tasks = n_threads;
|
||||||
|
} else {
|
||||||
|
n_tasks = MIN(p->n_tasks, n_threads);
|
||||||
|
}
|
||||||
|
} break;
|
||||||
|
case GGML_OP_MAP_CUSTOM2:
|
||||||
|
{
|
||||||
|
struct ggml_map_custom2_op_params * p = (struct ggml_map_custom2_op_params *) node->op_params;
|
||||||
|
if (p->n_tasks == GGML_N_TASKS_MAX) {
|
||||||
|
n_tasks = n_threads;
|
||||||
|
} else {
|
||||||
|
n_tasks = MIN(p->n_tasks, n_threads);
|
||||||
|
}
|
||||||
|
} break;
|
||||||
|
case GGML_OP_MAP_CUSTOM3:
|
||||||
|
{
|
||||||
|
struct ggml_map_custom3_op_params * p = (struct ggml_map_custom3_op_params *) node->op_params;
|
||||||
|
if (p->n_tasks == GGML_N_TASKS_MAX) {
|
||||||
|
n_tasks = n_threads;
|
||||||
|
} else {
|
||||||
|
n_tasks = MIN(p->n_tasks, n_threads);
|
||||||
|
}
|
||||||
|
} break;
|
||||||
case GGML_OP_CROSS_ENTROPY_LOSS:
|
case GGML_OP_CROSS_ENTROPY_LOSS:
|
||||||
{
|
{
|
||||||
n_tasks = n_threads;
|
n_tasks = n_threads;
|
||||||
|
|
145
ggml.h
145
ggml.h
|
@ -183,6 +183,15 @@
|
||||||
# define GGML_API
|
# define GGML_API
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
// TODO: support for clang
|
||||||
|
#ifdef __GNUC__
|
||||||
|
# define GGML_DEPRECATED(func, hint) func __attribute__((deprecated(hint)))
|
||||||
|
#elif defined(_MSC_VER)
|
||||||
|
# define GGML_DEPRECATED(func, hint) __declspec(deprecated(hint)) func
|
||||||
|
#else
|
||||||
|
# define GGML_DEPRECATED(func, hint) func
|
||||||
|
#endif
|
||||||
|
|
||||||
#include <stdint.h>
|
#include <stdint.h>
|
||||||
#include <stddef.h>
|
#include <stddef.h>
|
||||||
#include <stdbool.h>
|
#include <stdbool.h>
|
||||||
|
@ -374,6 +383,10 @@ extern "C" {
|
||||||
GGML_OP_MAP_UNARY,
|
GGML_OP_MAP_UNARY,
|
||||||
GGML_OP_MAP_BINARY,
|
GGML_OP_MAP_BINARY,
|
||||||
|
|
||||||
|
GGML_OP_MAP_CUSTOM1_F32,
|
||||||
|
GGML_OP_MAP_CUSTOM2_F32,
|
||||||
|
GGML_OP_MAP_CUSTOM3_F32,
|
||||||
|
|
||||||
GGML_OP_MAP_CUSTOM1,
|
GGML_OP_MAP_CUSTOM1,
|
||||||
GGML_OP_MAP_CUSTOM2,
|
GGML_OP_MAP_CUSTOM2,
|
||||||
GGML_OP_MAP_CUSTOM3,
|
GGML_OP_MAP_CUSTOM3,
|
||||||
|
@ -570,6 +583,8 @@ extern "C" {
|
||||||
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
|
GGML_API bool ggml_is_contiguous(const struct ggml_tensor * tensor);
|
||||||
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
GGML_API bool ggml_is_permuted (const struct ggml_tensor * tensor);
|
||||||
|
|
||||||
|
GGML_API bool ggml_are_same_shape(const struct ggml_tensor * t0, const struct ggml_tensor * t1);
|
||||||
|
|
||||||
// use this to compute the memory overhead of a tensor
|
// use this to compute the memory overhead of a tensor
|
||||||
GGML_API size_t ggml_tensor_overhead(void);
|
GGML_API size_t ggml_tensor_overhead(void);
|
||||||
|
|
||||||
|
@ -1240,7 +1255,7 @@ extern "C" {
|
||||||
|
|
||||||
// conv_1d with padding = half
|
// conv_1d with padding = half
|
||||||
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
// alias for ggml_conv_1d(a, b, s, a->ne[0]/2, d)
|
||||||
GGML_API struct ggml_tensor* ggml_conv_1d_ph(
|
GGML_API struct ggml_tensor * ggml_conv_1d_ph(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
|
@ -1253,7 +1268,7 @@ extern "C" {
|
||||||
GGML_OP_POOL_COUNT,
|
GGML_OP_POOL_COUNT,
|
||||||
};
|
};
|
||||||
|
|
||||||
GGML_API struct ggml_tensor* ggml_pool_1d(
|
GGML_API struct ggml_tensor * ggml_pool_1d(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
enum ggml_op_pool op,
|
enum ggml_op_pool op,
|
||||||
|
@ -1261,7 +1276,7 @@ extern "C" {
|
||||||
int s0, // stride
|
int s0, // stride
|
||||||
int p0); // padding
|
int p0); // padding
|
||||||
|
|
||||||
GGML_API struct ggml_tensor* ggml_pool_2d(
|
GGML_API struct ggml_tensor * ggml_pool_2d(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
enum ggml_op_pool op,
|
enum ggml_op_pool op,
|
||||||
|
@ -1315,15 +1330,6 @@ extern "C" {
|
||||||
int h0,
|
int h0,
|
||||||
int w);
|
int w);
|
||||||
|
|
||||||
// custom operators
|
|
||||||
|
|
||||||
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
|
||||||
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
|
||||||
|
|
||||||
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
|
|
||||||
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
|
||||||
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_unary(
|
GGML_API struct ggml_tensor * ggml_unary(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
|
@ -1334,63 +1340,138 @@ extern "C" {
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
enum ggml_unary_op op);
|
enum ggml_unary_op op);
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
// custom operators
|
||||||
|
|
||||||
|
typedef void (*ggml_unary_op_f32_t) (const int, float *, const float *);
|
||||||
|
typedef void (*ggml_binary_op_f32_t)(const int, float *, const float *, const float *);
|
||||||
|
|
||||||
|
typedef void (*ggml_custom1_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *);
|
||||||
|
typedef void (*ggml_custom2_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||||
|
typedef void (*ggml_custom3_op_f32_t)(struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *, const struct ggml_tensor *);
|
||||||
|
|
||||||
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
ggml_unary_op_f32_t fun);
|
ggml_unary_op_f32_t fun),
|
||||||
|
"use ggml_map_custom1 instead");
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_unary_inplace_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
ggml_unary_op_f32_t fun);
|
ggml_unary_op_f32_t fun),
|
||||||
|
"use ggml_map_custom1_inplace instead");
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
ggml_binary_op_f32_t fun);
|
ggml_binary_op_f32_t fun),
|
||||||
|
"use ggml_map_custom2 instead");
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_binary_inplace_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
ggml_binary_op_f32_t fun);
|
ggml_binary_op_f32_t fun),
|
||||||
|
"use ggml_map_custom2_inplace instead");
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
ggml_custom1_op_f32_t fun);
|
ggml_custom1_op_f32_t fun),
|
||||||
|
"use ggml_map_custom1 instead");
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom1_inplace_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
ggml_custom1_op_f32_t fun);
|
ggml_custom1_op_f32_t fun),
|
||||||
|
"use ggml_map_custom1_inplace instead");
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
ggml_custom2_op_f32_t fun);
|
ggml_custom2_op_f32_t fun),
|
||||||
|
"use ggml_map_custom2 instead");
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom2_inplace_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
ggml_custom2_op_f32_t fun);
|
ggml_custom2_op_f32_t fun),
|
||||||
|
"use ggml_map_custom2_inplace instead");
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
struct ggml_tensor * c,
|
struct ggml_tensor * c,
|
||||||
ggml_custom3_op_f32_t fun);
|
ggml_custom3_op_f32_t fun),
|
||||||
|
"use ggml_map_custom3 instead");
|
||||||
|
|
||||||
GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
GGML_DEPRECATED(GGML_API struct ggml_tensor * ggml_map_custom3_inplace_f32(
|
||||||
struct ggml_context * ctx,
|
struct ggml_context * ctx,
|
||||||
struct ggml_tensor * a,
|
struct ggml_tensor * a,
|
||||||
struct ggml_tensor * b,
|
struct ggml_tensor * b,
|
||||||
struct ggml_tensor * c,
|
struct ggml_tensor * c,
|
||||||
ggml_custom3_op_f32_t fun);
|
ggml_custom3_op_f32_t fun),
|
||||||
|
"use ggml_map_custom3_inplace instead");
|
||||||
|
|
||||||
|
// custom operators v2
|
||||||
|
|
||||||
|
typedef void (*ggml_custom1_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, int ith, int nth, void * userdata);
|
||||||
|
typedef void (*ggml_custom2_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, int ith, int nth, void * userdata);
|
||||||
|
typedef void (*ggml_custom3_op_t)(struct ggml_tensor * dst , const struct ggml_tensor * a, const struct ggml_tensor * b, const struct ggml_tensor * c, int ith, int nth, void * userdata);
|
||||||
|
|
||||||
|
#define GGML_N_TASKS_MAX -1
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_map_custom1(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
ggml_custom1_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_map_custom1_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
ggml_custom1_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_map_custom2(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
ggml_custom2_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_map_custom2_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
ggml_custom2_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_map_custom3(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
struct ggml_tensor * c,
|
||||||
|
ggml_custom3_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata);
|
||||||
|
|
||||||
|
GGML_API struct ggml_tensor * ggml_map_custom3_inplace(
|
||||||
|
struct ggml_context * ctx,
|
||||||
|
struct ggml_tensor * a,
|
||||||
|
struct ggml_tensor * b,
|
||||||
|
struct ggml_tensor * c,
|
||||||
|
ggml_custom3_op_t fun,
|
||||||
|
int n_tasks,
|
||||||
|
void * userdata);
|
||||||
|
|
||||||
// loss function
|
// loss function
|
||||||
|
|
||||||
|
|
|
@ -219,7 +219,7 @@ struct llama_mmap {
|
||||||
// prefetch/readahead impairs performance on NUMA systems
|
// prefetch/readahead impairs performance on NUMA systems
|
||||||
if (numa) { prefetch = 0; }
|
if (numa) { prefetch = 0; }
|
||||||
#ifdef __linux__
|
#ifdef __linux__
|
||||||
if (prefetch) { flags |= MAP_POPULATE; }
|
if (prefetch >= file->size) { flags |= MAP_POPULATE; }
|
||||||
#endif
|
#endif
|
||||||
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
addr = mmap(NULL, file->size, PROT_READ, flags, fd, 0);
|
||||||
if (addr == MAP_FAILED) {
|
if (addr == MAP_FAILED) {
|
||||||
|
|
18
llama.cpp
18
llama.cpp
|
@ -149,7 +149,7 @@ static const std::map<e_model, size_t> & MEM_REQ_EVAL()
|
||||||
}
|
}
|
||||||
|
|
||||||
// amount of VRAM needed per batch size to hold temporary results
|
// amount of VRAM needed per batch size to hold temporary results
|
||||||
// the values for 3b and 65b are not derived from testing but instead chosen conservatively
|
// the values for 3b are not derived from testing but instead chosen conservatively
|
||||||
static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
|
static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> k_sizes = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
|
@ -157,14 +157,14 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_BASE()
|
||||||
{ MODEL_7B, 512ull * kB },
|
{ MODEL_7B, 512ull * kB },
|
||||||
{ MODEL_13B, 640ull * kB },
|
{ MODEL_13B, 640ull * kB },
|
||||||
{ MODEL_30B, 768ull * kB },
|
{ MODEL_30B, 768ull * kB },
|
||||||
{ MODEL_65B, 1536ull * kB },
|
{ MODEL_65B, 1280ull * kB },
|
||||||
{ MODEL_70B, 1536ull * kB }, // TODO (likely can be reduced)
|
{ MODEL_70B, 1280ull * kB },
|
||||||
};
|
};
|
||||||
return k_sizes;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
|
||||||
// amount of VRAM needed per batch size and context to hold temporary results
|
// amount of VRAM needed per batch size and context to hold temporary results
|
||||||
// the values for 3b and 65b are not derived from testing but instead chosen conservatively
|
// the values for 3b are not derived from testing but instead chosen conservatively
|
||||||
static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
|
static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
|
||||||
{
|
{
|
||||||
static std::map<e_model, size_t> k_sizes = {
|
static std::map<e_model, size_t> k_sizes = {
|
||||||
|
@ -172,8 +172,8 @@ static const std::map<e_model, size_t> & VRAM_REQ_SCRATCH_PER_CONTEXT()
|
||||||
{ MODEL_7B, 128ull },
|
{ MODEL_7B, 128ull },
|
||||||
{ MODEL_13B, 160ull },
|
{ MODEL_13B, 160ull },
|
||||||
{ MODEL_30B, 208ull },
|
{ MODEL_30B, 208ull },
|
||||||
{ MODEL_65B, 416ull },
|
{ MODEL_65B, 256ull },
|
||||||
{ MODEL_70B, 416ull }, // TODO (likely can be reduced)
|
{ MODEL_70B, 256ull },
|
||||||
};
|
};
|
||||||
return k_sizes;
|
return k_sizes;
|
||||||
}
|
}
|
||||||
|
@ -747,12 +747,12 @@ struct llama_model_loader {
|
||||||
|
|
||||||
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
|
void load_all_data(llama_progress_callback progress_callback, void * progress_callback_user_data, llama_mlock * lmlock) {
|
||||||
size_t data_size = 0;
|
size_t data_size = 0;
|
||||||
size_t prefetch_size = 0;
|
size_t prefetch_size = file_loader->file.size;
|
||||||
size_t lock_size = 0;
|
size_t lock_size = 0;
|
||||||
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
for (const llama_load_tensor & lt : tensors_map.tensors) {
|
||||||
data_size += lt.size;
|
data_size += lt.size;
|
||||||
if (lt.ggml_tensor->backend == GGML_BACKEND_CPU) {
|
if (lt.ggml_tensor->backend != GGML_BACKEND_CPU) {
|
||||||
prefetch_size += lt.size;
|
prefetch_size -= lt.size;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue