upgrade all other formats
This commit is contained in:
parent
00da2a5f4e
commit
57230b5196
3 changed files with 21 additions and 13 deletions
|
@ -56,6 +56,7 @@ static const size_t MB = 1024*1024;
|
|||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
|
||||
{
|
||||
static std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_UNKNOWN, 512ull * MB },
|
||||
{ MODEL_7B, 512ull * MB },
|
||||
{ MODEL_13B, 512ull * MB },
|
||||
{ MODEL_30B, 512ull * MB },
|
||||
|
@ -67,6 +68,7 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH0()
|
|||
static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
|
||||
{
|
||||
static std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_UNKNOWN, 512ull * MB },
|
||||
{ MODEL_7B, 512ull * MB },
|
||||
{ MODEL_13B, 512ull * MB },
|
||||
{ MODEL_30B, 512ull * MB },
|
||||
|
@ -79,6 +81,7 @@ static const std::map<e_model, size_t> & MEM_REQ_SCRATCH1()
|
|||
static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
|
||||
{
|
||||
static std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_UNKNOWN, 1026ull * MB },
|
||||
{ MODEL_7B, 1026ull * MB },
|
||||
{ MODEL_13B, 1608ull * MB },
|
||||
{ MODEL_30B, 3124ull * MB },
|
||||
|
@ -92,6 +95,7 @@ static const std::map<e_model, size_t> & MEM_REQ_KV_SELF()
|
|||
static const std::map<e_model, size_t> & MEM_REQ_EVAL()
|
||||
{
|
||||
static std::map<e_model, size_t> k_sizes = {
|
||||
{ MODEL_UNKNOWN, 800ull * MB },
|
||||
{ MODEL_7B, 800ull * MB },
|
||||
{ MODEL_13B, 1024ull * MB },
|
||||
{ MODEL_30B, 1280ull * MB },
|
||||
|
@ -887,7 +891,9 @@ static const char *llama_model_type_name(e_model type) {
|
|||
case MODEL_13B: return "13B";
|
||||
case MODEL_30B: return "30B";
|
||||
case MODEL_65B: return "65B";
|
||||
default: LLAMA_ASSERT(false);
|
||||
default:
|
||||
printf("\nWARNING: NON-STANDARD LLAMA FILE DETECTED. DEFAULT TO 7B SIZE.\n");
|
||||
return "UNKNOWN";
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -920,6 +926,7 @@ static void llama_model_load_internal(
|
|||
case 40: model.type = e_model::MODEL_13B; break;
|
||||
case 60: model.type = e_model::MODEL_30B; break;
|
||||
case 80: model.type = e_model::MODEL_65B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN; break;
|
||||
}
|
||||
|
||||
hparams.n_ctx = n_ctx;
|
||||
|
|
|
@ -49,7 +49,6 @@ ModelLoadResult gpt2_model_load(const std::string & fname, gpt2_model & model, g
|
|||
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
|
||||
|
||||
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
|
||||
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
|
||||
|
||||
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||
|
@ -57,6 +56,9 @@ ModelLoadResult gpt2_model_load(const std::string & fname, gpt2_model & model, g
|
|||
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
||||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: ftype = %d\n", __func__, hparams.ftype);
|
||||
printf("%s: qntvr = %d\n", __func__, qntvr);
|
||||
|
||||
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
|
||||
}
|
||||
|
||||
// load vocab
|
||||
|
@ -134,8 +136,9 @@ ModelLoadResult gpt2_model_load(const std::string & fname, gpt2_model & model, g
|
|||
ctx_size += 1.5*(n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // memory_k
|
||||
ctx_size += 1.5*(n_ctx*n_layer*n_embd*ggml_type_sizef(GGML_TYPE_F32)); // memory_v
|
||||
|
||||
ctx_size += (6 + 12*n_layer)*256; // object overhead
|
||||
ctx_size += (6 + 12*n_layer)*512; // object overhead
|
||||
|
||||
printf("%s: ggml tensor size = %d bytes\n", __func__, (int) sizeof(ggml_tensor));
|
||||
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
||||
}
|
||||
|
||||
|
@ -431,11 +434,10 @@ bool gpt2_eval(
|
|||
{
|
||||
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
|
||||
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
|
||||
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
|
||||
|
||||
// store key and value to memory
|
||||
if (N >= 1) {
|
||||
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
|
||||
|
||||
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
||||
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
||||
|
||||
|
|
|
@ -50,7 +50,6 @@ ModelLoadResult gptj_model_load(const std::string & fname, gptj_model & model, g
|
|||
fin.read((char *) &hparams.ftype, sizeof(hparams.ftype));
|
||||
|
||||
const int32_t qntvr = hparams.ftype / GGML_QNT_VERSION_FACTOR;
|
||||
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
|
||||
|
||||
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
||||
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
||||
|
@ -59,6 +58,9 @@ ModelLoadResult gptj_model_load(const std::string & fname, gptj_model & model, g
|
|||
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
||||
printf("%s: n_rot = %d\n", __func__, hparams.n_rot);
|
||||
printf("%s: ftype = %d\n", __func__, hparams.ftype);
|
||||
printf("%s: qntvr = %d\n", __func__, qntvr);
|
||||
|
||||
hparams.ftype %= GGML_QNT_VERSION_FACTOR;
|
||||
}
|
||||
|
||||
// load vocab
|
||||
|
@ -134,7 +136,7 @@ ModelLoadResult gptj_model_load(const std::string & fname, gptj_model & model, g
|
|||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_k
|
||||
ctx_size += n_ctx*n_layer*n_embd*ggml_type_sizef(memory_type); // memory_v
|
||||
|
||||
ctx_size += (5 + 10*n_layer)*256; // object overhead
|
||||
ctx_size += (5 + 10*n_layer)*512; // object overhead
|
||||
|
||||
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
||||
}
|
||||
|
@ -160,7 +162,6 @@ ModelLoadResult gptj_model_load(const std::string & fname, gptj_model & model, g
|
|||
|
||||
const int n_embd = hparams.n_embd;
|
||||
const int n_layer = hparams.n_layer;
|
||||
const int n_ctx = hparams.n_ctx;
|
||||
const int n_vocab = hparams.n_vocab;
|
||||
|
||||
model.layers.resize(n_layer);
|
||||
|
@ -358,8 +359,6 @@ bool gptj_eval(
|
|||
const int n_vocab = hparams.n_vocab;
|
||||
const int n_rot = hparams.n_rot;
|
||||
|
||||
const int d_key = n_embd/n_head;
|
||||
|
||||
static size_t buf_size = 256u*1024*1024;
|
||||
static void * buf = malloc(buf_size);
|
||||
|
||||
|
@ -551,7 +550,7 @@ bool gptj_eval(
|
|||
|
||||
//if (n_past%100 == 0) {
|
||||
// ggml_graph_print (&gf);
|
||||
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
||||
// ggml_graph_dump_dot(&gf, NULL, "gpt-j.dot");
|
||||
//}
|
||||
|
||||
//embd_w.resize(n_vocab*N);
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue