Fix all examples to use new thread vector params, remove mpi example
This commit is contained in:
parent
be63161d04
commit
57ac2e7268
9 changed files with 11 additions and 955 deletions
|
@ -102,8 +102,8 @@ int main(int argc, char ** argv) {
|
||||||
ctx_params.n_ctx = n_kv_max;
|
ctx_params.n_ctx = n_kv_max;
|
||||||
ctx_params.n_batch = 512;
|
ctx_params.n_batch = 512;
|
||||||
|
|
||||||
ctx_params.n_threads = params.n_threads;
|
ctx_params.n_threads = params.n_threads[0];
|
||||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
ctx_params.n_threads_batch = params.n_threads_batch[0] == -1 ? params.n_threads[0] : params.n_threads_batch[0];
|
||||||
|
|
||||||
// ensure enough sequences are available
|
// ensure enough sequences are available
|
||||||
ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
|
ctx_params.n_seq_max = *std::max_element(n_pl.begin(), n_pl.end());
|
||||||
|
|
|
@ -81,8 +81,8 @@ int main(int argc, char ** argv) {
|
||||||
ctx_params.n_ctx = n_kv_req;
|
ctx_params.n_ctx = n_kv_req;
|
||||||
ctx_params.n_batch = std::max(n_len, n_parallel);
|
ctx_params.n_batch = std::max(n_len, n_parallel);
|
||||||
ctx_params.n_seq_max = n_parallel;
|
ctx_params.n_seq_max = n_parallel;
|
||||||
ctx_params.n_threads = params.n_threads;
|
ctx_params.n_threads = params.n_threads[0];
|
||||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
ctx_params.n_threads_batch = params.n_threads_batch[0] == -1 ? params.n_threads[0] : params.n_threads_batch[0];
|
||||||
|
|
||||||
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
|
||||||
|
|
||||||
|
|
|
@ -125,14 +125,14 @@ static struct llava_image_embed * load_image(llava_context * ctx_llava, gpt_para
|
||||||
if (!params->image.empty()) {
|
if (!params->image.empty()) {
|
||||||
fprintf(stderr, "using base64 encoded image instead of command line image path\n");
|
fprintf(stderr, "using base64 encoded image instead of command line image path\n");
|
||||||
}
|
}
|
||||||
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads, prompt);
|
embed = llava_image_embed_make_with_prompt_base64(ctx_llava->ctx_clip, params->n_threads[0], prompt);
|
||||||
if (!embed) {
|
if (!embed) {
|
||||||
fprintf(stderr, "%s: can't load image from prompt\n", __func__);
|
fprintf(stderr, "%s: can't load image from prompt\n", __func__);
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
params->prompt = remove_image_from_prompt(prompt);
|
params->prompt = remove_image_from_prompt(prompt);
|
||||||
} else {
|
} else {
|
||||||
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads, params->image.c_str());
|
embed = llava_image_embed_make_with_filename(ctx_llava->ctx_clip, params->n_threads[0], params->image.c_str());
|
||||||
if (!embed) {
|
if (!embed) {
|
||||||
fprintf(stderr, "%s: is %s really an image file?\n", __func__, params->image.c_str());
|
fprintf(stderr, "%s: is %s really an image file?\n", __func__, params->image.c_str());
|
||||||
return NULL;
|
return NULL;
|
||||||
|
|
|
@ -1,8 +0,0 @@
|
||||||
set(TARGET mpi)
|
|
||||||
add_executable(${TARGET} mpi.cpp)
|
|
||||||
install(TARGETS ${TARGET} RUNTIME)
|
|
||||||
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
|
||||||
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
|
||||||
if(TARGET BUILD_INFO)
|
|
||||||
add_dependencies(${TARGET} BUILD_INFO)
|
|
||||||
endif()
|
|
|
@ -1,60 +0,0 @@
|
||||||
# llama.cpp/example/mpi
|
|
||||||
|
|
||||||
This example program allows you to use various LLaMA language models in an easy and efficient way across an MPI cluster.
|
|
||||||
It is specifically designed to work with the [llama.cpp](https://github.com/ggerganov/llama.cpp) project, which provides a plain C/C++ implementation with optional 4-bit quantization support for faster, lower memory inference, and is optimized for desktop CPUs. This program can be used to perform various inference tasks with LLaMA models, including generating text based on user-provided prompts and chat-like interactions with reverse prompts.
|
|
||||||
|
|
||||||
## Table of Contents
|
|
||||||
|
|
||||||
1. [Quick Start](#quick-start)
|
|
||||||
2. [Common Options](#common-options)
|
|
||||||
|
|
||||||
## Quick Start
|
|
||||||
|
|
||||||
To get started right away, write the following to a file on each node, making sure to use the correct path for the model you have:
|
|
||||||
```bash
|
|
||||||
--mpi-layer-split 0.8,0.2 -t 4 -m ~/llm-local/codellama-7b.Q3_K_M.gguf --color -c 512 --temp 0.0 --repeat_penalty 1.0 -n 128 -p "double fast_inverse_square_root(double x"
|
|
||||||
```
|
|
||||||
|
|
||||||
Each node may have different options, currently they must have the same number of arguments to the mpi-layer-split option and the same
|
|
||||||
model path, but that will eventually be synchronized from the head node.
|
|
||||||
|
|
||||||
Next, write the hostsfile on the head node. Make sure there is only one slot on each node.
|
|
||||||
|
|
||||||
Finally, run the following command on the head node to start the program across the cluster:
|
|
||||||
|
|
||||||
#### Unix-based systems (Linux, macOS, etc.):
|
|
||||||
|
|
||||||
```bash
|
|
||||||
mpirun -hostfile hostsfile -mca orte_keep_fqdn_hostnames t --bind-to none ./mpi options.txt
|
|
||||||
```
|
|
||||||
|
|
||||||
Where `hostsfile` is the file containing the cluster hostname configuration and `options.txt` is the path
|
|
||||||
where each node can find its own options. Storing the model on a network filesystem has not yet been
|
|
||||||
tested and optimized for.
|
|
||||||
|
|
||||||
#### Windows:
|
|
||||||
Not supported currently.
|
|
||||||
|
|
||||||
For an interactive experience, try this command:
|
|
||||||
|
|
||||||
#### Unix-based systems (Linux, macOS, etc.):
|
|
||||||
|
|
||||||
```bash
|
|
||||||
./main -m models/7B/ggml-model.bin -n -1 --color -r "User:" --in-prefix " " \
|
|
||||||
'User: Hi
|
|
||||||
AI: Hello. I am an AI chatbot. Would you like to talk?
|
|
||||||
User: Sure!
|
|
||||||
AI: What would you like to talk about?
|
|
||||||
User:'
|
|
||||||
```
|
|
||||||
|
|
||||||
## Common Options
|
|
||||||
|
|
||||||
In this section, we cover the most commonly used options for running the `mpi` program with the LLaMA models:
|
|
||||||
|
|
||||||
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
|
|
||||||
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
|
|
||||||
- `-ins, --instruct`: Run the program in instruction mode, which is particularly useful when working with Alpaca models.
|
|
||||||
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
|
|
||||||
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
|
|
||||||
- `--mpi-layer-split`: Set the percentage of layers to distribute to each node. Must have the same number of arguments as the number of nodes in the cluster. Only the layer split percentages passed to the head node are used, they are scattered to all other nodes in the cluster.
|
|
|
@ -1,876 +0,0 @@
|
||||||
#include "common.h"
|
|
||||||
|
|
||||||
#include "console.h"
|
|
||||||
#include "llama.h"
|
|
||||||
#include "build-info.h"
|
|
||||||
|
|
||||||
#include <cassert>
|
|
||||||
#include <cinttypes>
|
|
||||||
#include <cmath>
|
|
||||||
#include <cstdio>
|
|
||||||
#include <cstring>
|
|
||||||
#include <ctime>
|
|
||||||
#include <fstream>
|
|
||||||
#include <iostream>
|
|
||||||
#include <sstream>
|
|
||||||
#include <string>
|
|
||||||
#include <vector>
|
|
||||||
|
|
||||||
// TODO add Windows support
|
|
||||||
#include <wordexp.h>
|
|
||||||
|
|
||||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
||||||
#include <signal.h>
|
|
||||||
#include <unistd.h>
|
|
||||||
#elif defined (_WIN32)
|
|
||||||
#define WIN32_LEAN_AND_MEAN
|
|
||||||
#ifndef NOMINMAX
|
|
||||||
#define NOMINMAX
|
|
||||||
#endif
|
|
||||||
#include <windows.h>
|
|
||||||
#include <signal.h>
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#if defined(_MSC_VER)
|
|
||||||
#pragma warning(disable: 4244 4267) // possible loss of data
|
|
||||||
#endif
|
|
||||||
|
|
||||||
static llama_context ** g_ctx;
|
|
||||||
static llama_model ** g_model;
|
|
||||||
static gpt_params * g_params;
|
|
||||||
static std::vector<llama_token> * g_input_tokens;
|
|
||||||
static std::ostringstream * g_output_ss;
|
|
||||||
static std::vector<llama_token> * g_output_tokens;
|
|
||||||
static bool is_interacting = false;
|
|
||||||
|
|
||||||
|
|
||||||
static void write_logfile(
|
|
||||||
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
|
||||||
const std::vector<llama_token> & input_tokens, const std::string & output,
|
|
||||||
const std::vector<llama_token> & output_tokens
|
|
||||||
) {
|
|
||||||
if (params.logdir.empty()) {
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
const std::string timestamp = get_sortable_timestamp();
|
|
||||||
|
|
||||||
const bool success = create_directory_with_parents(params.logdir);
|
|
||||||
if (!success) {
|
|
||||||
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
|
||||||
__func__, params.logdir.c_str());
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
|
||||||
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
|
||||||
|
|
||||||
if (logfile == NULL) {
|
|
||||||
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
|
||||||
return;
|
|
||||||
}
|
|
||||||
|
|
||||||
fprintf(logfile, "binary: main\n");
|
|
||||||
char model_desc[128];
|
|
||||||
llama_model_desc(model, model_desc, sizeof(model_desc));
|
|
||||||
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
|
||||||
|
|
||||||
fprintf(logfile, "\n");
|
|
||||||
fprintf(logfile, "######################\n");
|
|
||||||
fprintf(logfile, "# Generation Results #\n");
|
|
||||||
fprintf(logfile, "######################\n");
|
|
||||||
fprintf(logfile, "\n");
|
|
||||||
|
|
||||||
dump_string_yaml_multiline(logfile, "output", output.c_str());
|
|
||||||
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
|
|
||||||
|
|
||||||
llama_dump_timing_info_yaml(logfile, ctx);
|
|
||||||
fclose(logfile);
|
|
||||||
}
|
|
||||||
|
|
||||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
||||||
static void sigint_handler(int signo) {
|
|
||||||
if (signo == SIGINT) {
|
|
||||||
if (!is_interacting) {
|
|
||||||
is_interacting = true;
|
|
||||||
} else {
|
|
||||||
console::cleanup();
|
|
||||||
printf("\n");
|
|
||||||
llama_print_timings(*g_ctx);
|
|
||||||
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
|
||||||
_exit(130);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
int main(int argc, char ** argv) {
|
|
||||||
gpt_params params;
|
|
||||||
g_params = ¶ms;
|
|
||||||
|
|
||||||
if (argc > 2) {
|
|
||||||
fprintf(stderr, "Must only have one argument, the file to read options from.\n");
|
|
||||||
return 2;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Manually add the path used to launch this program to the
|
|
||||||
// options
|
|
||||||
std::string rawOptions = argv[0];
|
|
||||||
rawOptions += ' ';
|
|
||||||
std::ifstream optionsFile(argv[1]);
|
|
||||||
if (optionsFile.is_open()) {
|
|
||||||
// Read in the options file, appending to the launch path
|
|
||||||
std::ostringstream buf;
|
|
||||||
buf << optionsFile.rdbuf();
|
|
||||||
rawOptions += buf.str();
|
|
||||||
optionsFile.close();
|
|
||||||
|
|
||||||
} else {
|
|
||||||
fprintf(stderr, "Cannot open options file at path %s\n", argv[1]);
|
|
||||||
return 3;
|
|
||||||
}
|
|
||||||
|
|
||||||
// wordexp doesn't work right if there's a trailing newline, so strip it
|
|
||||||
rawOptions.erase(rawOptions.find_last_not_of(" \t\n\r\f\v") + 1);
|
|
||||||
|
|
||||||
wordexp_t splitOptions;
|
|
||||||
wordexp(rawOptions.c_str(), &splitOptions, WRDE_NOCMD);
|
|
||||||
|
|
||||||
// Now we can parse like normal, but using the loaded options instead of the passed argv
|
|
||||||
if (gpt_params_parse(splitOptions.we_wordc, splitOptions.we_wordv, params) == false) {
|
|
||||||
wordfree(&splitOptions);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
wordfree(&splitOptions);
|
|
||||||
llama_sampling_params & sparams = params.sparams;
|
|
||||||
|
|
||||||
#ifndef LOG_DISABLE_LOGS
|
|
||||||
log_set_target(log_filename_generator("main", "log"));
|
|
||||||
LOG_TEE("Log start\n");
|
|
||||||
log_dump_cmdline(argc, argv);
|
|
||||||
#endif // LOG_DISABLE_LOGS
|
|
||||||
|
|
||||||
// TODO: Dump params ?
|
|
||||||
//LOG("Params perplexity: %s\n", LOG_TOSTR(params.perplexity));
|
|
||||||
|
|
||||||
// save choice to use color for later
|
|
||||||
// (note for later: this is a slightly awkward choice)
|
|
||||||
console::init(params.simple_io, params.use_color);
|
|
||||||
atexit([]() { console::cleanup(); });
|
|
||||||
|
|
||||||
if (params.logits_all) {
|
|
||||||
printf("\n************\n");
|
|
||||||
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
|
||||||
printf("************\n\n");
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.embedding) {
|
|
||||||
printf("\n************\n");
|
|
||||||
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
|
||||||
printf("************\n\n");
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
|
||||||
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
|
||||||
params.n_ctx = 8;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.rope_freq_base != 0.0) {
|
|
||||||
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.rope_freq_scale != 0.0) {
|
|
||||||
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
|
||||||
}
|
|
||||||
|
|
||||||
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
|
||||||
LOG_TEE("%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET);
|
|
||||||
|
|
||||||
if (params.seed == LLAMA_DEFAULT_SEED) {
|
|
||||||
params.seed = time(NULL);
|
|
||||||
}
|
|
||||||
|
|
||||||
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
|
|
||||||
|
|
||||||
std::mt19937 rng(params.seed);
|
|
||||||
if (params.random_prompt) {
|
|
||||||
params.prompt = gpt_random_prompt(rng);
|
|
||||||
}
|
|
||||||
|
|
||||||
LOG("%s: llama backend init\n", __func__);
|
|
||||||
llama_backend_init(params.numa);
|
|
||||||
|
|
||||||
llama_model * model;
|
|
||||||
llama_context * ctx;
|
|
||||||
llama_context * ctx_guidance = NULL;
|
|
||||||
g_model = &model;
|
|
||||||
g_ctx = &ctx;
|
|
||||||
|
|
||||||
// load the model and apply lora adapter, if any
|
|
||||||
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
|
||||||
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
|
||||||
if (sparams.cfg_scale > 1.f) {
|
|
||||||
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
|
||||||
ctx_guidance = llama_new_context_with_model(model, lparams);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (model == NULL) {
|
|
||||||
LOG_TEE("%s: error: unable to load model\n", __func__);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
const int n_ctx_train = llama_n_ctx_train(model);
|
|
||||||
const int n_ctx = llama_n_ctx(ctx);
|
|
||||||
LOG("n_ctx: %d\n", n_ctx);
|
|
||||||
|
|
||||||
if (n_ctx > n_ctx_train) {
|
|
||||||
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
|
||||||
__func__, n_ctx_train, n_ctx);
|
|
||||||
}
|
|
||||||
|
|
||||||
// print system information
|
|
||||||
{
|
|
||||||
LOG_TEE("\n");
|
|
||||||
LOG_TEE("%s\n", get_system_info(params).c_str());
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_split_layers_weighted(ctx, params.mpi_layer_split.data(), params.mpi_layer_split.size());
|
|
||||||
|
|
||||||
std::string path_session = params.path_prompt_cache;
|
|
||||||
std::vector<llama_token> session_tokens;
|
|
||||||
|
|
||||||
if (!path_session.empty()) {
|
|
||||||
LOG_TEE("%s: attempting to load saved session from '%s'\n", __func__, path_session.c_str());
|
|
||||||
|
|
||||||
// fopen to check for existing session
|
|
||||||
FILE * fp = std::fopen(path_session.c_str(), "rb");
|
|
||||||
if (fp != NULL) {
|
|
||||||
std::fclose(fp);
|
|
||||||
|
|
||||||
session_tokens.resize(n_ctx);
|
|
||||||
size_t n_token_count_out = 0;
|
|
||||||
if (!llama_load_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.capacity(), &n_token_count_out)) {
|
|
||||||
LOG_TEE("%s: error: failed to load session file '%s'\n", __func__, path_session.c_str());
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
session_tokens.resize(n_token_count_out);
|
|
||||||
llama_set_rng_seed(ctx, params.seed);
|
|
||||||
|
|
||||||
LOG_TEE("%s: loaded a session with prompt size of %d tokens\n", __func__, (int) session_tokens.size());
|
|
||||||
} else {
|
|
||||||
LOG_TEE("%s: session file does not exist, will create\n", __func__);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
|
|
||||||
LOG("add_bos: %d\n", add_bos);
|
|
||||||
|
|
||||||
std::vector<llama_token> embd_inp;
|
|
||||||
|
|
||||||
if (params.interactive_first || params.instruct || !params.prompt.empty() || session_tokens.empty()) {
|
|
||||||
LOG("tokenize the prompt\n");
|
|
||||||
embd_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
|
||||||
} else {
|
|
||||||
LOG("use session tokens\n");
|
|
||||||
embd_inp = session_tokens;
|
|
||||||
}
|
|
||||||
|
|
||||||
LOG("prompt: \"%s\"\n", log_tostr(params.prompt));
|
|
||||||
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
|
||||||
|
|
||||||
// Should not run without any tokens
|
|
||||||
if (embd_inp.empty()) {
|
|
||||||
embd_inp.push_back(llama_token_bos(model));
|
|
||||||
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp).c_str());
|
|
||||||
}
|
|
||||||
|
|
||||||
// Tokenize negative prompt
|
|
||||||
std::vector<llama_token> guidance_inp;
|
|
||||||
int guidance_offset = 0;
|
|
||||||
int original_prompt_len = 0;
|
|
||||||
if (ctx_guidance) {
|
|
||||||
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(sparams.cfg_negative_prompt));
|
|
||||||
|
|
||||||
guidance_inp = ::llama_tokenize(ctx_guidance, sparams.cfg_negative_prompt, add_bos, true);
|
|
||||||
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp).c_str());
|
|
||||||
|
|
||||||
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos, true);
|
|
||||||
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp).c_str());
|
|
||||||
|
|
||||||
original_prompt_len = original_inp.size();
|
|
||||||
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
|
||||||
LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
|
|
||||||
LOG("guidance_offset: %s", log_tostr(guidance_offset));
|
|
||||||
}
|
|
||||||
|
|
||||||
if ((int) embd_inp.size() > n_ctx - 4) {
|
|
||||||
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
// debug message about similarity of saved session, if applicable
|
|
||||||
size_t n_matching_session_tokens = 0;
|
|
||||||
if (!session_tokens.empty()) {
|
|
||||||
for (llama_token id : session_tokens) {
|
|
||||||
if (n_matching_session_tokens >= embd_inp.size() || id != embd_inp[n_matching_session_tokens]) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
n_matching_session_tokens++;
|
|
||||||
}
|
|
||||||
if (params.prompt.empty() && n_matching_session_tokens == embd_inp.size()) {
|
|
||||||
LOG_TEE("%s: using full prompt from session file\n", __func__);
|
|
||||||
} else if (n_matching_session_tokens >= embd_inp.size()) {
|
|
||||||
LOG_TEE("%s: session file has exact match for prompt!\n", __func__);
|
|
||||||
} else if (n_matching_session_tokens < (embd_inp.size() / 2)) {
|
|
||||||
LOG_TEE("%s: warning: session file has low similarity to prompt (%zu / %zu tokens); will mostly be reevaluated\n",
|
|
||||||
__func__, n_matching_session_tokens, embd_inp.size());
|
|
||||||
} else {
|
|
||||||
LOG_TEE("%s: session file matches %zu / %zu tokens of prompt\n",
|
|
||||||
__func__, n_matching_session_tokens, embd_inp.size());
|
|
||||||
}
|
|
||||||
|
|
||||||
// remove any "future" tokens that we might have inherited from the previous session
|
|
||||||
llama_kv_cache_seq_rm(ctx, -1, n_matching_session_tokens, -1);
|
|
||||||
}
|
|
||||||
|
|
||||||
LOGLN(
|
|
||||||
"recalculate the cached logits (check): embd_inp.empty() %s, n_matching_session_tokens %zu, embd_inp.size() %zu, session_tokens.size() %zu, embd_inp.size() %zu",
|
|
||||||
log_tostr(embd_inp.empty()), n_matching_session_tokens, embd_inp.size(), session_tokens.size(), embd_inp.size());
|
|
||||||
|
|
||||||
// if we will use the cache for the full prompt without reaching the end of the cache, force
|
|
||||||
// reevaluation of the last token token to recalculate the cached logits
|
|
||||||
if (!embd_inp.empty() && n_matching_session_tokens == embd_inp.size() && session_tokens.size() > embd_inp.size()) {
|
|
||||||
LOGLN("recalculate the cached logits (do): session_tokens.resize( %zu )", embd_inp.size() - 1);
|
|
||||||
|
|
||||||
session_tokens.resize(embd_inp.size() - 1);
|
|
||||||
}
|
|
||||||
|
|
||||||
// number of tokens to keep when resetting context
|
|
||||||
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size() || params.instruct) {
|
|
||||||
params.n_keep = (int)embd_inp.size();
|
|
||||||
}
|
|
||||||
|
|
||||||
// prefix & suffix for instruct mode
|
|
||||||
const auto inp_pfx = ::llama_tokenize(ctx, "\n\n### Instruction:\n\n", add_bos, true);
|
|
||||||
const auto inp_sfx = ::llama_tokenize(ctx, "\n\n### Response:\n\n", false, true);
|
|
||||||
|
|
||||||
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx).c_str());
|
|
||||||
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx).c_str());
|
|
||||||
|
|
||||||
// in instruct mode, we inject a prefix and a suffix to each input by the user
|
|
||||||
if (params.instruct) {
|
|
||||||
params.interactive_first = true;
|
|
||||||
params.antiprompt.push_back("### Instruction:\n\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
// enable interactive mode if interactive start is specified
|
|
||||||
if (params.interactive_first) {
|
|
||||||
params.interactive = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.verbose_prompt) {
|
|
||||||
LOG_TEE("\n");
|
|
||||||
LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
|
||||||
LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
|
||||||
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
|
||||||
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
|
||||||
}
|
|
||||||
|
|
||||||
if (ctx_guidance) {
|
|
||||||
LOG_TEE("\n");
|
|
||||||
LOG_TEE("%s: negative prompt: '%s'\n", __func__, sparams.cfg_negative_prompt.c_str());
|
|
||||||
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
|
||||||
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
|
||||||
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.n_keep > 0) {
|
|
||||||
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
|
||||||
for (int i = 0; i < params.n_keep; i++) {
|
|
||||||
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
|
||||||
}
|
|
||||||
LOG_TEE("'\n");
|
|
||||||
}
|
|
||||||
LOG_TEE("\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.interactive) {
|
|
||||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
|
||||||
struct sigaction sigint_action;
|
|
||||||
sigint_action.sa_handler = sigint_handler;
|
|
||||||
sigemptyset (&sigint_action.sa_mask);
|
|
||||||
sigint_action.sa_flags = 0;
|
|
||||||
sigaction(SIGINT, &sigint_action, NULL);
|
|
||||||
#elif defined (_WIN32)
|
|
||||||
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
|
||||||
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
|
||||||
};
|
|
||||||
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
LOG_TEE("%s: interactive mode on.\n", __func__);
|
|
||||||
|
|
||||||
if (!params.antiprompt.empty()) {
|
|
||||||
for (const auto & antiprompt : params.antiprompt) {
|
|
||||||
LOG_TEE("Reverse prompt: '%s'\n", antiprompt.c_str());
|
|
||||||
if (params.verbose_prompt) {
|
|
||||||
auto tmp = ::llama_tokenize(ctx, antiprompt, false, true);
|
|
||||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
|
||||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.input_prefix_bos) {
|
|
||||||
LOG_TEE("Input prefix with BOS\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!params.input_prefix.empty()) {
|
|
||||||
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
|
||||||
if (params.verbose_prompt) {
|
|
||||||
auto tmp = ::llama_tokenize(ctx, params.input_prefix, true, true);
|
|
||||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
|
||||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!params.input_suffix.empty()) {
|
|
||||||
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
|
||||||
if (params.verbose_prompt) {
|
|
||||||
auto tmp = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
|
||||||
for (int i = 0; i < (int) tmp.size(); i++) {
|
|
||||||
LOG_TEE("%6d -> '%s'\n", tmp[i], llama_token_to_piece(ctx, tmp[i]).c_str());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
LOG_TEE("sampling: \n%s\n", llama_sampling_print(sparams).c_str());
|
|
||||||
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
|
||||||
LOG_TEE("\n\n");
|
|
||||||
|
|
||||||
if (params.interactive) {
|
|
||||||
const char *control_message;
|
|
||||||
if (params.multiline_input) {
|
|
||||||
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
|
||||||
" - To return control without starting a new line, end your input with '/'.\n";
|
|
||||||
} else {
|
|
||||||
control_message = " - Press Return to return control to LLaMa.\n"
|
|
||||||
" - To return control without starting a new line, end your input with '/'.\n"
|
|
||||||
" - If you want to submit another line, end your input with '\\'.\n";
|
|
||||||
}
|
|
||||||
LOG_TEE("== Running in interactive mode. ==\n");
|
|
||||||
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
|
||||||
LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
|
|
||||||
#endif
|
|
||||||
LOG_TEE( "%s\n", control_message);
|
|
||||||
|
|
||||||
is_interacting = params.interactive_first;
|
|
||||||
}
|
|
||||||
|
|
||||||
bool is_antiprompt = false;
|
|
||||||
bool input_echo = true;
|
|
||||||
bool need_to_save_session = !path_session.empty() && n_matching_session_tokens < embd_inp.size();
|
|
||||||
|
|
||||||
int n_past = 0;
|
|
||||||
int n_remain = params.n_predict;
|
|
||||||
int n_consumed = 0;
|
|
||||||
int n_session_consumed = 0;
|
|
||||||
int n_past_guidance = 0;
|
|
||||||
|
|
||||||
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
|
||||||
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
|
||||||
std::ostringstream output_ss; g_output_ss = &output_ss;
|
|
||||||
|
|
||||||
// the first thing we will do is to output the prompt, so set color accordingly
|
|
||||||
console::set_display(console::prompt);
|
|
||||||
|
|
||||||
std::vector<llama_token> embd;
|
|
||||||
std::vector<llama_token> embd_guidance;
|
|
||||||
|
|
||||||
struct llama_sampling_context * ctx_sampling = llama_sampling_init(sparams);
|
|
||||||
|
|
||||||
while ((n_remain != 0 && !is_antiprompt) || params.interactive) {
|
|
||||||
// predict
|
|
||||||
if (!embd.empty()) {
|
|
||||||
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
|
||||||
// --prompt or --file which uses the same value.
|
|
||||||
int max_embd_size = n_ctx - 4;
|
|
||||||
|
|
||||||
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
|
|
||||||
if ((int) embd.size() > max_embd_size) {
|
|
||||||
const int skipped_tokens = (int) embd.size() - max_embd_size;
|
|
||||||
embd.resize(max_embd_size);
|
|
||||||
|
|
||||||
console::set_display(console::error);
|
|
||||||
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
|
||||||
console::set_display(console::reset);
|
|
||||||
fflush(stdout);
|
|
||||||
}
|
|
||||||
|
|
||||||
// infinite text generation via context swapping
|
|
||||||
// if we run out of context:
|
|
||||||
// - take the n_keep first tokens from the original prompt (via n_past)
|
|
||||||
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
|
||||||
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
|
||||||
if (params.n_predict == -2) {
|
|
||||||
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
const int n_left = n_past - params.n_keep - 1;
|
|
||||||
const int n_discard = n_left/2;
|
|
||||||
|
|
||||||
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
|
||||||
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
|
||||||
|
|
||||||
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
|
||||||
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
|
||||||
|
|
||||||
n_past -= n_discard;
|
|
||||||
|
|
||||||
if (ctx_guidance) {
|
|
||||||
n_past_guidance -= n_discard;
|
|
||||||
}
|
|
||||||
|
|
||||||
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
|
||||||
|
|
||||||
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
|
||||||
|
|
||||||
LOG("clear session path\n");
|
|
||||||
path_session.clear();
|
|
||||||
}
|
|
||||||
|
|
||||||
// try to reuse a matching prefix from the loaded session instead of re-eval (via n_past)
|
|
||||||
if (n_session_consumed < (int) session_tokens.size()) {
|
|
||||||
size_t i = 0;
|
|
||||||
for ( ; i < embd.size(); i++) {
|
|
||||||
if (embd[i] != session_tokens[n_session_consumed]) {
|
|
||||||
session_tokens.resize(n_session_consumed);
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
n_past++;
|
|
||||||
n_session_consumed++;
|
|
||||||
|
|
||||||
if (n_session_consumed >= (int) session_tokens.size()) {
|
|
||||||
++i;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
if (i > 0) {
|
|
||||||
embd.erase(embd.begin(), embd.begin() + i);
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// evaluate tokens in batches
|
|
||||||
// embd is typically prepared beforehand to fit within a batch, but not always
|
|
||||||
if (ctx_guidance) {
|
|
||||||
int input_size = 0;
|
|
||||||
llama_token * input_buf = NULL;
|
|
||||||
|
|
||||||
if (n_past_guidance < (int) guidance_inp.size()) {
|
|
||||||
// Guidance context should have the same data with these modifications:
|
|
||||||
//
|
|
||||||
// * Replace the initial prompt
|
|
||||||
// * Shift everything by guidance_offset
|
|
||||||
embd_guidance = guidance_inp;
|
|
||||||
if (embd.begin() + original_prompt_len < embd.end()) {
|
|
||||||
embd_guidance.insert(
|
|
||||||
embd_guidance.end(),
|
|
||||||
embd.begin() + original_prompt_len,
|
|
||||||
embd.end()
|
|
||||||
);
|
|
||||||
}
|
|
||||||
|
|
||||||
input_buf = embd_guidance.data();
|
|
||||||
input_size = embd_guidance.size();
|
|
||||||
|
|
||||||
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance).c_str());
|
|
||||||
} else {
|
|
||||||
input_buf = embd.data();
|
|
||||||
input_size = embd.size();
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < input_size; i += params.n_batch) {
|
|
||||||
int n_eval = std::min(input_size - i, params.n_batch);
|
|
||||||
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
|
|
||||||
LOG_TEE("%s : failed to eval\n", __func__);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
n_past_guidance += n_eval;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
|
||||||
int n_eval = (int) embd.size() - i;
|
|
||||||
if (n_eval > params.n_batch) {
|
|
||||||
n_eval = params.n_batch;
|
|
||||||
}
|
|
||||||
|
|
||||||
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd).c_str());
|
|
||||||
|
|
||||||
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
|
||||||
LOG_TEE("%s : failed to eval\n", __func__);
|
|
||||||
return 1;
|
|
||||||
}
|
|
||||||
|
|
||||||
n_past += n_eval;
|
|
||||||
|
|
||||||
LOG("n_past = %d\n", n_past);
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!embd.empty() && !path_session.empty()) {
|
|
||||||
session_tokens.insert(session_tokens.end(), embd.begin(), embd.end());
|
|
||||||
n_session_consumed = session_tokens.size();
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
embd.clear();
|
|
||||||
embd_guidance.clear();
|
|
||||||
|
|
||||||
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
|
||||||
// optionally save the session on first sample (for faster prompt loading next time)
|
|
||||||
if (!path_session.empty() && need_to_save_session && !params.prompt_cache_ro) {
|
|
||||||
need_to_save_session = false;
|
|
||||||
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
|
||||||
|
|
||||||
LOG("saved session to %s\n", path_session.c_str());
|
|
||||||
}
|
|
||||||
|
|
||||||
const llama_token id = llama_sampling_sample(ctx_sampling, ctx, ctx_guidance);
|
|
||||||
|
|
||||||
llama_sampling_accept(ctx_sampling, ctx, id, true);
|
|
||||||
|
|
||||||
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, ctx_sampling->prev).c_str());
|
|
||||||
|
|
||||||
embd.push_back(id);
|
|
||||||
|
|
||||||
// echo this to console
|
|
||||||
input_echo = true;
|
|
||||||
|
|
||||||
// decrement remaining sampling budget
|
|
||||||
--n_remain;
|
|
||||||
|
|
||||||
LOG("n_remain: %d\n", n_remain);
|
|
||||||
} else {
|
|
||||||
// some user input remains from prompt or interaction, forward it to processing
|
|
||||||
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
|
||||||
while ((int) embd_inp.size() > n_consumed) {
|
|
||||||
embd.push_back(embd_inp[n_consumed]);
|
|
||||||
|
|
||||||
// push the prompt in the sampling context in order to apply repetition penalties later
|
|
||||||
// for the prompt, we don't apply grammar rules
|
|
||||||
llama_sampling_accept(ctx_sampling, ctx, embd_inp[n_consumed], false);
|
|
||||||
|
|
||||||
++n_consumed;
|
|
||||||
if ((int) embd.size() >= params.n_batch) {
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// display text
|
|
||||||
if (input_echo) {
|
|
||||||
for (auto id : embd) {
|
|
||||||
const std::string token_str = llama_token_to_piece(ctx, id);
|
|
||||||
printf("%s", token_str.c_str());
|
|
||||||
|
|
||||||
if (embd.size() > 1) {
|
|
||||||
input_tokens.push_back(id);
|
|
||||||
} else {
|
|
||||||
output_tokens.push_back(id);
|
|
||||||
output_ss << token_str;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
fflush(stdout);
|
|
||||||
}
|
|
||||||
// reset color to default if there is no pending user input
|
|
||||||
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
|
||||||
console::set_display(console::reset);
|
|
||||||
}
|
|
||||||
|
|
||||||
// if not currently processing queued inputs;
|
|
||||||
if ((int) embd_inp.size() <= n_consumed) {
|
|
||||||
// check for reverse prompt in the last n_prev tokens
|
|
||||||
if (!params.antiprompt.empty()) {
|
|
||||||
const int n_prev = 32;
|
|
||||||
const std::string last_output = llama_sampling_prev_str(ctx_sampling, ctx, n_prev);
|
|
||||||
|
|
||||||
is_antiprompt = false;
|
|
||||||
// Check if each of the reverse prompts appears at the end of the output.
|
|
||||||
// If we're not running interactively, the reverse prompt might be tokenized with some following characters
|
|
||||||
// so we'll compensate for that by widening the search window a bit.
|
|
||||||
for (std::string & antiprompt : params.antiprompt) {
|
|
||||||
size_t extra_padding = params.interactive ? 0 : 2;
|
|
||||||
size_t search_start_pos = last_output.length() > static_cast<size_t>(antiprompt.length() + extra_padding)
|
|
||||||
? last_output.length() - static_cast<size_t>(antiprompt.length() + extra_padding)
|
|
||||||
: 0;
|
|
||||||
|
|
||||||
if (last_output.find(antiprompt, search_start_pos) != std::string::npos) {
|
|
||||||
if (params.interactive) {
|
|
||||||
is_interacting = true;
|
|
||||||
}
|
|
||||||
is_antiprompt = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (is_antiprompt) {
|
|
||||||
LOG("found antiprompt: %s\n", last_output.c_str());
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// deal with end of text token in interactive mode
|
|
||||||
if (llama_sampling_last(ctx_sampling) == llama_token_eos(model)) {
|
|
||||||
LOG("found EOS token\n");
|
|
||||||
|
|
||||||
if (params.interactive) {
|
|
||||||
if (!params.antiprompt.empty()) {
|
|
||||||
// tokenize and inject first reverse prompt
|
|
||||||
const auto first_antiprompt = ::llama_tokenize(ctx, params.antiprompt.front(), false, true);
|
|
||||||
embd_inp.insert(embd_inp.end(), first_antiprompt.begin(), first_antiprompt.end());
|
|
||||||
is_antiprompt = true;
|
|
||||||
}
|
|
||||||
|
|
||||||
is_interacting = true;
|
|
||||||
printf("\n");
|
|
||||||
} else if (params.instruct) {
|
|
||||||
is_interacting = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (n_past > 0 && is_interacting) {
|
|
||||||
LOG("waiting for user input\n");
|
|
||||||
|
|
||||||
if (params.instruct) {
|
|
||||||
printf("\n> ");
|
|
||||||
}
|
|
||||||
|
|
||||||
if (params.input_prefix_bos) {
|
|
||||||
LOG("adding input prefix BOS token\n");
|
|
||||||
embd_inp.push_back(llama_token_bos(model));
|
|
||||||
}
|
|
||||||
|
|
||||||
std::string buffer;
|
|
||||||
if (!params.input_prefix.empty()) {
|
|
||||||
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
|
||||||
printf("%s", params.input_prefix.c_str());
|
|
||||||
}
|
|
||||||
|
|
||||||
// color user input only
|
|
||||||
console::set_display(console::user_input);
|
|
||||||
|
|
||||||
std::string line;
|
|
||||||
bool another_line = true;
|
|
||||||
do {
|
|
||||||
another_line = console::readline(line, params.multiline_input);
|
|
||||||
buffer += line;
|
|
||||||
} while (another_line);
|
|
||||||
|
|
||||||
// done taking input, reset color
|
|
||||||
console::set_display(console::reset);
|
|
||||||
|
|
||||||
// Add tokens to embd only if the input buffer is non-empty
|
|
||||||
// Entering a empty line lets the user pass control back
|
|
||||||
if (buffer.length() > 1) {
|
|
||||||
// append input suffix if any
|
|
||||||
if (!params.input_suffix.empty()) {
|
|
||||||
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
|
||||||
printf("%s", params.input_suffix.c_str());
|
|
||||||
}
|
|
||||||
|
|
||||||
LOG("buffer: '%s'\n", buffer.c_str());
|
|
||||||
|
|
||||||
const size_t original_size = embd_inp.size();
|
|
||||||
|
|
||||||
// instruct mode: insert instruction prefix
|
|
||||||
if (params.instruct && !is_antiprompt) {
|
|
||||||
LOG("inserting instruction prefix\n");
|
|
||||||
n_consumed = embd_inp.size();
|
|
||||||
embd_inp.insert(embd_inp.end(), inp_pfx.begin(), inp_pfx.end());
|
|
||||||
}
|
|
||||||
if (params.escape) {
|
|
||||||
process_escapes(buffer);
|
|
||||||
}
|
|
||||||
|
|
||||||
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);
|
|
||||||
const auto line_inp = ::llama_tokenize(ctx, buffer, false, false);
|
|
||||||
const auto line_sfx = ::llama_tokenize(ctx, params.input_suffix, false, true);
|
|
||||||
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp).c_str());
|
|
||||||
|
|
||||||
embd_inp.insert(embd_inp.end(), line_pfx.begin(), line_pfx.end());
|
|
||||||
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
|
||||||
embd_inp.insert(embd_inp.end(), line_sfx.begin(), line_sfx.end());
|
|
||||||
|
|
||||||
// instruct mode: insert response suffix
|
|
||||||
if (params.instruct) {
|
|
||||||
LOG("inserting instruction suffix\n");
|
|
||||||
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
|
||||||
}
|
|
||||||
|
|
||||||
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
|
||||||
const llama_token token = embd_inp[i];
|
|
||||||
output_tokens.push_back(token);
|
|
||||||
output_ss << llama_token_to_piece(ctx, token);
|
|
||||||
}
|
|
||||||
|
|
||||||
n_remain -= line_inp.size();
|
|
||||||
LOG("n_remain: %d\n", n_remain);
|
|
||||||
} else {
|
|
||||||
LOG("empty line, passing control back\n");
|
|
||||||
}
|
|
||||||
|
|
||||||
input_echo = false; // do not echo this again
|
|
||||||
}
|
|
||||||
|
|
||||||
if (n_past > 0) {
|
|
||||||
if (is_interacting) {
|
|
||||||
llama_sampling_reset(ctx_sampling);
|
|
||||||
}
|
|
||||||
is_interacting = false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
// end of text token
|
|
||||||
if (!embd.empty() && embd.back() == llama_token_eos(model) && !(params.instruct || params.interactive)) {
|
|
||||||
LOG_TEE(" [end of text]\n");
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
|
|
||||||
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
|
||||||
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
|
|
||||||
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
|
|
||||||
n_remain = params.n_predict;
|
|
||||||
is_interacting = true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
if (!path_session.empty() && params.prompt_cache_all && !params.prompt_cache_ro) {
|
|
||||||
LOG_TEE("\n%s: saving final output to session file '%s'\n", __func__, path_session.c_str());
|
|
||||||
llama_save_session_file(ctx, path_session.c_str(), session_tokens.data(), session_tokens.size());
|
|
||||||
}
|
|
||||||
|
|
||||||
llama_print_timings(ctx);
|
|
||||||
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
|
||||||
|
|
||||||
if (ctx_guidance) { llama_free(ctx_guidance); }
|
|
||||||
llama_free(ctx);
|
|
||||||
llama_free_model(model);
|
|
||||||
|
|
||||||
llama_sampling_free(ctx_sampling);
|
|
||||||
llama_backend_free();
|
|
||||||
|
|
||||||
#ifndef LOG_DISABLE_LOGS
|
|
||||||
LOG_TEE("Log end\n");
|
|
||||||
#endif // LOG_DISABLE_LOGS
|
|
||||||
|
|
||||||
return 0;
|
|
||||||
}
|
|
|
@ -94,8 +94,8 @@ int main(int argc, char ** argv) {
|
||||||
ctx_params.seed = seed;
|
ctx_params.seed = seed;
|
||||||
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
|
ctx_params.n_ctx = llama_n_ctx_train(model)*n_grp + n_keep;
|
||||||
ctx_params.n_batch = 512;
|
ctx_params.n_batch = 512;
|
||||||
ctx_params.n_threads = params.n_threads;
|
ctx_params.n_threads = params.n_threads[0];
|
||||||
ctx_params.n_threads_batch = params.n_threads_batch == -1 ? params.n_threads : params.n_threads_batch;
|
ctx_params.n_threads_batch = params.n_threads_batch[0] == -1 ? params.n_threads[0] : params.n_threads_batch[0];
|
||||||
|
|
||||||
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
|
GGML_ASSERT(ctx_params.n_batch % n_grp == 0 && "n_batch must be divisible by n_grp");
|
||||||
|
|
||||||
|
|
|
@ -2409,7 +2409,7 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.n_threads = std::stoi(argv[i]);
|
params.n_threads[0] = std::stoi(argv[i]);
|
||||||
} else if (arg == "--grp-attn-n" || arg == "-gan") {
|
} else if (arg == "--grp-attn-n" || arg == "-gan") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
|
@ -2429,7 +2429,7 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
params.n_threads_batch = std::stoi(argv[i]);
|
params.n_threads_batch[0] = std::stoi(argv[i]);
|
||||||
} else if (arg == "--threads-http") {
|
} else if (arg == "--threads-http") {
|
||||||
if (++i >= argc) {
|
if (++i >= argc) {
|
||||||
invalid_param = true;
|
invalid_param = true;
|
||||||
|
|
|
@ -71,7 +71,7 @@ int main(int argc, char ** argv) {
|
||||||
// load the draft model
|
// load the draft model
|
||||||
params.model = params.model_draft;
|
params.model = params.model_draft;
|
||||||
params.n_gpu_layers = params.n_gpu_layers_draft;
|
params.n_gpu_layers = params.n_gpu_layers_draft;
|
||||||
if (params.n_threads_draft > 0) {
|
if (params.n_threads_draft.size() > 0) {
|
||||||
params.n_threads = params.n_threads_draft;
|
params.n_threads = params.n_threads_draft;
|
||||||
}
|
}
|
||||||
params.n_threads_batch = params.n_threads_batch_draft;
|
params.n_threads_batch = params.n_threads_batch_draft;
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue