remove feature files

This commit is contained in:
Xuan Son Nguyen 2024-11-20 22:18:22 +01:00
parent c432a82295
commit 58cbcd2371
15 changed files with 0 additions and 2465 deletions

View file

@ -1,66 +0,0 @@
@llama.cpp
@ctx_shift
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model file test-model.gguf
And a model alias tinyllama-2
And BOS token is 1
And 42 as server seed
And 256 KV cache size
And 32 as batch size
And 2 slots
# the prompt is 301 tokens
# the slot context is 256/2 = 128 tokens
# the prompt is truncated to keep the last 109 tokens
# 64 tokens are generated thanks to shifting the context when it gets full
Scenario: Inference with context shift
And 64 server max tokens to predict
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
"""
And a completion request with no api error
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
And the completion is truncated
And 109 prompt tokens are processed
Scenario Outline: Inference without context shift
And <n_predict> server max tokens to predict
And disable context shifting
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Hi how are you
"""
And a completion request with no api error
Then <n_token_output> tokens are predicted matching twind|Anna
And the completion is <truncated> truncated
And 8 prompt tokens are processed
Examples:
| n_predict | n_token_output | truncated |
| 64 | 64 | not |
| -1 | 120 | |
Scenario: Inference without context shift (expected error: prompt too long)
And disable context shifting
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
"""
And a completion request with 400 api error

View file

@ -1,113 +0,0 @@
@llama.cpp
@embeddings
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model url https://huggingface.co/ggml-org/models/resolve/main/bert-bge-small/ggml-model-f16.gguf
And a model file bert-bge-small.gguf
And a model alias bert-bge-small
And 42 as server seed
And 2 slots
# the bert-bge-small model has context size of 512
# since the generated prompts are as big as the batch size, we need to set the batch size to <= 512
# ref: https://huggingface.co/BAAI/bge-small-en-v1.5/blob/5c38ec7c405ec4b44b94cc5a9bb96e735b38267a/config.json#L20
And 128 as batch size
And 128 as ubatch size
And 512 KV cache size
And enable embeddings endpoint
Then the server is starting
Then the server is healthy
Scenario: Embedding
When embeddings are computed for:
"""
What is the capital of Bulgaria ?
"""
Then embeddings are generated
Scenario: Embedding (error: prompt too long)
When embeddings are computed for:
"""
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
"""
And embeddings request with 500 api error
Scenario: OAI Embeddings compatibility
Given a model bert-bge-small
When an OAI compatible embeddings computation request for:
"""
What is the capital of Spain ?
"""
Then embeddings are generated
Scenario: OAI Embeddings compatibility with multiple inputs
Given a model bert-bge-small
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
When an OAI compatible embeddings computation request for multiple inputs
Then embeddings are generated
Scenario: Multi users embeddings
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
Given concurrent embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: Multi users OAI compatibility embeddings
Given a prompt:
"""
In which country Paris is located ?
"""
And a prompt:
"""
Is Madrid the capital of Spain ?
"""
And a prompt:
"""
What is the biggest US city ?
"""
And a prompt:
"""
What is the capital of Bulgaria ?
"""
And a model bert-bge-small
Given concurrent OAI embedding requests
Then the server is busy
Then the server is idle
Then all embeddings are generated
Scenario: All embeddings should be the same
Given 10 fixed prompts
And a model bert-bge-small
Given concurrent OAI embedding requests
Then all embeddings are the same

View file

@ -1,71 +0,0 @@
import os
import signal
import socket
import sys
import time
import traceback
from contextlib import closing
from subprocess import TimeoutExpired
def before_scenario(context, scenario):
context.debug = 'DEBUG' in os.environ and os.environ['DEBUG'] == 'ON'
if context.debug:
print("DEBUG=ON")
print(f"\x1b[33;42mStarting new scenario: {scenario.name}!\x1b[0m")
port = 8080
if 'PORT' in os.environ:
port = int(os.environ['PORT'])
if is_server_listening("localhost", port):
assert False, "Server already started"
def after_scenario(context, scenario):
try:
if 'server_process' not in context or context.server_process is None:
return
if scenario.status == "failed":
if 'GITHUB_ACTIONS' in os.environ:
print(f"\x1b[33;101mSCENARIO FAILED: {scenario.name} server logs:\x1b[0m\n")
if os.path.isfile('llama.log'):
with closing(open('llama.log', 'r')) as f:
for line in f:
print(line)
if not is_server_listening(context.server_fqdn, context.server_port):
print("\x1b[33;101mERROR: Server stopped listening\x1b[0m")
if context.server_process.poll() is not None:
assert False, f"Server not running pid={context.server_process.pid} ..."
server_graceful_shutdown(context) # SIGINT
try:
context.server_process.wait(0.5)
except TimeoutExpired:
print(f"server still alive after 500ms, force-killing pid={context.server_process.pid} ...")
context.server_process.kill() # SIGKILL
context.server_process.wait()
while is_server_listening(context.server_fqdn, context.server_port):
time.sleep(0.1)
except Exception:
print("ignoring error in after_scenario:")
traceback.print_exc(file=sys.stdout)
def server_graceful_shutdown(context):
print(f"shutting down server pid={context.server_process.pid} ...")
if os.name == 'nt':
interrupt = signal.CTRL_C_EVENT
else:
interrupt = signal.SIGINT
context.server_process.send_signal(interrupt)
def is_server_listening(server_fqdn, server_port):
with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock:
result = sock.connect_ex((server_fqdn, server_port))
_is_server_listening = result == 0
if _is_server_listening:
print(f"server is listening on {server_fqdn}:{server_port}...")
return _is_server_listening

View file

@ -1,36 +0,0 @@
@llama.cpp
@infill
Feature: llama.cpp server
# The current model is made by adding FIM tokens to the existing stories260K
# We may want to use a better model in the future, maybe something like SmolLM 360M
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K-infill.gguf from HF repo ggml-org/models
And a model file test-model-infill.gguf
And a model alias tinyllama-infill
And 42 as server seed
And 1024 as batch size
And 1024 as ubatch size
And 2048 KV cache size
And 64 max tokens to predict
And 0.0 temperature
Then the server is starting
Then the server is healthy
Scenario: Infill without input_extra
Given a prompt "Complete this"
And an infill input extra none none
And an infill input prefix "#include <cstdio>\n#include \"llama.h\"\n\nint main() {\n int n_threads = llama_"
And an infill input suffix "}\n"
And an infill request with no api error
Then 64 tokens are predicted matching One|day|she|saw|big|scary|bird
Scenario: Infill with input_extra
Given a prompt "Complete this"
And an infill input extra "llama.h" "LLAMA_API int32_t llama_n_threads();\n"
And an infill input prefix "#include <cstdio>\n#include \"llama.h\"\n\nint main() {\n int n_threads = llama_"
And an infill input suffix "}\n"
And an infill request with no api error
Then 64 tokens are predicted matching cuts|Jimmy|mom|came|into|the|room"

View file

@ -1,5 +0,0 @@
# List of ongoing issues
# run with: DEBUG=ON ./tests.sh --no-skipped --tags bug
@bug
Feature: Issues
# No confirmed issue at the moment

View file

@ -1,36 +0,0 @@
@llama.cpp
@lora
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model url https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/stories15M_MOE-F16.gguf
And a model file stories15M_MOE-F16.gguf
And a model alias stories15M_MOE
And a lora adapter file from https://huggingface.co/ggml-org/stories15M_MOE/resolve/main/moe_shakespeare15M.gguf
And 42 as server seed
And 1024 as batch size
And 1024 as ubatch size
And 2048 KV cache size
And 64 max tokens to predict
And 0.0 temperature
Then the server is starting
Then the server is healthy
Scenario: Completion LoRA disabled
Given switch off lora adapter 0
Given a prompt:
"""
Look in thy glass
"""
And a completion request with no api error
Then 64 tokens are predicted matching little|girl|three|years|old
Scenario: Completion LoRA enabled
Given switch on lora adapter 0
Given a prompt:
"""
Look in thy glass
"""
And a completion request with no api error
Then 64 tokens are predicted matching eye|love|glass|sun

View file

@ -1,131 +0,0 @@
@llama.cpp
@parallel
Feature: Parallel
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
And a model file test-model-00001-of-00003.gguf
And 42 as server seed
And 128 as batch size
And 256 KV cache size
And 2 slots
And continuous batching
Then the server is starting
Then the server is healthy
Scenario Outline: Multi users completion
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And <n_predict> max tokens to predict
Given concurrent completion requests
Then the server is busy
Then the server is idle
And all slots are idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| n_predict |
| 128 |
Scenario Outline: Multi users OAI completions compatibility
Given a system prompt You are a writer.
And a model tinyllama-2
Given a prompt:
"""
Write a very long book.
"""
And a prompt:
"""
Write another a poem.
"""
And <n_predict> max tokens to predict
And streaming is <streaming>
Given concurrent OAI completions requests
Then the server is busy
Then the server is idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| streaming | n_predict |
| disabled | 128 |
| enabled | 64 |
Scenario Outline: Multi users OAI completions compatibility no v1
Given a system prompt You are a writer.
And a model tinyllama-2
Given a prompt:
"""
Write a very long book.
"""
And a prompt:
"""
Write another a poem.
"""
And <n_predict> max tokens to predict
And streaming is <streaming>
Given concurrent OAI completions requests no v1
Then the server is busy
Then the server is idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| streaming | n_predict |
| disabled | 128 |
| enabled | 64 |
Scenario Outline: Multi users with number of prompts exceeding number of slots
Given a system prompt You are a writer.
And a model tinyllama-2
Given a prompt:
"""
Write a very long book.
"""
And a prompt:
"""
Write another a poem.
"""
And a prompt:
"""
What is LLM?
"""
And a prompt:
"""
The sky is blue and I love it.
"""
And <n_predict> max tokens to predict
And streaming is <streaming>
Given concurrent OAI completions requests
Then the server is busy
Then the server is idle
Then all prompts are predicted with <n_predict> tokens
Examples:
| streaming | n_predict |
| disabled | 128 |
| enabled | 64 |
Scenario: Multi users with total number of tokens to predict exceeds the KV Cache size #3969
Given a prompt:
"""
Write a very long story about AI.
"""
And a prompt:
"""
Write another very long music lyrics.
"""
And a prompt:
"""
Write a very long poem.
"""
And a prompt:
"""
Write a very long joke.
"""
And 128 max tokens to predict
Given concurrent completion requests
Then the server is busy
Then the server is idle
Then all prompts are predicted

View file

@ -1,56 +0,0 @@
# run with: ./tests.sh --no-skipped --tags passkey
@passkey
@slow
Feature: Passkey / Self-extend with context shift
Background: Server startup
Given a server listening on localhost:8080
# Generates a long text of junk and inserts a secret passkey number inside it.
# Then we query the LLM for the secret passkey.
# see #3856 and #4810
Scenario Outline: Passkey
Given a model file <hf_file> from HF repo <hf_repo>
And <n_batch> as batch size
And <n_junk> as number of junk
And <n_predicted> server max tokens to predict
And 42 as seed
And 0.0 temperature
And <n_ctx> KV cache size
And 1 slots
And <n_ga> group attention factor to extend context size through self-extend
And <n_ga_w> group attention width to extend context size through self-extend
# Can be override with N_GPU_LAYERS
And <ngl> GPU offloaded layers
Then the server is starting
# Higher timeout because the model may need to be downloaded from the internet
Then the server is healthy with timeout 120 seconds
Given available models
Then model 0 is trained on <n_ctx_train> tokens context
Given a prefix prompt:
"""
here is an important info hidden inside a lot of irrelevant text. Find it and memorize them. I will quiz you about the important information there.
"""
And a passkey prompt template:
"""
The pass key is <passkey> Remember it. <passkey> is the pass key.
"""
And a junk suffix prompt:
"""
The grass is green. The sky is blue. The sun is yellow. Here we go. There and back again.
"""
And a suffix prompt:
"""
What is the pass key? The pass key is
"""
Given a "<passkey>" passkey challenge prompt with the passkey inserted every <i_pos> junk
And a completion request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
Examples:
| hf_repo | hf_file | n_ctx_train | ngl | n_ctx | n_batch | n_ga | n_ga_w | n_junk | i_pos | passkey | n_predicted | re_content |
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 4 | 512 | 250 | 50 | 42 | 1 | 42 |
| TheBloke/phi-2-GGUF | phi-2.Q4_K_M.gguf | 2048 | 5 | 8192 | 512 | 2 | 512 | 250 | 50 | 42 | 1 | \b((?!42)\w)+\b |
#| TheBloke/Llama-2-7B-GGUF | llama-2-7b.Q2_K.gguf | 4096 | 3 | 16384 | 512 | 4 | 512 | 500 | 300 | 1234 | 5 | 1234 |
#| TheBloke/Mixtral-8x7B-v0.1-GGUF | mixtral-8x7b-v0.1.Q2_K.gguf | 32768 | 2 | 16384 | 512 | 4 | 512 | 500 | 100 | 0987 | 5 | 0
# 987 |

View file

@ -1,42 +0,0 @@
@llama.cpp
@rerank
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model url https://huggingface.co/ggml-org/models/resolve/main/jina-reranker-v1-tiny-en/ggml-model-f16.gguf
And a model file jina-reranker-v1-tiny-en.gguf
And a model alias jina-reranker-v1-tiny-en
And 42 as server seed
And 2 slots
And 512 as batch size
And 512 as ubatch size
And 512 KV cache size
And enable reranking endpoint
Then the server is starting
Then the server is healthy
Scenario: Rerank
Given a rerank query:
"""
Machine learning is
"""
And a rerank document:
"""
A machine is a physical system that uses power to apply forces and control movement to perform an action. The term is commonly applied to artificial devices, such as those employing engines or motors, but also to natural biological macromolecules, such as molecular machines.
"""
And a rerank document:
"""
Learning is the process of acquiring new understanding, knowledge, behaviors, skills, values, attitudes, and preferences. The ability to learn is possessed by humans, non-human animals, and some machines; there is also evidence for some kind of learning in certain plants.
"""
And a rerank document:
"""
Machine learning is a field of study in artificial intelligence concerned with the development and study of statistical algorithms that can learn from data and generalize to unseen data, and thus perform tasks without explicit instructions.
"""
And a rerank document:
"""
Paris, capitale de la France, est une grande ville européenne et un centre mondial de l'art, de la mode, de la gastronomie et de la culture. Son paysage urbain du XIXe siècle est traversé par de larges boulevards et la Seine.
"""
When reranking request
Then reranking results are returned
Then reranking highest score is index 2 and lowest score is index 3

View file

@ -1,118 +0,0 @@
@llama.cpp
@results
Feature: Results
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/split/stories15M-00001-of-00003.gguf from HF repo ggml-org/models
And a model file test-model-00001-of-00003.gguf
And 128 as batch size
And 1024 KV cache size
And 128 max tokens to predict
And continuous batching
Scenario Outline: consistent results with same seed
Given <n_slots> slots
And 1.0 temperature
Then the server is starting
Then the server is healthy
Given 4 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42
Given concurrent completion requests
Then the server is busy
Then the server is idle
And all slots are idle
Then all predictions are equal
Examples:
| n_slots |
| 1 |
# FIXME: unified KV cache nondeterminism
# | 2 |
Scenario Outline: different results with different seed
Given <n_slots> slots
And 1.0 temperature
Then the server is starting
Then the server is healthy
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 42
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 43
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 44
Given 1 prompts "Title: Little Red Riding Hood But In Space\n\nSummary:" with seed 45
Given concurrent completion requests
Then the server is busy
Then the server is idle
And all slots are idle
Then all predictions are different
Examples:
| n_slots |
| 1 |
| 2 |
Scenario Outline: consistent results with same seed and varying batch size
Given 4 slots
And <temp> temperature
# And 0 as draft
Then the server is starting
Then the server is healthy
Given 1 prompts "Write a very long story about AI." with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Given <n_parallel> prompts "Write a very long story about AI." with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Then all predictions are equal
Examples:
| n_parallel | temp |
| 1 | 0.0 |
| 1 | 1.0 |
# FIXME: unified KV cache nondeterminism
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574
# and https://github.com/ggerganov/llama.cpp/pull/7347 .
# | 2 | 0.0 |
# | 4 | 0.0 |
# | 2 | 1.0 |
# | 4 | 1.0 |
Scenario Outline: consistent token probs with same seed and prompt
Given <n_slots> slots
And <n_kv> KV cache size
And 1.0 temperature
And <n_predict> max tokens to predict
Then the server is starting
Then the server is healthy
Given 1 prompts "The meaning of life is" with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Given <n_parallel> prompts "The meaning of life is" with seed 42
And concurrent completion requests
# Then the server is busy # Not all slots will be utilized.
Then the server is idle
And all slots are idle
Then all token probabilities are equal
Examples:
| n_slots | n_kv | n_predict | n_parallel |
| 4 | 1024 | 1 | 1 |
# FIXME: unified KV cache nondeterminism
# See https://github.com/ggerganov/whisper.cpp/issues/1941#issuecomment-1986923227
# and https://github.com/ggerganov/llama.cpp/pull/6122#discussion_r1531405574
# and https://github.com/ggerganov/llama.cpp/pull/7347 .
# | 4 | 1024 | 1 | 4 |
# | 4 | 1024 | 100 | 1 |
# This test still fails even the above patches; the first token probabilities are already different.
# | 4 | 1024 | 100 | 4 |

View file

@ -1,68 +0,0 @@
@llama.cpp
@security
Feature: Security
Background: Server startup with an api key defined
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a server api key THIS_IS_THE_KEY
Then the server is starting
Then the server is healthy
Scenario Outline: Completion with some user api key
Given a prompt test
And a user api key <api_key>
And 4 max tokens to predict
And a completion request with <api_error> api error
Examples: Prompts
| api_key | api_error |
| THIS_IS_THE_KEY | no |
| THIS_IS_THE_KEY | no |
| hackeme | raised |
| | raised |
Scenario Outline: OAI Compatibility
Given a system prompt test
And a user prompt test
And a model test
And 2 max tokens to predict
And streaming is disabled
And a user api key <api_key>
Given an OAI compatible chat completions request with <api_error> api error
Examples: Prompts
| api_key | api_error |
| THIS_IS_THE_KEY | no |
| THIS_IS_THE_KEY | no |
| hackme | raised |
Scenario Outline: OAI Compatibility (invalid response formats)
Given a system prompt test
And a user prompt test
And a response format <response_format>
And a model test
And 2 max tokens to predict
And streaming is disabled
Given an OAI compatible chat completions request with raised api error
Examples: Prompts
| response_format |
| {"type": "sound"} |
| {"type": "json_object", "schema": 123} |
| {"type": "json_object", "schema": {"type": 123}} |
| {"type": "json_object", "schema": {"type": "hiccup"}} |
Scenario Outline: CORS Options
Given a user api key THIS_IS_THE_KEY
When an OPTIONS request is sent from <origin>
Then CORS header <cors_header> is set to <cors_header_value>
Examples: Headers
| origin | cors_header | cors_header_value |
| localhost | Access-Control-Allow-Origin | localhost |
| web.mydomain.fr | Access-Control-Allow-Origin | web.mydomain.fr |
| origin | Access-Control-Allow-Credentials | true |
| web.mydomain.fr | Access-Control-Allow-Methods | GET, POST |
| web.mydomain.fr | Access-Control-Allow-Headers | * |

View file

@ -1,120 +0,0 @@
@llama.cpp
@server
Feature: llama.cpp server
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And a model file test-model.gguf
And a model alias tinyllama-2
And BOS token is 1
And 42 as server seed
# KV Cache corresponds to the total amount of tokens
# that can be stored across all independent sequences: #4130
# see --ctx-size and #5568
And 256 KV cache size
And 32 as batch size
And 2 slots
And 64 server max tokens to predict
And prometheus compatible metrics exposed
Then the server is starting
Then the server is healthy
Scenario: Health
Then the server is ready
And all slots are idle
Scenario Outline: Completion
Given a prompt <prompt>
And <n_predict> max tokens to predict
And a completion request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
And the completion is <truncated> truncated
And <n_prompt> prompt tokens are processed
And prometheus metrics are exposed
And metric llamacpp:tokens_predicted is <n_predicted>
Examples: Prompts
| prompt | n_predict | re_content | n_prompt | n_predicted | truncated |
| I believe the meaning of life is | 8 | (read\|going)+ | 18 | 8 | not |
| Write a joke about AI from a very long prompt which will not be truncated | 256 | (princesses\|everyone\|kids\|Anna\|forest)+ | 46 | 64 | not |
Scenario: Completion prompt truncated
Given a prompt:
"""
Lorem ipsum dolor sit amet, consectetur adipiscing elit, sed do eiusmod tempor incididunt ut labore et dolore magna aliqua.
Ut enim ad minim veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex ea commodo consequat.
Duis aute irure dolor in reprehenderit in voluptate velit esse cillum dolore eu fugiat nulla pariatur.
Excepteur sint occaecat cupidatat non proident, sunt in culpa qui officia deserunt mollit anim id est laborum.
"""
And a completion request with no api error
Then 64 tokens are predicted matching fun|Annaks|popcorns|pictry|bowl
And the completion is truncated
And 109 prompt tokens are processed
Scenario Outline: OAI Compatibility
Given a model <model>
And a system prompt <system_prompt>
And a user prompt <user_prompt>
And <max_tokens> max tokens to predict
And streaming is <enable_streaming>
Given an OAI compatible chat completions request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
And <n_prompt> prompt tokens are processed
And the completion is <truncated> truncated
Examples: Prompts
| model | system_prompt | user_prompt | max_tokens | re_content | n_prompt | n_predicted | enable_streaming | truncated |
| llama-2 | Book | What is the best book | 8 | (Here\|what)+ | 77 | 8 | disabled | not |
| codellama70b | You are a coding assistant. | Write the fibonacci function in c++. | 128 | (thanks\|happy\|bird\|Annabyear)+ | -1 | 64 | enabled | |
Scenario Outline: OAI Compatibility w/ response format
Given a model test
And a system prompt test
And a user prompt test
And a response format <response_format>
And 10 max tokens to predict
Given an OAI compatible chat completions request with no api error
Then <n_predicted> tokens are predicted matching <re_content>
Examples: Prompts
| response_format | n_predicted | re_content |
| {"type": "json_object", "schema": {"const": "42"}} | 6 | "42" |
| {"type": "json_object", "schema": {"items": [{"type": "integer"}]}} | 10 | \[ -300 \] |
| {"type": "json_object"} | 10 | \{ " Jacky. |
Scenario: Tokenize / Detokenize
When tokenizing:
"""
What is the capital of France ?
"""
Then tokens can be detokenized
And tokens do not begin with BOS
Scenario: Tokenize w/ BOS
Given adding special tokens
When tokenizing:
"""
What is the capital of Germany?
"""
Then tokens begin with BOS
Given first token is removed
Then tokens can be detokenized
Scenario: Tokenize with pieces
When tokenizing with pieces:
"""
What is the capital of Germany?
"""
Then tokens are given with pieces
Scenario: Models available
Given available models
Then 1 models are supported
Then model 0 is identified by tinyllama-2
Then model 0 is trained on 128 tokens context

View file

@ -1,58 +0,0 @@
@llama.cpp
@slotsave
Feature: llama.cpp server slot management
Background: Server startup
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And prompt caching is enabled
And 2 slots
And . as slot save path
And 2048 KV cache size
And 42 as server seed
And 24 max tokens to predict
Then the server is starting
Then the server is healthy
Scenario: Save and Restore Slot
# First prompt in slot 1 should be fully processed
Given a user prompt "What is the capital of France?"
And using slot id 1
And a completion request with no api error
Then 24 tokens are predicted matching (Lily|cake)
And 22 prompt tokens are processed
When the slot 1 is saved with filename "slot1.bin"
Then the server responds with status code 200
# Since we have cache, this should only process the last tokens
Given a user prompt "What is the capital of Germany?"
And a completion request with no api error
Then 24 tokens are predicted matching (Thank|special)
And 7 prompt tokens are processed
# Loading the original cache into slot 0,
# we should only be processing 1 prompt token and get the same output
When the slot 0 is restored with filename "slot1.bin"
Then the server responds with status code 200
Given a user prompt "What is the capital of France?"
And using slot id 0
And a completion request with no api error
Then 24 tokens are predicted matching (Lily|cake)
And 1 prompt tokens are processed
# For verification that slot 1 was not corrupted during slot 0 load, same thing
Given a user prompt "What is the capital of Germany?"
And using slot id 1
And a completion request with no api error
Then 24 tokens are predicted matching (Thank|special)
And 1 prompt tokens are processed
Scenario: Erase Slot
Given a user prompt "What is the capital of France?"
And using slot id 1
And a completion request with no api error
Then 24 tokens are predicted matching (Lily|cake)
And 22 prompt tokens are processed
When the slot 1 is erased
Then the server responds with status code 200
Given a user prompt "What is the capital of France?"
And a completion request with no api error
Then 24 tokens are predicted matching (Lily|cake)
And 22 prompt tokens are processed

File diff suppressed because it is too large Load diff

View file

@ -1,25 +0,0 @@
# run with: ./tests.sh --no-skipped --tags wrong_usage
@wrong_usage
Feature: Wrong usage of llama.cpp server
#3969 The user must always set --n-predict option
# to cap the number of tokens any completion request can generate
# or pass n_predict/max_tokens in the request.
Scenario: Infinite loop
Given a server listening on localhost:8080
And a model file tinyllamas/stories260K.gguf from HF repo ggml-org/models
And 42 as server seed
And 2048 KV cache size
# Uncomment below to fix the issue
#And 64 server max tokens to predict
Then the server is starting
Then the server is healthy
Given a prompt:
"""
Go to: infinite loop
"""
# Uncomment below to fix the issue
#And 128 max tokens to predict
Given concurrent completion requests
Then the server is idle
Then all prompts are predicted