diff --git a/llama.cpp b/llama.cpp index 4b38f5870..fcd15501e 100644 --- a/llama.cpp +++ b/llama.cpp @@ -15064,10 +15064,6 @@ struct llama_context * llama_new_context_with_model( const auto & hparams = model->hparams; auto & cparams = ctx->cparams; - // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask - // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext) - cparams.n_batch = std::max((uint32_t) GGML_KQ_MASK_PAD, params.n_batch); - cparams.n_seq_max = std::max(1u, params.n_seq_max); cparams.n_threads = params.n_threads; cparams.n_threads_batch = params.n_threads_batch; @@ -15086,12 +15082,20 @@ struct llama_context * llama_new_context_with_model( cparams.rope_freq_scale = params.rope_freq_scale == 0.0f ? hparams.rope_freq_scale_train : params.rope_freq_scale; // this is necessary due to kv_self.n being padded later during inference - cparams.n_ctx = GGML_PAD(cparams.n_ctx, 256); + cparams.n_ctx = GGML_PAD(cparams.n_ctx, 256); // with causal attention, the batch size is limited by the context size cparams.n_batch = hparams.causal_attn ? std::min(cparams.n_ctx, params.n_batch) : params.n_batch; - cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); + // the batch has to be at least GGML_KQ_MASK_PAD because we will be padding the KQ_mask + // this is required by GPU kernels in order to avoid out-of-bounds accesses (e.g. ggml_flash_attn_ext) + // ref: https://github.com/ggerganov/llama.cpp/pull/5021 + if (cparams.n_batch < GGML_KQ_MASK_PAD) { + LLAMA_LOG_WARN("%s: n_batch is less than GGML_KQ_MASK_PAD - increasing to %d\n", __func__, GGML_KQ_MASK_PAD); + cparams.n_batch = std::max((uint32_t) GGML_KQ_MASK_PAD, params.n_batch); + } + + cparams.n_ubatch = std::min(cparams.n_batch, params.n_ubatch == 0 ? params.n_batch : params.n_ubatch); cparams.n_yarn_orig_ctx = params.yarn_orig_ctx != 0 ? params.yarn_orig_ctx : hparams.n_yarn_orig_ctx != 0 ? hparams.n_yarn_orig_ctx :