server : fix logprobs, make it OAI-compatible (#10783)

* server : fix logprobs, make it openai-compatible

* update docs

* add std::log

* return pre-sampling p

* sort before apply softmax

* add comment

* fix test

* set p for sampled token

* update docs

* add --multi-token-probs

* update docs

* add `post_sampling_probs` option

* update docs [no ci]

* remove --multi-token-probs

* "top_probs" with "post_sampling_probs"

* resolve review comments

* rename struct token_prob to prob_info

* correct comment placement

* fix setting prob for sampled token
This commit is contained in:
Xuan Son Nguyen 2024-12-19 15:40:08 +01:00 committed by GitHub
parent a3c33b1dce
commit 57bb2c40cd
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
6 changed files with 396 additions and 107 deletions

View file

@ -92,7 +92,6 @@ def test_chat_completion_with_openai_library():
seed=42,
temperature=0.8,
)
print(res)
assert res.choices[0].finish_reason == "length"
assert res.choices[0].message.content is not None
assert match_regex("(Suddenly)+", res.choices[0].message.content)
@ -163,3 +162,64 @@ def test_chat_completion_with_timings_per_token():
assert "predicted_per_second" in data["timings"]
assert "predicted_n" in data["timings"]
assert data["timings"]["predicted_n"] <= 10
def test_logprobs():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
res = client.chat.completions.create(
model="gpt-3.5-turbo-instruct",
temperature=0.0,
messages=[
{"role": "system", "content": "Book"},
{"role": "user", "content": "What is the best book"},
],
max_tokens=5,
logprobs=True,
top_logprobs=10,
)
output_text = res.choices[0].message.content
aggregated_text = ''
assert res.choices[0].logprobs is not None
assert res.choices[0].logprobs.content is not None
for token in res.choices[0].logprobs.content:
aggregated_text += token.token
assert token.logprob <= 0.0
assert token.bytes is not None
assert len(token.top_logprobs) > 0
assert aggregated_text == output_text
def test_logprobs_stream():
global server
server.start()
client = OpenAI(api_key="dummy", base_url=f"http://{server.server_host}:{server.server_port}")
res = client.chat.completions.create(
model="gpt-3.5-turbo-instruct",
temperature=0.0,
messages=[
{"role": "system", "content": "Book"},
{"role": "user", "content": "What is the best book"},
],
max_tokens=5,
logprobs=True,
top_logprobs=10,
stream=True,
)
output_text = ''
aggregated_text = ''
for data in res:
choice = data.choices[0]
if choice.finish_reason is None:
if choice.delta.content:
output_text += choice.delta.content
assert choice.logprobs is not None
assert choice.logprobs.content is not None
for token in choice.logprobs.content:
aggregated_text += token.token
assert token.logprob <= 0.0
assert token.bytes is not None
assert token.top_logprobs is not None
assert len(token.top_logprobs) > 0
assert aggregated_text == output_text

View file

@ -270,9 +270,68 @@ def test_n_probs():
assert "completion_probabilities" in res.body
assert len(res.body["completion_probabilities"]) == 5
for tok in res.body["completion_probabilities"]:
assert "probs" in tok
assert len(tok["probs"]) == 10
for prob in tok["probs"]:
assert "prob" in prob
assert "tok_str" in prob
assert 0.0 <= prob["prob"] <= 1.0
assert "id" in tok and tok["id"] > 0
assert "token" in tok and type(tok["token"]) == str
assert "logprob" in tok and tok["logprob"] <= 0.0
assert "bytes" in tok and type(tok["bytes"]) == list
assert len(tok["top_logprobs"]) == 10
for prob in tok["top_logprobs"]:
assert "id" in prob and prob["id"] > 0
assert "token" in prob and type(prob["token"]) == str
assert "logprob" in prob and prob["logprob"] <= 0.0
assert "bytes" in prob and type(prob["bytes"]) == list
def test_n_probs_stream():
global server
server.start()
res = server.make_stream_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"n_probs": 10,
"temperature": 0.0,
"n_predict": 5,
"stream": True,
})
for data in res:
if data["stop"] == False:
assert "completion_probabilities" in data
assert len(data["completion_probabilities"]) == 1
for tok in data["completion_probabilities"]:
assert "id" in tok and tok["id"] > 0
assert "token" in tok and type(tok["token"]) == str
assert "logprob" in tok and tok["logprob"] <= 0.0
assert "bytes" in tok and type(tok["bytes"]) == list
assert len(tok["top_logprobs"]) == 10
for prob in tok["top_logprobs"]:
assert "id" in prob and prob["id"] > 0
assert "token" in prob and type(prob["token"]) == str
assert "logprob" in prob and prob["logprob"] <= 0.0
assert "bytes" in prob and type(prob["bytes"]) == list
def test_n_probs_post_sampling():
global server
server.start()
res = server.make_request("POST", "/completion", data={
"prompt": "I believe the meaning of life is",
"n_probs": 10,
"temperature": 0.0,
"n_predict": 5,
"post_sampling_probs": True,
})
assert res.status_code == 200
assert "completion_probabilities" in res.body
assert len(res.body["completion_probabilities"]) == 5
for tok in res.body["completion_probabilities"]:
assert "id" in tok and tok["id"] > 0
assert "token" in tok and type(tok["token"]) == str
assert "prob" in tok and 0.0 < tok["prob"] <= 1.0
assert "bytes" in tok and type(tok["bytes"]) == list
assert len(tok["top_probs"]) == 10
for prob in tok["top_probs"]:
assert "id" in prob and prob["id"] > 0
assert "token" in prob and type(prob["token"]) == str
assert "prob" in prob and 0.0 <= prob["prob"] <= 1.0
assert "bytes" in prob and type(prob["bytes"]) == list
# because the test model usually output token with either 100% or 0% probability, we need to check all the top_probs
assert any(prob["prob"] == 1.0 for prob in tok["top_probs"])

View file

@ -50,6 +50,8 @@ def test_embedding_multiple():
@pytest.mark.parametrize(
"input,is_multi_prompt",
[
# do not crash on empty input
("", False),
# single prompt
("string", False),
([12, 34, 56], False),
@ -103,6 +105,7 @@ def test_embedding_pooling_none_oai():
# /v1/embeddings does not support pooling type 'none'
assert res.status_code == 400
assert "error" in res.body
def test_embedding_openai_library_single():