diff --git a/.devops/nix/nixpkgs-instances.nix b/.devops/nix/nixpkgs-instances.nix index 6e9872b28..4a2f81c4b 100644 --- a/.devops/nix/nixpkgs-instances.nix +++ b/.devops/nix/nixpkgs-instances.nix @@ -7,6 +7,18 @@ { system, ... }: { _module.args = { + # Note: bringing up https://zimbatm.com/notes/1000-instances-of-nixpkgs + # again, the below creates several nixpkgs instances which the + # flake-centric CLI will be forced to evaluate e.g. on `nix flake show`. + # + # This is currently "slow" and "expensive", on a certain scale. + # This also isn't "right" in that this hinders dependency injection at + # the level of flake inputs. This might get removed in the foreseeable + # future. + # + # Note that you can use these expressions without Nix + # (`pkgs.callPackage ./devops/nix/scope.nix { }` is the entry point). + pkgsCuda = import inputs.nixpkgs { inherit system; # Ensure dependencies use CUDA consistently (e.g. that openmpi, ucc, diff --git a/.devops/nix/package.nix b/.devops/nix/package.nix index 43bdbd755..c25d99f01 100644 --- a/.devops/nix/package.nix +++ b/.devops/nix/package.nix @@ -73,6 +73,7 @@ let ps: [ ps.numpy ps.sentencepiece + ps.tiktoken ps.torchWithoutCuda ps.transformers ] @@ -114,14 +115,22 @@ effectiveStdenv.mkDerivation ( pname = "llama-cpp${pnameSuffix}"; version = llamaVersion; + # Note: none of the files discarded here are visible in the sandbox or + # affect the output hash. This also means they can be modified without + # triggering a rebuild. src = lib.cleanSourceWith { filter = name: type: - !(builtins.any (_: _) [ + let + noneOf = builtins.all (x: !x); + baseName = baseNameOf name; + in + noneOf [ (lib.hasSuffix ".nix" name) # Ignore *.nix files when computing outPaths - (name == "README.md") # Ignore *.md changes whe computing outPaths - (lib.hasPrefix "." name) # Skip hidden files and directories - ]); + (lib.hasSuffix ".md" name) # Ignore *.md changes whe computing outPaths + (lib.hasPrefix "." baseName) # Skip hidden files and directories + (baseName == "flake.lock") + ]; src = lib.cleanSource ../../.; }; @@ -159,7 +168,7 @@ effectiveStdenv.mkDerivation ( cmakeFlags = [ - (cmakeBool "LLAMA_NATIVE" true) + (cmakeBool "LLAMA_NATIVE" false) (cmakeBool "LLAMA_BUILD_SERVER" true) (cmakeBool "BUILD_SHARED_LIBS" true) (cmakeBool "CMAKE_SKIP_BUILD_RPATH" true) diff --git a/.devops/nix/scope.nix b/.devops/nix/scope.nix index 7932ac1e8..d295995a4 100644 --- a/.devops/nix/scope.nix +++ b/.devops/nix/scope.nix @@ -4,6 +4,10 @@ llamaVersion ? "0.0.0", }: +# We're using `makeScope` instead of just writing out an attrset +# because it allows users to apply overlays later using `overrideScope'`. +# Cf. https://noogle.dev/f/lib/makeScope + lib.makeScope newScope ( self: { inherit llamaVersion; diff --git a/.github/workflows/build.yml b/.github/workflows/build.yml index 367df07a7..c3aa6f992 100644 --- a/.github/workflows/build.yml +++ b/.github/workflows/build.yml @@ -295,7 +295,7 @@ jobs: OPENBLAS_VERSION: 0.3.23 OPENCL_VERSION: 2023.04.17 CLBLAST_VERSION: 1.6.0 - SDE_VERSION: 9.21.1-2023-04-24 + SDE_VERSION: 9.33.0-2024-01-07 strategy: matrix: @@ -400,7 +400,7 @@ jobs: id: cmake_test_sde if: ${{ matrix.build == 'avx512' && env.HAS_AVX512F == '0' }} # use Intel SDE for AVX-512 emulation run: | - curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/777395/sde-external-${env:SDE_VERSION}-win.tar.xz" + curl.exe -o $env:RUNNER_TEMP/sde.tar.xz -L "https://downloadmirror.intel.com/813591/sde-external-${env:SDE_VERSION}-win.tar.xz" # for some weird reason windows tar doesn't like sde tar.xz 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar.xz 7z x "-o${env:RUNNER_TEMP}" $env:RUNNER_TEMP/sde.tar diff --git a/.github/workflows/nix-ci-aarch64.yml b/.github/workflows/nix-ci-aarch64.yml index be7c26d40..0c6cf5f09 100644 --- a/.github/workflows/nix-ci-aarch64.yml +++ b/.github/workflows/nix-ci-aarch64.yml @@ -2,13 +2,20 @@ name: Nix aarch64 builds on: workflow_dispatch: # allows manual triggering + schedule: + # Rebuild daily rather than on every push because QEMU is expensive (e.g. + # 1.5h instead of minutes with the cold cache). + # + # randint(0, 59), randint(0, 23) + - cron: '26 12 * * *' + # But also rebuild if we touched any of the Nix expressions: push: branches: - master - paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', '**/*.sh', '**/*.py', '**/*.nix'] + paths: ['**/*.nix', 'flake.lock'] pull_request: types: [opened, synchronize, reopened] - paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', '**/*.sh', '**/*.py', '**/*.nix'] + paths: ['**/*.nix', 'flake.lock'] jobs: nix-build-aarch64: diff --git a/.github/workflows/nix-ci.yml b/.github/workflows/nix-ci.yml index 845b93bfb..d19c7a576 100644 --- a/.github/workflows/nix-ci.yml +++ b/.github/workflows/nix-ci.yml @@ -5,10 +5,8 @@ on: push: branches: - master - paths: ['.github/workflows/**', '**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', '**/*.sh', '**/*.py', '**/*.nix'] pull_request: types: [opened, synchronize, reopened] - paths: ['**/CMakeLists.txt', '**/Makefile', '**/*.h', '**/*.hpp', '**/*.c', '**/*.cpp', '**/*.cu', '**/*.swift', '**/*.m', '**/*.sh', '**/*.py', '**/*.nix'] jobs: nix-eval: diff --git a/CMakeLists.txt b/CMakeLists.txt index 3fc65eaf2..5a333ff52 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -47,6 +47,7 @@ option(BUILD_SHARED_LIBS "build shared libraries" option(LLAMA_STATIC "llama: static link libraries" OFF) option(LLAMA_NATIVE "llama: enable -march=native flag" ON) option(LLAMA_LTO "llama: enable link time optimization" OFF) +option(LLAMA_CCACHE "llama: use ccache if available" ON) # debug option(LLAMA_ALL_WARNINGS "llama: enable all compiler warnings" ON) @@ -107,6 +108,13 @@ option(LLAMA_BUILD_TESTS "llama: build tests" ${LLAMA_STA option(LLAMA_BUILD_EXAMPLES "llama: build examples" ${LLAMA_STANDALONE}) option(LLAMA_BUILD_SERVER "llama: build server example" ON) + +# add perf arguments +option(LLAMA_PERF "llama: enable perf" OFF) +if (LLAMA_PERF) + add_definitions(-DGGML_PERF) +endif() + # Required for relocatable CMake package include(${CMAKE_CURRENT_SOURCE_DIR}/scripts/build-info.cmake) @@ -561,6 +569,17 @@ if (LLAMA_LTO) endif() endif() +if (LLAMA_CCACHE) + find_program(LLAMA_CCACHE_FOUND ccache) + if (LLAMA_CCACHE_FOUND) + set_property(GLOBAL PROPERTY RULE_LAUNCH_COMPILE ccache) + set(ENV{CCACHE_SLOPPINESS} time_macros) + message(STATUS "Using ccache") + else() + message(STATUS "Warning: ccache not found - consider installing it or use LLAMA_CCACHE=OFF") + endif () +endif() + # this version of Apple ld64 is buggy execute_process( COMMAND ${CMAKE_C_COMPILER} ${CMAKE_EXE_LINKER_FLAGS} -Wl,-v diff --git a/README.md b/README.md index 866aa87b4..cbfba01bc 100644 --- a/README.md +++ b/README.md @@ -128,6 +128,7 @@ as the main playground for developing new features for the [ggml](https://github - React Native: [mybigday/llama.rn](https://github.com/mybigday/llama.rn) - Java: [kherud/java-llama.cpp](https://github.com/kherud/java-llama.cpp) - Zig: [deins/llama.cpp.zig](https://github.com/Deins/llama.cpp.zig) +- Flutter/Dart: [netdur/llama_cpp_dart](https://github.com/netdur/llama_cpp_dart) **UI:** diff --git a/common/common.cpp b/common/common.cpp index ce20360a4..0a7096171 100644 --- a/common/common.cpp +++ b/common/common.cpp @@ -203,6 +203,25 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { params.prompt_cache_all = true; } else if (arg == "--prompt-cache-ro") { params.prompt_cache_ro = true; + } else if (arg == "-bf" || arg == "--binary-file") { + if (++i >= argc) { + invalid_param = true; + break; + } + std::ifstream file(argv[i], std::ios::binary); + if (!file) { + fprintf(stderr, "error: failed to open file '%s'\n", argv[i]); + invalid_param = true; + break; + } + // store the external file name in params + params.prompt_file = argv[i]; + file.seekg(0, std::ios::end); + size_t size = file.tellg(); + file.seekg(0, std::ios::beg); + params.prompt.resize(size); + file.read((char *)params.prompt.data(), size); + fprintf(stderr, "Read %zu bytes from binary file %s\n", size, argv[i]); } else if (arg == "-f" || arg == "--file") { if (++i >= argc) { invalid_param = true; @@ -653,6 +672,12 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { if (params.logdir.back() != DIRECTORY_SEPARATOR) { params.logdir += DIRECTORY_SEPARATOR; } + } else if (arg == "--save-all-logits" || arg == "--kl-divergence-base") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.logits_file = argv[i]; } else if (arg == "--perplexity" || arg == "--all-logits") { params.logits_all = true; } else if (arg == "--ppl-stride") { @@ -689,6 +714,16 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) { break; } params.winogrande_tasks = std::stoi(argv[i]); + } else if (arg == "--multiple-choice") { + params.multiple_choice = true; + } else if (arg == "--multiple-choice-tasks") { + if (++i >= argc) { + invalid_param = true; + break; + } + params.multiple_choice_tasks = std::stoi(argv[i]); + } else if (arg == "--kl-divergence") { + params.kl_divergence = true; } else if (arg == "--ignore-eos") { params.ignore_eos = true; } else if (arg == "--no-penalize-nl") { @@ -888,6 +923,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --in-suffix STRING string to suffix after user inputs with (default: empty)\n"); printf(" -f FNAME, --file FNAME\n"); printf(" prompt file to start generation.\n"); + printf(" -bf FNAME, --binary-file FNAME\n"); + printf(" binary file containing multiple choice tasks.\n"); printf(" -n N, --n-predict N number of tokens to predict (default: %d, -1 = infinity, -2 = until context filled)\n", params.n_predict); printf(" -c N, --ctx-size N size of the prompt context (default: %d, 0 = loaded from model)\n", params.n_ctx); printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch); @@ -936,6 +973,9 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) { printf(" --hellaswag-tasks N number of tasks to use when computing the HellaSwag score (default: %zu)\n", params.hellaswag_tasks); printf(" --winogrande compute Winogrande score over random tasks from datafile supplied with -f\n"); printf(" --winogrande-tasks N number of tasks to use when computing the Winogrande score (default: %zu)\n", params.winogrande_tasks); + printf(" --multiple-choice compute multiple choice score over random tasks from datafile supplied with -f\n"); + printf(" --multiple-choice-tasks N number of tasks to use when computing the multiple choice score (default: %zu)\n", params.winogrande_tasks); + printf(" --kl-divergence computes KL-divergence to logits provided via --kl-divergence-base"); printf(" --keep N number of tokens to keep from the initial prompt (default: %d, -1 = all)\n", params.n_keep); printf(" --draft N number of tokens to draft for speculative decoding (default: %d)\n", params.n_draft); printf(" --chunks N max number of chunks to process (default: %d, -1 = all)\n", params.n_chunks); diff --git a/common/common.h b/common/common.h index 0ae9c18b3..214a379b5 100644 --- a/common/common.h +++ b/common/common.h @@ -91,6 +91,7 @@ struct gpt_params { std::string input_suffix = ""; // string to suffix user inputs with std::vector antiprompt; // string upon seeing which more user input is prompted std::string logdir = ""; // directory in which to save YAML log files + std::string logits_file = ""; // file for saving *all* logits std::vector kv_overrides; @@ -108,6 +109,11 @@ struct gpt_params { bool winogrande = false; // compute Winogrande score over random tasks from datafile supplied in prompt size_t winogrande_tasks= 0; // number of tasks to use when computing the Winogrande score. If 0, all tasks will be computed + bool multiple_choice = false; // compute TruthfulQA score over random tasks from datafile supplied in prompt + size_t multiple_choice_tasks = 0; // number of tasks to use when computing the TruthfulQA score. If 0, all tasks will be computed + + bool kl_divergence = false; // compute KL-divergence + bool mul_mat_q = true; // if true, use mul_mat_q kernels instead of cuBLAS bool random_prompt = false; // do not randomize prompt if none provided bool use_color = false; // use color to distinguish generations and inputs diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 5cb3e63fb..7a0a8c3db 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -10,7 +10,7 @@ import re import sys from enum import IntEnum from pathlib import Path -from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast, Optional +from typing import TYPE_CHECKING, Any, ContextManager, Iterator, cast import numpy as np import torch @@ -289,6 +289,58 @@ class Model: special_vocab = gguf.SpecialVocab(dir_model, load_merges=True) special_vocab.add_to_gguf(self.gguf_writer) + def _set_vocab_qwen(self): + dir_model = self.dir_model + hparams = self.hparams + tokens: list[bytearray] = [] + toktypes: list[int] = [] + + from transformers import AutoTokenizer + tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) + vocab_size = hparams["vocab_size"] + assert max(tokenizer.get_vocab().values()) < vocab_size + + merges = [] + vocab = {} + mergeable_ranks = tokenizer.mergeable_ranks + for token, rank in mergeable_ranks.items(): + vocab[QwenModel.token_bytes_to_string(token)] = rank + if len(token) == 1: + continue + merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) + assert len(merged) == 2 + merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged))) + + # for this kind of tokenizer, added_vocab is not a subset of vocab, so they need to be combined + added_vocab = tokenizer.special_tokens + reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in (vocab | added_vocab).items()} + + for i in range(vocab_size): + if i not in reverse_vocab: + pad_token = f"[PAD{i}]".encode("utf-8") + tokens.append(bytearray(pad_token)) + toktypes.append(gguf.TokenType.USER_DEFINED) + elif reverse_vocab[i] in added_vocab: + tokens.append(reverse_vocab[i]) + toktypes.append(gguf.TokenType.CONTROL) + else: + tokens.append(reverse_vocab[i]) + toktypes.append(gguf.TokenType.NORMAL) + + self.gguf_writer.add_tokenizer_model("gpt2") + self.gguf_writer.add_token_list(tokens) + self.gguf_writer.add_token_types(toktypes) + + special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) + special_vocab.merges = merges + # only add special tokens when they were not already loaded from config.json + if len(special_vocab.special_token_ids) == 0: + special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"]) + special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"]) + # this one is usually not in config.json anyway + special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"]) + special_vocab.add_to_gguf(self.gguf_writer) + def _set_vocab_sentencepiece(self): from sentencepiece import SentencePieceProcessor @@ -487,7 +539,8 @@ class MPTModel(Model): # map tensor names if "scales" in name: new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales")) - new_name = new_name.replace("scales", "act.scales") + if new_name is not None: + new_name = new_name.replace("scales", "act.scales") else: new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) if new_name is None: @@ -876,6 +929,13 @@ class PersimmonModel(Model): class StableLMModel(Model): + def set_vocab(self): + if (self.dir_model / "tokenizer.json").is_file(): + self._set_vocab_gpt2() + else: + # StableLM 2 1.6B uses a vocab in a similar format to Qwen's vocab + self._set_vocab_qwen() + def set_gguf_parameters(self): hparams = self.hparams block_count = hparams["num_hidden_layers"] @@ -904,7 +964,7 @@ class QwenModel(Model): return ''.join([byte_encoder[ord(char)] for char in b.decode('latin-1')]) @staticmethod - def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: Optional[int] = None) -> list[bytes]: + def bpe(mergeable_ranks: dict[bytes, int], token: bytes, max_rank: int | None = None) -> list[bytes]: parts = [bytes([b]) for b in token] while True: min_idx = None @@ -921,52 +981,7 @@ class QwenModel(Model): return parts def set_vocab(self): - dir_model = self.dir_model - hparams = self.hparams - tokens: list[bytearray] = [] - toktypes: list[int] = [] - - from transformers import AutoTokenizer - tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True) - vocab_size = hparams["vocab_size"] - assert max(tokenizer.get_vocab().values()) < vocab_size - - merges = [] - vocab = {} - mergeable_ranks = tokenizer.mergeable_ranks - for token, rank in mergeable_ranks.items(): - vocab[self.token_bytes_to_string(token)] = rank - if len(token) == 1: - continue - merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank) - assert len(merged) == 2 - merges.append(' '.join(map(self.token_bytes_to_string, merged))) - - reverse_vocab = {id_ : encoded_tok for encoded_tok, id_ in vocab.items()} - added_vocab = tokenizer.special_tokens - - for i in range(vocab_size): - if i not in reverse_vocab: - pad_token = f"[PAD{i}]".encode("utf-8") - tokens.append(bytearray(pad_token)) - toktypes.append(gguf.TokenType.USER_DEFINED) - elif reverse_vocab[i] in added_vocab: - tokens.append(reverse_vocab[i]) - toktypes.append(gguf.TokenType.CONTROL) - else: - tokens.append(reverse_vocab[i]) - toktypes.append(gguf.TokenType.NORMAL) - - self.gguf_writer.add_tokenizer_model("gpt2") - self.gguf_writer.add_token_list(tokens) - self.gguf_writer.add_token_types(toktypes) - - special_vocab = gguf.SpecialVocab(dir_model, load_merges=False) - special_vocab.merges = merges - special_vocab._set_special_token("bos", tokenizer.special_tokens["<|endoftext|>"]) - special_vocab._set_special_token("eos", tokenizer.special_tokens["<|endoftext|>"]) - special_vocab._set_special_token("unk", tokenizer.special_tokens["<|endoftext|>"]) - special_vocab.add_to_gguf(self.gguf_writer) + self._set_vocab_qwen() def set_gguf_parameters(self): self.gguf_writer.add_name("Qwen") @@ -1285,7 +1300,7 @@ def main() -> None: if args.awq_path: sys.path.insert(1, str(Path(__file__).parent / 'awq-py')) - from awq.apply_awq import add_scale_weights + from awq.apply_awq import add_scale_weights # type: ignore[import-not-found] tmp_model_path = args.model / "weighted_model" dir_model = tmp_model_path if tmp_model_path.is_dir(): diff --git a/convert-llama-ggml-to-gguf.py b/convert-llama-ggml-to-gguf.py index e359330af..b33108062 100755 --- a/convert-llama-ggml-to-gguf.py +++ b/convert-llama-ggml-to-gguf.py @@ -2,6 +2,7 @@ from __future__ import annotations import argparse +import os import struct import sys from enum import IntEnum @@ -9,7 +10,6 @@ from pathlib import Path import numpy as np -import os if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf @@ -371,15 +371,11 @@ def handle_metadata(cfg, hp): params = convert.Params.loadOriginalParamsJson(fakemodel, orig_config_path) else: raise ValueError('Unable to load metadata') - vocab = convert.load_vocab( - cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir, - cfg.vocabtype) - # FIXME: Respect cfg.vocab_dir? - svocab = gguf.SpecialVocab(cfg.model_metadata_dir, - load_merges = cfg.vocabtype == 'bpe', - n_vocab = vocab.vocab_size) + vocab_path = Path(cfg.vocab_dir if cfg.vocab_dir is not None else cfg.model_metadata_dir) + vocab_factory = convert.VocabFactory(vocab_path) + vocab, special_vocab = vocab_factory.load_vocab(cfg.vocabtype, cfg.model_metadata_dir) convert.check_vocab_size(params, vocab) - return (params, vocab, svocab) + return params, vocab, special_vocab def handle_args(): diff --git a/convert-lora-to-ggml.py b/convert-lora-to-ggml.py index 35ce152f4..9a9936dec 100755 --- a/convert-lora-to-ggml.py +++ b/convert-lora-to-ggml.py @@ -5,17 +5,16 @@ import json import os import struct import sys +from pathlib import Path from typing import Any, BinaryIO, Sequence import numpy as np import torch -from pathlib import Path if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py' / 'gguf')) import gguf - NUMPY_TYPE_TO_FTYPE: dict[str, int] = {"float32": 0, "float16": 1} @@ -60,7 +59,14 @@ if __name__ == '__main__': input_model = os.path.join(sys.argv[1], "adapter_model.bin") output_path = os.path.join(sys.argv[1], "ggml-adapter-model.bin") - model = torch.load(input_model, map_location="cpu") + if os.path.exists(input_model): + model = torch.load(input_model, map_location="cpu") + else: + input_model = os.path.join(sys.argv[1], "adapter_model.safetensors") + # lazy import load_file only if lora is in safetensors format. + from safetensors.torch import load_file + model = load_file(input_model, device="cpu") + arch_name = sys.argv[2] if len(sys.argv) == 3 else "llama" if arch_name not in gguf.MODEL_ARCH_NAMES.values(): diff --git a/convert-persimmon-to-gguf.py b/convert-persimmon-to-gguf.py index 1ba5864dc..d2be805d1 100755 --- a/convert-persimmon-to-gguf.py +++ b/convert-persimmon-to-gguf.py @@ -1,11 +1,13 @@ #!/usr/bin/env python3 -import torch -import os -from pprint import pprint -import sys import argparse +import os +import sys from pathlib import Path +from pprint import pprint + +import torch from sentencepiece import SentencePieceProcessor + if 'NO_LOCAL_GGUF' not in os.environ: sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) import gguf @@ -69,7 +71,7 @@ def main(): persimmon_model = torch.load(args.ckpt_path) hparams = persimmon_model['args'] pprint(hparams) - tensors = {} + tensors: dict[str, torch.Tensor] = {} _flatten_dict(persimmon_model['model'], tensors, None) arch = gguf.MODEL_ARCH.PERSIMMON diff --git a/convert.py b/convert.py index 980e6fc72..06768033d 100755 --- a/convert.py +++ b/convert.py @@ -17,58 +17,28 @@ import signal import struct import sys import time -import warnings import zipfile from abc import ABCMeta, abstractmethod -from argparse import ArgumentParser from concurrent.futures import ProcessPoolExecutor, ThreadPoolExecutor from dataclasses import dataclass from pathlib import Path -from typing import ( - IO, - TYPE_CHECKING, - Any, - Callable, - Iterable, - Literal, - Optional, - Tuple, - TypeVar, -) +from typing import IO, TYPE_CHECKING, Any, Callable, Iterable, Literal, TypeVar import numpy as np from sentencepiece import SentencePieceProcessor -try: - from transformers import AutoTokenizer -except ModuleNotFoundError as e: - warnings.warn(f"Could not import AutoTokenizer from transformers: {e}") +if 'NO_LOCAL_GGUF' not in os.environ: + sys.path.insert(1, str(Path(__file__).parent / 'gguf-py')) +import gguf -# If NO_LOCAL_GGUF is not set, try to import gguf from the local gguf-py directory -if "NO_LOCAL_GGUF" not in os.environ: - # Use absolute path to the gguf-py directory - gguf_py_dir = str(Path(__file__).resolve().parent / "gguf-py") - print(gguf_py_dir) # NOTE: Remove this once path is verified after changes are completed - if gguf_py_dir not in sys.path: - sys.path.insert(1, gguf_py_dir) +if TYPE_CHECKING: + from typing import TypeAlias -# Import gguf module -try: - import gguf -except ModuleNotFoundError as e: - print(f"Could not import gguf: {e}") - sys.exit(1) - -if TYPE_CHECKING: # NOTE: This isn't necessary. - from typing import TypeAlias # This can technically be omitted. - -if hasattr(faulthandler, "register") and hasattr(signal, "SIGUSR1"): +if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'): faulthandler.register(signal.SIGUSR1) -# NOTE: n-dimensional arrays should be directly referenced -NDArray: TypeAlias = "np.ndarray[Any, Any]" +NDArray: TypeAlias = 'np.ndarray[Any, Any]' -# Why is this here? LLAMA and GPT are technically the only compatible ARCHs. ARCH = gguf.MODEL_ARCH.LLAMA DEFAULT_CONCURRENCY = 8 @@ -78,7 +48,6 @@ DEFAULT_CONCURRENCY = 8 # -# TODO: Clean up and refactor data types @dataclass(frozen=True) class DataType: name: str @@ -183,85 +152,65 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = { @dataclass class Params: - n_vocab: int - n_embd: int - n_layer: int - n_ctx: int - n_ff: int - n_head: int - n_head_kv: int - f_norm_eps: Optional[float] = None - n_experts: Optional[int] = None - n_experts_used: Optional[int] = None + n_vocab: int + n_embd: int + n_layer: int + n_ctx: int + n_ff: int + n_head: int + n_head_kv: int + n_experts: int | None = None + n_experts_used: int | None = None + f_norm_eps: float | None = None - rope_scaling_type: Optional[gguf.RopeScalingType] = None - f_rope_freq_base: Optional[float] = None - f_rope_scale: Optional[float] = None - n_orig_ctx: Optional[int] = None - rope_finetuned: Optional[bool] = None + rope_scaling_type: gguf.RopeScalingType | None = None + f_rope_freq_base: float | None = None + f_rope_scale: float | None = None + n_orig_ctx: int | None = None + rope_finetuned: bool | None = None - ftype: Optional[GGMLFileType] = None + ftype: GGMLFileType | None = None # path to the directory containing the model files - path_model: Optional[Path] = None + path_model: Path | None = None @staticmethod - def guessed(model: LazyModel) -> "Params": + def guessed(model: LazyModel) -> Params: # try transformer naming first - n_vocab, n_embd = ( - model["model.embed_tokens.weight"].shape - if "model.embed_tokens.weight" in model - else model["tok_embeddings.weight"].shape - ) + n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape # try transformer naming first if "model.layers.0.self_attn.q_proj.weight" in model: - n_layer = next( - i - for i in itertools.count() - if f"model.layers.{i}.self_attn.q_proj.weight" not in model - ) - elif ( - "model.layers.0.self_attn.W_pack.weight" in model - ): # next: try baichuan naming - n_layer = next( - i - for i in itertools.count() - if f"model.layers.{i}.self_attn.W_pack.weight" not in model - ) + n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model) + elif "model.layers.0.self_attn.W_pack.weight" in model: # next: try baichuan naming + n_layer = next(i for i in itertools.count() if f"model.layers.{i}.self_attn.W_pack.weight" not in model) else: - n_layer = next( - i - for i in itertools.count() - if f"layers.{i}.attention.wq.weight" not in model - ) + n_layer = next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model) if n_layer < 1: - raise Exception( - "failed to guess 'n_layer'. This model is unknown or unsupported.\n" - "Suggestion: provide 'config.json' of the model in the same directory containing model files." - ) + raise Exception("failed to guess 'n_layer'. This model is unknown or unsupported.\n" + "Suggestion: provide 'config.json' of the model in the same directory containing model files.") - n_head = n_embd // 128 # guessed - n_mult = 256 # guessed + n_head = n_embd // 128 # guessed + n_mult = 256 # guessed # TODO: verify this n_ff = int(2 * (4 * n_embd) / 3) n_ff = n_mult * ((n_ff + n_mult - 1) // n_mult) return Params( - n_vocab=n_vocab, - n_embd=n_embd, - n_layer=n_layer, - n_ctx=-1, - n_ff=n_ff, - n_head=n_head, - n_head_kv=n_head, - f_norm_eps=1e-5, + n_vocab = n_vocab, + n_embd = n_embd, + n_layer = n_layer, + n_ctx = -1, + n_ff = n_ff, + n_head = n_head, + n_head_kv = n_head, + f_norm_eps = 1e-5, ) @staticmethod - def load_transformers_config(model: LazyModel, config_path: Path) -> "Params": + def loadHFTransformerJson(model: LazyModel, config_path: Path) -> Params: config = json.load(open(config_path)) rope_scaling_type = f_rope_scale = n_orig_ctx = rope_finetuned = None @@ -274,22 +223,20 @@ class Params: rope_scaling_type = gguf.RopeScalingType.LINEAR elif typ == "yarn": rope_scaling_type = gguf.RopeScalingType.YARN - n_orig_ctx = rope_scaling["original_max_position_embeddings"] - rope_finetuned = rope_scaling["finetuned"] + n_orig_ctx = rope_scaling['original_max_position_embeddings'] + rope_finetuned = rope_scaling['finetuned'] else: - raise NotImplementedError(f"Unknown rope scaling type: {typ}") + raise NotImplementedError(f'Unknown rope scaling type: {typ}') if "max_sequence_length" in config: n_ctx = config["max_sequence_length"] elif "max_position_embeddings" in config: n_ctx = config["max_position_embeddings"] else: - raise Exception( - "failed to guess 'n_ctx'. This model is unknown or unsupported.\n" - "Suggestion: provide 'config.json' of the model in the same directory containing model files." - ) + raise Exception("failed to guess 'n_ctx'. This model is unknown or unsupported.\n" + "Suggestion: provide 'config.json' of the model in the same directory containing model files.") - n_experts = None + n_experts = None n_experts_used = None if "num_local_experts" in config: @@ -297,30 +244,30 @@ class Params: n_experts_used = config["num_experts_per_tok"] return Params( - n_vocab=config["vocab_size"], - n_embd=config["hidden_size"], - n_layer=config["num_hidden_layers"], - n_ctx=n_ctx, - n_ff=config["intermediate_size"], - n_head=(n_head := config["num_attention_heads"]), - n_head_kv=config.get("num_key_value_heads", n_head), - n_experts=n_experts, - n_experts_used=n_experts_used, - f_norm_eps=config["rms_norm_eps"], - f_rope_freq_base=config.get("rope_theta"), - rope_scaling_type=rope_scaling_type, - f_rope_scale=f_rope_scale, - n_orig_ctx=n_orig_ctx, - rope_finetuned=rope_finetuned, + n_vocab = config["vocab_size"], + n_embd = config["hidden_size"], + n_layer = config["num_hidden_layers"], + n_ctx = n_ctx, + n_ff = config["intermediate_size"], + n_head = (n_head := config["num_attention_heads"]), + n_head_kv = config.get("num_key_value_heads", n_head), + n_experts = n_experts, + n_experts_used = n_experts_used, + f_norm_eps = config["rms_norm_eps"], + f_rope_freq_base = config.get("rope_theta"), + rope_scaling_type = rope_scaling_type, + f_rope_scale = f_rope_scale, + n_orig_ctx = n_orig_ctx, + rope_finetuned = rope_finetuned, ) # LLaMA v2 70B params.json # {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1} @staticmethod - def load_torch_params(model: LazyModel, config_path: Path) -> "Params": + def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params: config = json.load(open(config_path)) - n_experts = None + n_experts = None n_experts_used = None f_rope_freq_base = None @@ -343,50 +290,50 @@ class Params: if config.get("moe"): n_ff = model["layers.0.feed_forward.experts.0.w1.weight"].shape[0] - n_experts = config["moe"]["num_experts"] + n_experts = config["moe"]["num_experts"] n_experts_used = config["moe"]["num_experts_per_tok"] f_rope_freq_base = 1e6 return Params( - n_vocab=model["tok_embeddings.weight"].shape[0], - n_embd=config["dim"], - n_layer=config["n_layers"], - n_ctx=n_ctx, - n_ff=n_ff, - n_head=(n_head := config["n_heads"]), - n_head_kv=config.get("n_kv_heads", n_head), - n_experts=n_experts, - n_experts_used=n_experts_used, - f_norm_eps=config["norm_eps"], - f_rope_freq_base=config.get("rope_theta", f_rope_freq_base), + n_vocab = model["tok_embeddings.weight"].shape[0], + n_embd = config["dim"], + n_layer = config["n_layers"], + n_ctx = n_ctx, + n_ff = n_ff, + n_head = (n_head := config["n_heads"]), + n_head_kv = config.get("n_kv_heads", n_head), + n_experts = n_experts, + n_experts_used = n_experts_used, + f_norm_eps = config["norm_eps"], + f_rope_freq_base = config.get("rope_theta", f_rope_freq_base), ) @staticmethod - def load(model_plus: ModelPlus) -> "Params": - hf_config_path = model_plus.paths[0].parent / "config.json" + def load(model_plus: ModelPlus) -> Params: + hf_config_path = model_plus.paths[0].parent / "config.json" orig_config_path = model_plus.paths[0].parent / "params.json" if hf_config_path.exists(): - params = Params.load_transformers_config(model_plus.model, hf_config_path) + params = Params.loadHFTransformerJson(model_plus.model, hf_config_path) elif orig_config_path.exists(): - params = Params.load_torch_params(model_plus.model, orig_config_path) - elif model_plus.format != "none": + params = Params.loadOriginalParamsJson(model_plus.model, orig_config_path) + elif model_plus.format != 'none': params = Params.guessed(model_plus.model) else: - raise ValueError("Cannot guess params when model format is none") + raise ValueError('Cannot guess params when model format is none') params.path_model = model_plus.paths[0].parent return params -class BpeVocab: # GPT - def __init__( - self, fname_tokenizer: Path, fname_added_tokens: Optional[Path] - ) -> None: - self.bpe_tokenizer = json.loads( - open(str(fname_tokenizer), encoding="utf-8").read() - ) +# +# vocab +# + +class BpeVocab: + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None: + self.bpe_tokenizer = json.loads(open(str(fname_tokenizer), encoding="utf-8").read()) self.vocab = self.bpe_tokenizer["model"]["vocab"] added_tokens: dict[str, int] if fname_added_tokens is not None: @@ -394,34 +341,31 @@ class BpeVocab: # GPT added_tokens = json.load(open(fname_added_tokens, encoding="utf-8")) else: # Fall back to trying to find the added tokens in tokenizer.json - tokenizer_json_file = fname_tokenizer.parent / "tokenizer.json" + tokenizer_json_file = fname_tokenizer.parent / 'tokenizer.json' if not tokenizer_json_file.is_file(): added_tokens = {} else: tokenizer_json = json.load(open(tokenizer_json_file, encoding="utf-8")) added_tokens = dict( - (item["content"], item["id"]) - for item in tokenizer_json.get("added_tokens", []) + (item['content'], item['id']) + for item in tokenizer_json.get('added_tokens', []) # Added tokens here can be duplicates of the main vocabulary. - if item["content"] not in self.bpe_tokenizer - ) + if item['content'] not in self.bpe_tokenizer) vocab_size: int = len(self.vocab) - expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) - actual_ids = sorted(added_tokens.values()) + expected_ids = list(range(vocab_size, vocab_size + len(added_tokens))) + actual_ids = sorted(added_tokens.values()) if expected_ids != actual_ids: expected_end_id = vocab_size + len(actual_ids) - 1 - raise Exception( - f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}" - ) + raise Exception(f"Expected the {len(actual_ids)} added token ID(s) to be sequential in the range {vocab_size} - {expected_end_id}; got {actual_ids}") items = sorted(added_tokens.items(), key=lambda text_idx: text_idx[1]) - self.added_tokens_dict = added_tokens - self.added_tokens_list = [text for (text, idx) in items] + self.added_tokens_dict = added_tokens + self.added_tokens_list = [text for (text, idx) in items] self.vocab_size_base: int = vocab_size - self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) - self.fname_tokenizer = fname_tokenizer - self.fname_added_tokens = fname_added_tokens + self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_list) + self.fname_tokenizer = fname_tokenizer + self.fname_added_tokens = fname_added_tokens def bpe_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: reverse_vocab = {id: encoded_tok for encoded_tok, id in self.vocab.items()} @@ -442,10 +386,8 @@ class BpeVocab: # GPT return f"" -class SentencePieceVocab: # LlaMa - def __init__( - self, fname_tokenizer: Path, fname_added_tokens: Optional[Path] - ) -> None: +class SentencePieceVocab: + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None) -> None: self.sentencepiece_tokenizer = SentencePieceProcessor(str(fname_tokenizer)) added_tokens: dict[str, int] if fname_added_tokens is not None: @@ -455,23 +397,19 @@ class SentencePieceVocab: # LlaMa vocab_size: int = self.sentencepiece_tokenizer.vocab_size() - new_tokens = { - id: piece for piece, id in added_tokens.items() if id >= vocab_size - } + new_tokens = {id: piece for piece, id in added_tokens.items() if id >= vocab_size} expected_new_ids = list(range(vocab_size, vocab_size + len(new_tokens))) - actual_new_ids = sorted(new_tokens.keys()) + actual_new_ids = sorted(new_tokens.keys()) if expected_new_ids != actual_new_ids: - raise ValueError( - f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}" - ) + raise ValueError(f"Expected new token IDs {expected_new_ids} to be sequential; got {actual_new_ids}") # Token pieces that were added to the base vocabulary. self.added_tokens_dict = added_tokens - self.added_tokens_list = [new_tokens[id] for id in actual_new_ids] - self.vocab_size_base = vocab_size - self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) - self.fname_tokenizer = fname_tokenizer + self.added_tokens_list = [new_tokens[id] for id in actual_new_ids] + self.vocab_size_base = vocab_size + self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) + self.fname_tokenizer = fname_tokenizer self.fname_added_tokens = fname_added_tokens def sentencepiece_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: @@ -512,11 +450,15 @@ class SentencePieceVocab: # LlaMa class HfVocab: - def __init__( - self, - fname_tokenizer: Path, - fname_added_tokens: Optional[Path] = None, - ) -> None: + def __init__(self, fname_tokenizer: Path, fname_added_tokens: Path | None = None) -> None: + try: + from transformers import AutoTokenizer + except ImportError as e: + raise ImportError( + "To use HfVocab, please install the `transformers` package. " + "You can install it with `pip install transformers`." + ) from e + print("fname_tokenizer:", fname_tokenizer) # Allow the tokenizer to default to slow or fast versions. # Explicitly set tokenizer to use local paths. @@ -529,7 +471,7 @@ class HfVocab: # Initialize lists and dictionaries for added tokens self.added_tokens_list = [] self.added_tokens_dict = dict() - self.added_tokens_ids = set() + self.added_tokens_ids = set() # Process added tokens for tok, tokidx in sorted( @@ -550,12 +492,12 @@ class HfVocab: # Set vocabulary sizes self.vocab_size_base = self.tokenizer.vocab_size - self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) + self.vocab_size = self.vocab_size_base + len(self.added_tokens_list) - self.fname_tokenizer = fname_tokenizer + self.fname_tokenizer = fname_tokenizer self.fname_added_tokens = fname_added_tokens - def hf_tokens(self) -> Iterable[Tuple[bytes, float, gguf.TokenType]]: + def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: reverse_vocab = { id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items() } @@ -573,11 +515,9 @@ class HfVocab: token_id, self.special_ids # Reuse already stored special IDs ) - def get_token_type(self, token_id: int, special_ids: set) -> gguf.TokenType: + def get_token_type(self, token_id: int, special_ids: set[int]) -> gguf.TokenType: # Determine token type based on whether it's a special token - return ( - gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL - ) + return gguf.TokenType.CONTROL if token_id in special_ids else gguf.TokenType.NORMAL def get_token_score(self, token_id: int) -> float: # Placeholder for actual logic to determine the token's score @@ -589,7 +529,6 @@ class HfVocab: if text in self.specials: toktype = self.get_token_type(self.specials[text], self.special_ids) score = self.get_token_score(self.specials[text]) - else: toktype = gguf.TokenType.USER_DEFINED score = -1000.0 @@ -783,7 +722,7 @@ def merge_multifile_models(models_plus: list[ModelPlus]) -> ModelPlus: else: model = merge_sharded([mp.model for mp in models_plus]) - return ModelPlus(model, paths, format, vocab) + return ModelPlus(model, paths, format, vocab) # pytype: disable=wrong-arg-types def permute_lazy(lazy_tensor: LazyTensor, n_head: int, n_head_kv: int) -> LazyTensor: @@ -871,17 +810,13 @@ class LazyUnpickler(pickle.Unpickler): CLASSES: dict[tuple[str, str], Any] = { # getattr used here as a workaround for mypy not being smart enough to determine # the staticmethods have a __func__ attribute. - ("torch._tensor", "_rebuild_from_type_v2"): getattr( - rebuild_from_type_v2, "__func__" - ), - ("torch._utils", "_rebuild_tensor_v2"): getattr( - lazy_rebuild_tensor_v2, "__func__" - ), - ("torch", "BFloat16Storage"): LazyStorageKind(DT_BF16), - ("torch", "HalfStorage"): LazyStorageKind(DT_F16), - ("torch", "FloatStorage"): LazyStorageKind(DT_F32), - ("torch", "IntStorage"): LazyStorageKind(DT_I32), - ("torch", "Tensor"): LazyTensor, + ('torch._tensor', '_rebuild_from_type_v2'): getattr(rebuild_from_type_v2, '__func__'), + ('torch._utils', '_rebuild_tensor_v2'): getattr(lazy_rebuild_tensor_v2, '__func__'), + ('torch', 'BFloat16Storage'): LazyStorageKind(DT_BF16), + ('torch', 'HalfStorage'): LazyStorageKind(DT_F16), + ('torch', 'FloatStorage'): LazyStorageKind(DT_F32), + ('torch', 'IntStorage'): LazyStorageKind(DT_I32), + ('torch', 'Tensor'): LazyTensor, } def find_class(self, module: str, name: str) -> Any: @@ -968,7 +903,7 @@ def bounded_parallel_map(func: Callable[[In], Out], iterable: Iterable[In], conc executor_class = ProcessPoolExecutor else: executor_class = ThreadPoolExecutor - with executor_class(max_workers = max_workers) as executor: + with executor_class(max_workers=max_workers) as executor: futures: list[concurrent.futures.Future[Out]] = [] done = False for _ in range(concurrency): @@ -1022,12 +957,8 @@ def check_vocab_size(params: Params, vocab: Vocab, pad_vocab: bool = False) -> N class OutputFile: - def __init__( - self, fname_out: Path, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE - ) -> None: - self.gguf = gguf.GGUFWriter( - fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess - ) + def __init__(self, fname_out: Path, endianess:gguf.GGUFEndian = gguf.GGUFEndian.LITTLE) -> None: + self.gguf = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[ARCH], endianess=endianess) def add_meta_arch(self, params: Params) -> None: name = "LLaMA" @@ -1036,21 +967,16 @@ class OutputFile: if params.n_ctx == 4096: name = "LLaMA v2" elif params.path_model is not None: - name = str(params.path_model.parent).split("/")[-1] + name = str(params.path_model.parent).split('/')[-1] - self.gguf.add_name(name) - self.gguf.add_context_length(params.n_ctx) - self.gguf.add_embedding_length(params.n_embd) - self.gguf.add_block_count(params.n_layer) - self.gguf.add_feed_forward_length(params.n_ff) + self.gguf.add_name (name) + self.gguf.add_context_length (params.n_ctx) + self.gguf.add_embedding_length (params.n_embd) + self.gguf.add_block_count (params.n_layer) + self.gguf.add_feed_forward_length (params.n_ff) self.gguf.add_rope_dimension_count(params.n_embd // params.n_head) - self.gguf.add_head_count(params.n_head) - self.gguf.add_head_count_kv(params.n_head_kv) - - if params.f_norm_eps is None: - raise ValueError("f_norm_eps is None") - - self.gguf.add_layer_norm_rms_eps(params.f_norm_eps) + self.gguf.add_head_count (params.n_head) + self.gguf.add_head_count_kv (params.n_head_kv) if params.n_experts: self.gguf.add_expert_count(params.n_experts) @@ -1058,6 +984,11 @@ class OutputFile: if params.n_experts_used: self.gguf.add_expert_used_count(params.n_experts_used) + if params.f_norm_eps: + self.gguf.add_layer_norm_rms_eps(params.f_norm_eps) + else: + raise ValueError('f_norm_eps is None') + if params.f_rope_freq_base is not None: self.gguf.add_rope_freq_base(params.f_rope_freq_base) @@ -1089,7 +1020,7 @@ class OutputFile: return tokenizer_model - def extract_vocabulary_from_model(self, vocab: Vocab) -> Tuple[list, list, list]: + def extract_vocabulary_from_model(self, vocab: Vocab) -> tuple[list[bytes], list[float], list[gguf.TokenType]]: tokens = [] scores = [] toktypes = [] @@ -1124,14 +1055,10 @@ class OutputFile: def add_tensor_info(self, name: str, tensor: LazyTensor) -> None: n_elements = int(np.prod(tensor.shape)) - raw_dtype = getattr(tensor.data_type, "ggml_type", None) - data_type = ( - getattr(tensor.data_type, "quantized_type", None) or tensor.data_type.dtype - ) + raw_dtype = getattr(tensor.data_type, 'ggml_type', None) + data_type = getattr(tensor.data_type, 'quantized_type', None) or tensor.data_type.dtype data_nbytes = tensor.data_type.elements_to_bytes(n_elements) - self.gguf.add_tensor_info( - name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype - ) + self.gguf.add_tensor_info(name, tensor.shape, data_type, data_nbytes, raw_dtype=raw_dtype) def write_meta(self) -> None: self.gguf.write_header_to_file() @@ -1145,14 +1072,10 @@ class OutputFile: @staticmethod def write_vocab_only( - fname_out: Path, - params: Params, - vocab: Vocab, - svocab: gguf.SpecialVocab, - endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, - pad_vocab: bool = False, + fname_out: Path, params: Params, vocab: Vocab, svocab: gguf.SpecialVocab, + endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, ) -> None: - check_vocab_size(params, vocab, pad_vocab=pad_vocab) + check_vocab_size(params, vocab, pad_vocab = pad_vocab) of = OutputFile(fname_out, endianess=endianess) @@ -1180,14 +1103,8 @@ class OutputFile: @staticmethod def write_all( - fname_out: Path, - ftype: GGMLFileType, - params: Params, - model: LazyModel, - vocab: Vocab, - svocab: gguf.SpecialVocab, - concurrency: int = DEFAULT_CONCURRENCY, - endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, + fname_out: Path, ftype: GGMLFileType, params: Params, model: LazyModel, vocab: Vocab, svocab: gguf.SpecialVocab, + concurrency: int = DEFAULT_CONCURRENCY, endianess: gguf.GGUFEndian = gguf.GGUFEndian.LITTLE, pad_vocab: bool = False, ) -> None: check_vocab_size(params, vocab, pad_vocab=pad_vocab) @@ -1207,26 +1124,19 @@ class OutputFile: of.write_tensor_info() # tensor data - ndarrays_inner = bounded_parallel_map( - OutputFile.do_item, model.items(), concurrency=concurrency - ) + ndarrays_inner = bounded_parallel_map(OutputFile.do_item, model.items(), concurrency = concurrency) if ftype == GGMLFileType.MostlyQ8_0: ndarrays = bounded_parallel_map( - OutputFile.maybe_do_quantize, - ndarrays_inner, - concurrency=concurrency, - max_workers=concurrency, + OutputFile.maybe_do_quantize, ndarrays_inner, concurrency=concurrency, max_workers=concurrency, use_processpool_executor=True, ) else: ndarrays = map(OutputFile.maybe_do_quantize, ndarrays_inner) start = time.time() - for i, ((name, lazy_tensor), ndarray) in enumerate( - zip(model.items(), ndarrays) - ): + for i, ((name, lazy_tensor), ndarray) in enumerate(zip(model.items(), ndarrays)): elapsed = time.time() - start - size = " x ".join(f"{dim:6d}" for dim in lazy_tensor.shape) + size = ' x '.join(f"{dim:6d}" for dim in lazy_tensor.shape) padi = len(str(len(model))) print( f"[{i+1:{padi}d}/{len(model)}] Writing tensor {name:38s} | size {size:16} | type {lazy_tensor.data_type.name:4} | T+{int(elapsed):4}" @@ -1363,7 +1273,7 @@ def load_some_model(path: Path) -> ModelPlus: class VocabFactory: def __init__(self, path: Path): self.path = path - self.files = { + self.files: dict[str, Path | None] = { "tokenizer.model": None, "vocab.json": None, "tokenizer.json": None, @@ -1380,24 +1290,18 @@ class VocabFactory: self.files[file] = parent_file_path print(f"Found vocab files: {self.files}") - def _select_file(self, vocabtype: Optional[str]) -> Path: + def _select_file(self, vocabtype: str | None) -> Path: if vocabtype in ["spm", "bpe"]: for file_key in self.files.keys(): - if self.files[file_key]: - return self.files[file_key] + if (file := self.files[file_key]) is not None: + return file raise FileNotFoundError(f"{vocabtype} vocab not found.") - elif vocabtype == "hfft": + if vocabtype == "hfft": # For Hugging Face Fast Tokenizer, return the directory path instead of a specific file return self.path - else: - raise ValueError(f"Unsupported vocabulary type {vocabtype}") + raise ValueError(f"Unsupported vocabulary type {vocabtype}") - def _create_special_vocab( - self, - vocab: Vocab, - vocabtype: str, - model_parent_path: Path, - ) -> gguf.SpecialVocab: + def _create_special_vocab(self, vocab: Vocab, vocabtype: str, model_parent_path: Path) -> gguf.SpecialVocab: load_merges = vocabtype == "bpe" n_vocab = vocab.vocab_size if hasattr(vocab, "vocab_size") else None return gguf.SpecialVocab( @@ -1407,13 +1311,12 @@ class VocabFactory: n_vocab=n_vocab, ) - def load_vocab( - self, vocabtype: str, model_parent_path: Path - ) -> Tuple[Vocab, gguf.SpecialVocab]: + def load_vocab(self, vocabtype: str, model_parent_path: Path) -> tuple[Vocab, gguf.SpecialVocab]: path = self._select_file(vocabtype) print(f"Loading vocab file '{path}', type '{vocabtype}'") added_tokens_path = path.parent / "added_tokens.json" + vocab: Vocab if vocabtype == "bpe": vocab = BpeVocab( path, added_tokens_path if added_tokens_path.exists() else None @@ -1428,6 +1331,7 @@ class VocabFactory: ) else: raise ValueError(f"Unsupported vocabulary type {vocabtype}") + # FIXME: Respect --vocab-dir? special_vocab = self._create_special_vocab( vocab, vocabtype, @@ -1436,18 +1340,17 @@ class VocabFactory: return vocab, special_vocab -def default_output_file(model_paths: list[Path], file_type: GGMLFileType) -> Path: +def default_outfile(model_paths: list[Path], file_type: GGMLFileType) -> Path: namestr = { - GGMLFileType.AllF32: "f32", + GGMLFileType.AllF32: "f32", GGMLFileType.MostlyF16: "f16", - GGMLFileType.MostlyQ8_0: "q8_0", + GGMLFileType.MostlyQ8_0:"q8_0", }[file_type] ret = model_paths[0].parent / f"ggml-model-{namestr}.gguf" if ret in model_paths: sys.stderr.write( f"Error: Default output path ({ret}) would overwrite the input. " - "Please explicitly specify a path using --outfile.\n" - ) + "Please explicitly specify a path using --outfile.\n") sys.exit(1) return ret @@ -1457,111 +1360,34 @@ def do_dump_model(model_plus: ModelPlus) -> None: print(f"model_plus.format = {model_plus.format!r}") print(f"model_plus.vocab = {model_plus.vocab!r}") for name, lazy_tensor in model_plus.model.items(): - print( - f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}" - ) + print(f"{name}: shape={lazy_tensor.shape} type={lazy_tensor.data_type}; {lazy_tensor.description}") -def get_argument_parser() -> ArgumentParser: +def main(args_in: list[str] | None = None) -> None: output_choices = ["f32", "f16"] if np.uint32(1) == np.uint32(1).newbyteorder("<"): # We currently only support Q8_0 output on little endian systems. output_choices.append("q8_0") + vocab_types = ["spm", "bpe", "hfft"] + parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") + parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None) + parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") + parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") + parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") + parser.add_argument("--outtype", choices=output_choices, help="output format - note: q8_0 may be very slow (default: f16 or f32 based on input)") + parser.add_argument("--vocab-dir", type=Path, help="directory containing tokenizer.model, if separate from model file") + parser.add_argument("--vocab-type", choices=vocab_types, help="The vocabulary format used to define the tokenizer model (default: spm)", default="spm") + parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input") + parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.pth, *.pt, *.bin)") + parser.add_argument("--ctx", type=int, help="model training context (default: based on input)") + parser.add_argument("--concurrency", type=int, help=f"concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", default=DEFAULT_CONCURRENCY) + parser.add_argument("--big-endian", action="store_true", help="model is executed on big endian machine") + parser.add_argument("--pad-vocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides") - parser = argparse.ArgumentParser( - description="Convert a LLaMa model to a GGML compatible file" - ) - - parser.add_argument( - "model", - type=Path, - help="Directory containing the model file or the model file itself (*.pth, *.pt, *.bin)", - ) - - parser.add_argument( - "--awq-path", - type=Path, - help="Path to the Activation-aware Weight Quantization cache file", - default=None, - ) - - parser.add_argument( - "--dump", - action="store_true", - help="Display the model content without converting it", - ) - - parser.add_argument( - "--dump-single", - action="store_true", - help="Display the content of a single model file without conversion", - ) - - parser.add_argument( - "--vocab-only", - action="store_true", - help="Extract and output only the vocabulary", - ) - - parser.add_argument( - "--outtype", - choices=output_choices, - help="Output format - note: q8_0 may be very slow (default: f16 or f32 based on input)", - ) - - parser.add_argument( - "--vocab-dir", - type=Path, - help="Directory containing the tokenizer.model, if separate from the model file", - ) - - parser.add_argument( - "--vocab-type", - choices=["spm", "bpe", "hfft"], # hfft: Hugging Face Fast Tokenizer - default="spm", - help="The vocabulary format used to define the tokenizer model (default: spm)", - ) - - parser.add_argument( - "--pad-vocab", - action="store_true", - help="Add padding tokens when the model's vocabulary size exceeds the tokenizer metadata", - ) - - parser.add_argument( - "--outfile", - type=Path, - help="Specify the path for the output file (default is based on input)", - ) - - parser.add_argument( - "--ctx", type=int, help="Model training context (default is based on input)" - ) - - parser.add_argument( - "--concurrency", - type=int, - help=f"Concurrency used for conversion (default: {DEFAULT_CONCURRENCY})", - default=DEFAULT_CONCURRENCY, - ) - - parser.add_argument( - "--big-endian", - action="store_true", - help="Indicate that the model is executed on a big-endian machine", - ) - - return parser - - -def main(argv: Optional[list[str]] = None) -> None: - parser = get_argument_parser() - args = parser.parse_args(argv) - + args = parser.parse_args(args_in) if args.awq_path: - sys.path.insert(1, str(Path(__file__).resolve().parent / "awq-py")) - from awq.apply_awq import add_scale_weights - + sys.path.insert(1, str(Path(__file__).parent / 'awq-py')) + from awq.apply_awq import add_scale_weights # type: ignore[import-not-found] tmp_model_path = args.model / "weighted_model" if tmp_model_path.is_dir(): print(f"{tmp_model_path} exists as a weighted model.") @@ -1580,14 +1406,11 @@ def main(argv: Optional[list[str]] = None) -> None: if not args.vocab_only: model_plus = load_some_model(args.model) else: - model_plus = ModelPlus( - model={}, paths=[args.model / "dummy"], format="none", vocab=None - ) + model_plus = ModelPlus(model = {}, paths = [args.model / 'dummy'], format = 'none', vocab = None) if args.dump: do_dump_model(model_plus) return - endianess = gguf.GGUFEndian.LITTLE if args.big_endian: endianess = gguf.GGUFEndian.BIG @@ -1595,12 +1418,10 @@ def main(argv: Optional[list[str]] = None) -> None: params = Params.load(model_plus) if params.n_ctx == -1: if args.ctx is None: - raise Exception( - "The model doesn't have a context size, and you didn't specify one with --ctx\n" - "Please specify one with --ctx:\n" - " - LLaMA v1: --ctx 2048\n" - " - LLaMA v2: --ctx 4096\n" - ) + raise Exception("The model doesn't have a context size, and you didn't specify one with --ctx\n" + "Please specify one with --ctx:\n" + " - LLaMA v1: --ctx 2048\n" + " - LLaMA v2: --ctx 4096\n") params.n_ctx = args.ctx if args.outtype: @@ -1621,42 +1442,30 @@ def main(argv: Optional[list[str]] = None) -> None: if not args.outfile: raise ValueError("need --outfile if using --vocab-only") outfile = args.outfile - OutputFile.write_vocab_only( - outfile, - params, - vocab, - special_vocab, - endianess=endianess, - pad_vocab=args.pad_vocab, - ) + OutputFile.write_vocab_only(outfile, params, vocab, special_vocab, + endianess=endianess, pad_vocab=args.pad_vocab) print(f"Wrote {outfile}") return if model_plus.vocab is not None and args.vocab_dir is None: vocab = model_plus.vocab - model = model_plus.model - model = convert_model_names(model, params) - ftype = pick_output_type(model, args.outtype) - model = convert_to_output_type(model, ftype) - outfile = args.outfile or default_output_file(model_plus.paths, ftype) + print(f"Vocab info: {vocab}") + print(f"Special vocab info: {special_vocab}") + + model = model_plus.model + model = convert_model_names(model, params) + ftype = pick_output_type(model, args.outtype) + model = convert_to_output_type(model, ftype) + outfile = args.outfile or default_outfile(model_plus.paths, ftype) params.ftype = ftype print(f"Writing {outfile}, format {ftype}") - OutputFile.write_all( - outfile, - ftype, - params, - model, - vocab, - special_vocab, - concurrency=args.concurrency, - endianess=endianess, - pad_vocab=args.pad_vocab, - ) + OutputFile.write_all(outfile, ftype, params, model, vocab, special_vocab, + concurrency=args.concurrency, endianess=endianess, pad_vocab=args.pad_vocab) print(f"Wrote {outfile}") -if __name__ == "__main__": - main(sys.argv[1:]) # Exclude the first element (script name) from sys.argv +if __name__ == '__main__': + main() diff --git a/examples/finetune/finetune.cpp b/examples/finetune/finetune.cpp index 11fcbf443..b7e19c5fe 100644 --- a/examples/finetune/finetune.cpp +++ b/examples/finetune/finetune.cpp @@ -1800,6 +1800,8 @@ int main(int argc, char ** argv) { std::vector train_samples_begin; std::vector train_samples_size; printf("%s: tokenize training data from %s\n", __func__, params.common.fn_train_data); + printf("%s: sample-start: %s\n", __func__, params.common.sample_start.c_str()); + printf("%s: include-sample-start: %s\n", __func__, params.common.include_sample_start ? "true" : "false"); tokenize_file(lctx, params.common.fn_train_data, params.common.sample_start, diff --git a/examples/imatrix/imatrix.cpp b/examples/imatrix/imatrix.cpp index 5a3d30b88..ea06fcdbf 100644 --- a/examples/imatrix/imatrix.cpp +++ b/examples/imatrix/imatrix.cpp @@ -26,6 +26,7 @@ struct StatParams { std::string ofile = "imatrix.dat"; int n_output_frequency = 10; int verbosity = 1; + int keep_every = 0; bool collect_output_weight = false; }; @@ -42,6 +43,9 @@ private: int m_last_call = 0; std::vector m_src1_data; std::vector m_ids; // the expert ids from ggml_mul_mat_id + // + void save_imatrix(const char * file_name) const; + void keep_imatrix(int ncall) const; }; bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * user_data) { @@ -117,6 +121,9 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * if (m_last_call % m_params.n_output_frequency == 0) { save_imatrix(); } + if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) { + keep_imatrix(m_last_call); + } } } } else { @@ -143,6 +150,9 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * if (m_last_call % m_params.n_output_frequency == 0) { save_imatrix(); } + if (m_params.keep_every > 0 && m_last_call%m_params.keep_every == 0) { + keep_imatrix(m_last_call); + } } } @@ -150,7 +160,18 @@ bool IMatrixCollector::collect_imatrix(struct ggml_tensor * t, bool ask, void * } void IMatrixCollector::save_imatrix() const { - const char * fname = m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str(); + save_imatrix(m_params.ofile.empty() ? "imatrix.dat" : m_params.ofile.c_str()); +} + +void IMatrixCollector::keep_imatrix(int ncall) const { + auto file_name = m_params.ofile; + if (file_name.empty()) file_name = "imatrix.dat"; + file_name += ".at_"; + file_name += std::to_string(ncall); + save_imatrix(file_name.c_str()); +} + +void IMatrixCollector::save_imatrix(const char * fname) const { std::ofstream out(fname, std::ios::binary); int n_entries = m_stats.size(); out.write((const char*)&n_entries, sizeof(n_entries)); @@ -248,7 +269,7 @@ static void process_logits( } } -static bool compute_imatrix(llama_context * ctx, const gpt_params & params) { +static bool compute_imatrix(llama_context * ctx, const gpt_params & params, bool compute_ppl) { const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); const int n_ctx = llama_n_ctx(ctx); @@ -269,10 +290,12 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) { } std::vector logit_history; - logit_history.resize(tokens.size()); - std::vector prob_history; - prob_history.resize(tokens.size()); + + if (compute_ppl) { + logit_history.resize(tokens.size()); + prob_history.resize(tokens.size()); + } const int n_chunk_max = tokens.size() / n_ctx; @@ -288,12 +311,17 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) { std::vector workers(std::thread::hardware_concurrency() - 1); + const int num_batches = (n_ctx + n_batch - 1) / n_batch; + + std::vector logits; + if (compute_ppl && num_batches > 1) { + logits.reserve((size_t)n_ctx * n_vocab); + } + for (int i = 0; i < n_chunk; ++i) { const int start = i * n_ctx; const int end = start + n_ctx; - const int num_batches = (n_ctx + n_batch - 1) / n_batch; - std::vector logits; const auto t_start = std::chrono::high_resolution_clock::now(); @@ -321,8 +349,10 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) { // restore the original token in case it was set to BOS tokens[batch_start] = token_org; - const auto * batch_logits = llama_get_logits(ctx); - logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); + if (compute_ppl && num_batches > 1) { + const auto * batch_logits = llama_get_logits(ctx); + logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); + } } const auto t_end = std::chrono::high_resolution_clock::now(); @@ -338,25 +368,32 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) { fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); } - const int first = n_ctx/2; - process_logits(n_vocab, logits.data() + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, - workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); - count += n_ctx - first - 1; + if (compute_ppl) { + const int first = n_ctx/2; + const auto all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); + process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, + workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); + count += n_ctx - first - 1; - printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); - fflush(stdout); + printf("[%d]%.4lf,", i + 1, std::exp(nll / count)); + fflush(stdout); + + logits.clear(); + } } printf("\n"); - nll2 /= count; - nll /= count; - const double ppl = exp(nll); - nll2 -= nll * nll; - if (nll2 > 0) { - nll2 = sqrt(nll2/(count-1)); - printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); - } else { - printf("Unexpected negative standard deviation of log(prob)\n"); + if (compute_ppl) { + nll2 /= count; + nll /= count; + const double ppl = exp(nll); + nll2 -= nll * nll; + if (nll2 > 0) { + nll2 = sqrt(nll2/(count-1)); + printf("Final estimate: PPL = %.4lf +/- %.5lf\n", ppl, nll2*ppl); + } else { + printf("Unexpected negative standard deviation of log(prob)\n"); + } } return true; @@ -365,6 +402,7 @@ static bool compute_imatrix(llama_context * ctx, const gpt_params & params) { int main(int argc, char ** argv) { StatParams sparams; + bool compute_ppl = true; std::vector args; args.push_back(argv[0]); int iarg = 1; @@ -381,12 +419,21 @@ int main(int argc, char ** argv) { } else if (arg == "--verbosity") { sparams.verbosity = std::stoi(argv[++iarg]); + } else if (arg == "--no-ppl") { + compute_ppl = false; + } else if (arg == "--keep-imatrix") { + sparams.keep_every = std::stoi(argv[++iarg]); } else { args.push_back(argv[iarg]); } } if (iarg < argc) { - args.push_back(argv[iarg]); + std::string arg{argv[iarg]}; + if (arg == "--no-ppl") { + compute_ppl = false; + } else { + args.push_back(argv[iarg]); + } } gpt_params params; @@ -448,7 +495,7 @@ int main(int argc, char ** argv) { fprintf(stderr, "%s\n", get_system_info(params).c_str()); } - bool OK = compute_imatrix(ctx, params); + bool OK = compute_imatrix(ctx, params, compute_ppl); if (!OK) { return 1; } diff --git a/examples/llava/MobileVLM-README.md b/examples/llava/MobileVLM-README.md new file mode 100644 index 000000000..c6258eba6 --- /dev/null +++ b/examples/llava/MobileVLM-README.md @@ -0,0 +1,131 @@ +# MobileVLM + +Currently this implementation supports [MobileVLM-v1.7](https://huggingface.co/mtgv/MobileVLM-1.7B) variants. + +for more information, please go to [Meituan-AutoML/MobileVLM](https://github.com/Meituan-AutoML/MobileVLM) + +The implementation is based on llava, and is compatible with llava and mobileVLM. The usage is basically same as llava. + +## Usage +Build with cmake or run `make llava-cli` to build it. + +After building, run: `./llava-cli` to see the usage. For example: + +```sh +./llava-cli -m MobileVLM-1.7B/ggml-model-q4_k.gguf \ + --mmproj MobileVLM-1.7B/mmproj-model-f16.gguf \ + --image path/to/an/image.jpg \ + -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \nWho is the author of this book? Answer the question using a single word or phrase. ASSISTANT:" +``` + +## Model conversion + +- Clone `mobileVLM-1.7B` and `clip-vit-large-patch14-336` locally: + +```sh +git clone https://huggingface.co/mtgv/MobileVLM-1.7B + +git clone https://huggingface.co/openai/clip-vit-large-patch14-336 +``` + +2. Use `llava-surgery.py` to split the LLaVA model to LLaMA and multimodel projector constituents: + +```sh +python ./examples/llava/llava-surgery.py -m path/to/MobileVLM-1.7B +``` + +3. Use `convert-image-encoder-to-gguf.py` with `--projector-type ldp` to convert the LLaVA image encoder to GGUF: + +```sh +python ./examples/llava/convert-image-encoder-to-gguf \ + -m path/to/clip-vit-large-patch14-336 \ + --llava-projector path/to/MobileVLM-1.7B/llava.projector \ + --output-dir path/to/MobileVLM-1.7B \ + --projector-type ldp +``` + +4. Use `convert.py` to convert the LLaMA part of LLaVA to GGUF: + +```sh +python ./convert.py path/to/MobileVLM-1.7B +``` + +5. Use `quantize` to convert LLaMA part's DataType from `fp16` to `q4_k` +```sh +./quantize path/to/MobileVLM-1.7B/ggml-model-f16.gguf path/to/MobileVLM-1.7B/ggml-model-q4_k.gguf q4_k_s +``` + +Now both the LLaMA part and the image encoder is in the `MobileVLM-1.7B` directory. + +## Android compile and run +### compile +refer to `examples/llava/android/build_64.sh` +```sh +mkdir examples/llava/android/build_64 +cd examples/llava/android/build_64 +../build_64.sh +``` +### run on Android +refer to `android/adb_run.sh`, modify resources' `name` and `path` + +## some result on Android with `Snapdragon 888` chip +### case 1 +**input** +```sh +/data/local/tmp/llava-cli \ + -m /data/local/tmp/ggml-model-q4_k.gguf \ + --mmproj /data/local/tmp/mmproj-model-f16.gguf \ + -t 4 \ + --image /data/local/tmp/demo.jpg \ + -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:" +``` +**output** +```sh +encode_image_with_clip: image encoded in 21148.71 ms by CLIP ( 146.87 ms per image patch) + Susan Wise Bauer +llama_print_timings: load time = 23574.72 ms +llama_print_timings: sample time = 1.24 ms / 6 runs ( 0.21 ms per token, 4850.44 tokens per second) +llama_print_timings: prompt eval time = 12460.15 ms / 246 tokens ( 50.65 ms per token, 19.74 tokens per second) +llama_print_timings: eval time = 424.86 ms / 6 runs ( 70.81 ms per token, 14.12 tokens per second) +llama_print_timings: total time = 34731.93 ms +``` +### case 2 +**input** +```sh +/data/local/tmp/llava-cli \ + -m /data/local/tmp/ggml-model-q4_k.gguf \ + --mmproj /data/local/tmp/mmproj-model-f16.gguf \ + -t 4 \ + --image /data/local/tmp/cat.jpeg \ + -p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \nWhat is in the image? ASSISTANT:" +``` + +**output** +```sh +encode_image_with_clip: image encoded in 21149.51 ms by CLIP ( 146.87 ms per image patch) + The image depicts a cat sitting in the grass near some tall green plants. +llama_print_timings: load time = 23257.32 ms +llama_print_timings: sample time = 5.25 ms / 18 runs ( 0.29 ms per token, 3430.53 tokens per second) +llama_print_timings: prompt eval time = 11900.73 ms / 232 tokens ( 51.30 ms per token, 19.49 tokens per second) +llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 ms per token, 14.07 tokens per second) +llama_print_timings: total time = 34570.79 ms +``` + +## Minor shortcomings +The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost. + +## TODO + +- [ ] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid` +- [ ] Optimize LDP projector performance + + - Optimize the structure definition to avoid unnecessary memory rearrangements, to reduce the use of `ggml_permute_cpy`; + - Optimize operator implementation (ARM CPU/NVIDIA GPU): such as depthwise conv, hardswish, hardsigmoid, etc. +- [ ] run MobileVLM on `Jetson Orin` +- [ ] Support more model variants, such as `MobileVLM-3B`. + + +## contributor +```sh +zhangjidong05, yangyang260, huyiming03, chenxiaotao03 +``` diff --git a/examples/llava/android/adb_run.sh b/examples/llava/android/adb_run.sh new file mode 100755 index 000000000..f73623ae3 --- /dev/null +++ b/examples/llava/android/adb_run.sh @@ -0,0 +1,53 @@ +#!/bin/bash + +model_dir="/Users/cxt/model/llm/mobileVLM/MobileVLM-1.7B_processed" +projector_name="mmproj-model-f16.gguf" +llama_name="ggml-model-q4_k.gguf" +img_dir="/Users/cxt/model/llm" +img_name="demo.jpg" +prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:" +# img_name="cat.jpeg" +# prompt="A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: \nWhat is in the image? ASSISTANT:" + +program_dir="build_64/bin" +binName="llava-cli" +n_threads=4 + + +deviceDir="/data/local/tmp" +saveDir="output" +if [ ! -d ${saveDir} ]; then + mkdir ${saveDir} +fi + + +function android_run() { + # # copy resource into device + # adb push ${model_dir}/${projector_name} ${deviceDir}/${projector_name} + # adb push ${model_dir}/${llama_name} ${deviceDir}/${llama_name} + adb push ${img_dir}/${img_name} ${deviceDir}/${img_name} + # copy program into device + adb push ${program_dir}/${binName} ${deviceDir}/${binName} + adb shell "chmod 0777 ${deviceDir}/${binName}" + + # run + adb shell "echo cd ${deviceDir} ${deviceDir}/${binName} \ + -m ${deviceDir}/${llama_name} \ + --mmproj ${deviceDir}/${projector_name} \ + -t ${n_threads} \ + --image ${deviceDir}/${img_name} \ + -p \"${prompt}\" \ + > ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt" + adb shell "cd ${deviceDir}; pwd; ${deviceDir}/${binName} \ + -m ${deviceDir}/${llama_name} \ + --mmproj ${deviceDir}/${projector_name} \ + -t ${n_threads} \ + --image ${deviceDir}/${img_name} \ + -p \"${prompt}\" \ + >> ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt 2>&1" + adb pull ${deviceDir}/${modelName}_${projector_name}_${n_threads}_${img_name}.txt ${saveDir} +} + +android_run + +echo "android_run is Done!" diff --git a/examples/llava/android/build_64.sh b/examples/llava/android/build_64.sh new file mode 100755 index 000000000..71b6fd3f7 --- /dev/null +++ b/examples/llava/android/build_64.sh @@ -0,0 +1,8 @@ +#!/bin/bash +cmake ../../../../ \ +-DCMAKE_TOOLCHAIN_FILE=$ANDROID_NDK/build/cmake/android.toolchain.cmake \ +-DCMAKE_BUILD_TYPE=Release \ +-DANDROID_ABI="arm64-v8a" \ +-DANDROID_PLATFORM=android-23 $1 + +make -j4 diff --git a/examples/llava/clip.cpp b/examples/llava/clip.cpp index 2ae8853d3..6161fd858 100644 --- a/examples/llava/clip.cpp +++ b/examples/llava/clip.cpp @@ -12,6 +12,7 @@ #include #include #include +#include #include "clip.h" #include "ggml.h" @@ -67,6 +68,7 @@ static std::string format(const char * fmt, ...) { #define KEY_PATCH_SIZE "clip.vision.patch_size" #define KEY_IMAGE_MEAN "clip.vision.image_mean" #define KEY_IMAGE_STD "clip.vision.image_std" +#define KEY_PROJ_TYPE "clip.projector_type" // // tensor name constants @@ -89,6 +91,21 @@ static std::string format(const char * fmt, ...) { #define TN_TEXT_PROJ "text_projection.weight" #define TN_VIS_PROJ "visual_projection.weight" #define TN_LLAVA_PROJ "mm.%d.%s" +#define TN_MVLM_PROJ_MLP "mm.model.mlp.%d.%s" +#define TN_MVLM_PROJ_BLOCK "mm.model.mb_block.%d.block.%d.%s" + + +enum projector_type { + PROJECTOR_TYPE_MLP, + PROJECTOR_TYPE_LDP, + PROJECTOR_TYPE_UNKNOWN, +}; + +static std::map PROJECTOR_TYPE_NAMES = { + { PROJECTOR_TYPE_MLP, "mlp" }, + { PROJECTOR_TYPE_LDP, "ldp" }, +}; + // // utilities to get data from a gguf file @@ -129,6 +146,91 @@ static std::string get_ftype(int ftype) { return ggml_type_name(static_cast(ftype)); } +static std::string gguf_data_to_str(enum gguf_type type, const void * data, int i) { + switch (type) { + case GGUF_TYPE_UINT8: return std::to_string(((const uint8_t *)data)[i]); + case GGUF_TYPE_INT8: return std::to_string(((const int8_t *)data)[i]); + case GGUF_TYPE_UINT16: return std::to_string(((const uint16_t *)data)[i]); + case GGUF_TYPE_INT16: return std::to_string(((const int16_t *)data)[i]); + case GGUF_TYPE_UINT32: return std::to_string(((const uint32_t *)data)[i]); + case GGUF_TYPE_INT32: return std::to_string(((const int32_t *)data)[i]); + case GGUF_TYPE_UINT64: return std::to_string(((const uint64_t *)data)[i]); + case GGUF_TYPE_INT64: return std::to_string(((const int64_t *)data)[i]); + case GGUF_TYPE_FLOAT32: return std::to_string(((const float *)data)[i]); + case GGUF_TYPE_FLOAT64: return std::to_string(((const double *)data)[i]); + case GGUF_TYPE_BOOL: return ((const bool *)data)[i] ? "true" : "false"; + default: return format("unknown type %d", type); + } +} + + +static void replace_all(std::string & s, const std::string & search, const std::string & replace) { + std::string result; + for (size_t pos = 0; ; pos += search.length()) { + auto new_pos = s.find(search, pos); + if (new_pos == std::string::npos) { + result += s.substr(pos, s.size() - pos); + break; + } + result += s.substr(pos, new_pos - pos) + replace; + pos = new_pos; + } + s = std::move(result); +} + +static std::string gguf_kv_to_str(const struct gguf_context * ctx_gguf, int i) { + const enum gguf_type type = gguf_get_kv_type(ctx_gguf, i); + + switch (type) { + case GGUF_TYPE_STRING: + return gguf_get_val_str(ctx_gguf, i); + case GGUF_TYPE_ARRAY: + { + const enum gguf_type arr_type = gguf_get_arr_type(ctx_gguf, i); + int arr_n = gguf_get_arr_n(ctx_gguf, i); + const void * data = gguf_get_arr_data(ctx_gguf, i); + std::stringstream ss; + ss << "["; + for (int j = 0; j < arr_n; j++) { + if (arr_type == GGUF_TYPE_STRING) { + std::string val = gguf_get_arr_str(ctx_gguf, i, j); + // escape quotes + replace_all(val, "\\", "\\\\"); + replace_all(val, "\"", "\\\""); + ss << '"' << val << '"'; + } else if (arr_type == GGUF_TYPE_ARRAY) { + ss << "???"; + } else { + ss << gguf_data_to_str(arr_type, data, j); + } + if (j < arr_n - 1) { + ss << ", "; + } + } + ss << "]"; + return ss.str(); + } + default: + return gguf_data_to_str(type, gguf_get_val_data(ctx_gguf, i), 0); + } +} + +static void print_tensor_info(const ggml_tensor* tensor, const char* prefix = "") { + size_t tensor_size = ggml_nbytes(tensor); + printf("%s: n_dims = %d, name = %s, tensor_size=%zu, shape:[%d, %d, %d, %d], type: %d\n", + prefix, ggml_n_dims(tensor), tensor->name, tensor_size, + tensor->ne[0], tensor->ne[1], tensor->ne[2], tensor->ne[3], tensor->type); +} + +static projector_type clip_projector_type_from_string(const std::string & name) { + for (const auto & kv : PROJECTOR_TYPE_NAMES) { // NOLINT + if (kv.second == name) { + return kv.first; + } + } + return PROJECTOR_TYPE_UNKNOWN; +} + // // image data // @@ -205,6 +307,32 @@ struct clip_vision_model { struct ggml_tensor * mm_0_b; struct ggml_tensor * mm_2_w; struct ggml_tensor * mm_2_b; + + // MobileVLM projection + struct ggml_tensor * mm_model_mlp_1_w; + struct ggml_tensor * mm_model_mlp_1_b; + struct ggml_tensor * mm_model_mlp_3_w; + struct ggml_tensor * mm_model_mlp_3_b; + struct ggml_tensor * mm_model_block_1_block_0_0_w; + struct ggml_tensor * mm_model_block_1_block_0_1_w; + struct ggml_tensor * mm_model_block_1_block_0_1_b; + struct ggml_tensor * mm_model_block_1_block_1_fc1_w; + struct ggml_tensor * mm_model_block_1_block_1_fc1_b; + struct ggml_tensor * mm_model_block_1_block_1_fc2_w; + struct ggml_tensor * mm_model_block_1_block_1_fc2_b; + struct ggml_tensor * mm_model_block_1_block_2_0_w; + struct ggml_tensor * mm_model_block_1_block_2_1_w; + struct ggml_tensor * mm_model_block_1_block_2_1_b; + struct ggml_tensor * mm_model_block_2_block_0_0_w; + struct ggml_tensor * mm_model_block_2_block_0_1_w; + struct ggml_tensor * mm_model_block_2_block_0_1_b; + struct ggml_tensor * mm_model_block_2_block_1_fc1_w; + struct ggml_tensor * mm_model_block_2_block_1_fc1_b; + struct ggml_tensor * mm_model_block_2_block_1_fc2_w; + struct ggml_tensor * mm_model_block_2_block_1_fc2_b; + struct ggml_tensor * mm_model_block_2_block_2_0_w; + struct ggml_tensor * mm_model_block_2_block_2_1_w; + struct ggml_tensor * mm_model_block_2_block_2_1_b; }; struct clip_ctx { @@ -213,6 +341,7 @@ struct clip_ctx { bool has_llava_projector = false; struct clip_vision_model vision_model; + projector_type proj_type = PROJECTOR_TYPE_MLP; float image_mean[3]; float image_std[3]; @@ -430,16 +559,135 @@ static ggml_cgraph * clip_image_build_graph(clip_ctx * ctx, const clip_image_f32 free(patches_data); } + // shape [1, 576, 1024] + // ne is whcn, ne = [1024, 576, 1, 1] embeddings = ggml_get_rows(ctx0, embeddings, patches); - // mm projection 0 - embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); - embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); + // print_tensor_info(embeddings, "embeddings"); - embeddings = ggml_gelu(ctx0, embeddings); + // llava projector + if (ctx->proj_type == PROJECTOR_TYPE_MLP) { + embeddings = ggml_mul_mat(ctx0, model.mm_0_w, embeddings); + embeddings = ggml_add(ctx0, embeddings, model.mm_0_b); - embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); - embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); + embeddings = ggml_gelu(ctx0, embeddings); + + embeddings = ggml_mul_mat(ctx0, model.mm_2_w, embeddings); + embeddings = ggml_add(ctx0, embeddings, model.mm_2_b); + } + else if (ctx->proj_type == PROJECTOR_TYPE_LDP) { + // MobileVLM projector + int n_patch = 24; + struct ggml_tensor * mlp_1 = ggml_mul_mat(ctx0, model.mm_model_mlp_1_w, embeddings); + mlp_1 = ggml_add(ctx0, mlp_1, model.mm_model_mlp_1_b); + mlp_1 = ggml_gelu(ctx0, mlp_1); + struct ggml_tensor * mlp_3 = ggml_mul_mat(ctx0, model.mm_model_mlp_3_w, mlp_1); + mlp_3 = ggml_add(ctx0, mlp_3, model.mm_model_mlp_3_b); + // mlp_3 shape = [1, 576, 2048], ne = [2048, 576, 1, 1] + + // block 1 + struct ggml_tensor * block_1 = nullptr; + { + // transpose from [1, 576, 2048] --> [1, 2048, 576] --> [1, 2048, 24, 24] + mlp_3 = ggml_cont(ctx0, ggml_permute(ctx0, mlp_3, 1, 0, 2, 3)); + mlp_3 = ggml_reshape_4d(ctx0, mlp_3, n_patch, n_patch, mlp_3->ne[1], mlp_3->ne[2]); + // stride = 1, padding = 1, bias is nullptr + block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_1_block_0_0_w, mlp_3, nullptr, 1, 1, 1, 1, 1, 1); + + // layer norm + // // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] + block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); + // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] + block_1 = ggml_norm(ctx0, block_1, eps); + block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_0_1_w), model.mm_model_block_1_block_0_1_b); + block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); + + // block_1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] + // hardswish + struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); + + block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); + // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] + // pointwise conv + block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); + block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc1_w, block_1); + block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc1_b); + block_1 = ggml_relu(ctx0, block_1); + block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_1_fc2_w, block_1); + block_1 = ggml_add(ctx0, block_1, model.mm_model_block_1_block_1_fc2_b); + block_1 = ggml_hardsigmoid(ctx0, block_1); + // block_1_hw shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1], block_1 shape = [1, 2048], ne = [2048, 1, 1, 1] + block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); + block_1 = ggml_mul(ctx0, block_1_hw, block_1); + + int w = block_1->ne[0], h = block_1->ne[1]; + block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); + block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); + + // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] + block_1 = ggml_mul_mat(ctx0, model.mm_model_block_1_block_2_0_w, block_1); + block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); + + // block_1 shape = [1, 24, 24, 2048], ne = [2048, 24, 24, 1] + block_1 = ggml_norm(ctx0, block_1, eps); + block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_1_block_2_1_w), model.mm_model_block_1_block_2_1_b); + block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); + // block1 shape = [1, 2048, 24, 24], ne = [24, 24, 2048, 1] + // residual + block_1 = ggml_add(ctx0, mlp_3, block_1); + } + + // block_2 + { + // stride = 2 + block_1 = ggml_conv_depthwise_2d(ctx0, model.mm_model_block_2_block_0_0_w, block_1, nullptr, 2, 2, 1, 1, 1, 1); + + // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] + // layer norm + block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 2, 0, 3)); + // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] + block_1 = ggml_norm(ctx0, block_1, eps); + block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_0_1_w), model.mm_model_block_2_block_0_1_b); + block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 2, 0, 1, 3)); + // block_1 shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1] + // hardswish + struct ggml_tensor * block_1_hw = ggml_hardswish(ctx0, block_1); + + // not sure the parameters is right for globalAvgPooling + block_1 = ggml_pool_2d(ctx0, block_1_hw, GGML_OP_POOL_AVG, block_1_hw->ne[0], block_1_hw->ne[1], block_1_hw->ne[0], block_1_hw->ne[1], 0, 0); + // block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] + // pointwise conv + block_1 = ggml_reshape_2d(ctx0, block_1, block_1->ne[0]*block_1->ne[1]*block_1->ne[2], block_1->ne[3]); + block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc1_w, block_1); + block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc1_b); + block_1 = ggml_relu(ctx0, block_1); + block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_1_fc2_w, block_1); + block_1 = ggml_add(ctx0, block_1, model.mm_model_block_2_block_1_fc2_b); + block_1 = ggml_hardsigmoid(ctx0, block_1); + + // block_1_hw shape = [1, 2048, 12, 12], ne = [12, 12, 2048, 1], block_1 shape = [1, 2048, 1, 1], ne = [1, 1, 2048, 1] + block_1 = ggml_reshape_4d(ctx0, block_1, 1, 1, block_1->ne[0], block_1->ne[1]); + block_1 = ggml_mul(ctx0, block_1_hw, block_1); + + int w = block_1->ne[0], h = block_1->ne[1]; + block_1 = ggml_reshape_3d(ctx0, block_1, w*h, block_1->ne[2], block_1->ne[3]); + block_1 = ggml_cont(ctx0, ggml_permute(ctx0, block_1, 1, 0, 2, 3)); + // block_1 shape = [1, 24*24, 2048], ne = [24*24, 2048, 1] + block_1 = ggml_mul_mat(ctx0, model.mm_model_block_2_block_2_0_w, block_1); + block_1 = ggml_reshape_4d(ctx0, block_1, block_1->ne[0], w, h, block_1->ne[3]); + + + // block_1 shape = [1, 12, 12, 2048], ne = [2048, 12, 12, 1] + block_1 = ggml_norm(ctx0, block_1, eps); + block_1 = ggml_add(ctx0, ggml_mul(ctx0, block_1, model.mm_model_block_2_block_2_1_w), model.mm_model_block_2_block_2_1_b); + block_1 = ggml_reshape_3d(ctx0, block_1, block_1->ne[0], block_1->ne[1] * block_1->ne[2], block_1->ne[3]); + // block_1 shape = [1, 144, 2048], ne = [2048, 144, 1] + } + embeddings = block_1; + } + else { + GGML_ASSERT(false); + } } // build the graph @@ -485,16 +733,55 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { printf("\n"); } const int n_tensors = gguf_get_n_tensors(ctx); + // kv - if (verbosity >= 3) { - const int n_kv = gguf_get_n_kv(ctx); + const int n_kv = gguf_get_n_kv(ctx); + printf("%s: loaded meta data with %d key-value pairs and %d tensors from %s\n", + __func__, n_kv, n_tensors, fname); + { + std::map n_type; - for (int i = 0; i < n_kv; ++i) { - const char * key = gguf_get_key(ctx, i); + uint32_t n_type_max = 0; + enum ggml_type type_max = GGML_TYPE_F32; - printf("%s: kv[%d]: key = %s\n", __func__, i, key); + for (int i = 0; i < n_tensors; i++) { + enum ggml_type type = gguf_get_tensor_type(ctx, i); + + n_type[type]++; + + if (n_type_max < n_type[type]) { + n_type_max = n_type[type]; + type_max = type; + } + } + + printf("%s: Dumping metadata keys/values. Note: KV overrides do not apply in this output.\n", __func__); + for (int i = 0; i < n_kv; i++) { + const char * name = gguf_get_key(ctx, i); + const enum gguf_type type = gguf_get_kv_type(ctx, i); + const std::string type_name = + type == GGUF_TYPE_ARRAY + ? format("%s[%s,%d]", gguf_type_name(type), gguf_type_name(gguf_get_arr_type(ctx, i)), gguf_get_arr_n(ctx, i)) + : gguf_type_name(type); + + std::string value = gguf_kv_to_str(ctx, i); + const size_t MAX_VALUE_LEN = 40; + if (value.size() > MAX_VALUE_LEN) { + value = format("%s...", value.substr(0, MAX_VALUE_LEN - 3).c_str()); + } + replace_all(value, "\n", "\\n"); + + printf("%s: - kv %3d: %42s %-16s = %s\n", __func__, i, name, type_name.c_str(), value.c_str()); + } + + // print type counts + for (auto & kv : n_type) { + if (kv.second == 0) { + continue; + } + + printf("%s: - type %4s: %4d tensors\n", __func__, ggml_type_name(kv.first), kv.second); } - printf("\n"); } // data @@ -503,20 +790,35 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { for (int i = 0; i < n_tensors; ++i) { const char * name = gguf_get_tensor_name(ctx, i); const size_t offset = gguf_get_tensor_offset(ctx, i); + enum ggml_type type = gguf_get_tensor_type(ctx, i); struct ggml_tensor * cur = ggml_get_tensor(meta, name); size_t tensor_size = ggml_nbytes(cur); buffer_size += tensor_size; if (verbosity >= 3) { - printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu\n", __func__, i, - ggml_n_dims(cur), cur->name, tensor_size, offset); + printf("%s: tensor[%d]: n_dims = %d, name = %s, tensor_size=%zu, offset=%zu, shape:[%d, %d, %d, %d], type: %d\n", __func__, i, + ggml_n_dims(cur), cur->name, tensor_size, offset, cur->ne[0], cur->ne[1], cur->ne[2], cur->ne[3], type); } } } + + buffer_size += n_tensors * 128 /* CLIP PADDING */; clip_ctx * new_clip = new clip_ctx; + // update projector type + { + int idx = gguf_find_key(ctx, KEY_PROJ_TYPE); + if (idx != -1) { + const std::string proj_type = gguf_get_val_str(ctx, idx); + new_clip->proj_type = clip_projector_type_from_string(proj_type); + } + else { + new_clip->proj_type = PROJECTOR_TYPE_MLP; + } + } + #ifdef GGML_USE_CUBLAS new_clip->backend = ggml_backend_cuda_init(0); printf("%s: CLIP using CUDA backend\n", __func__); @@ -661,10 +963,45 @@ struct clip_ctx * clip_model_load(const char * fname, const int verbosity = 1) { vision_model.position_embeddings = get_tensor(new_clip->ctx_data, format(TN_POS_EMBD, "v")); vision_model.pre_ln_w = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "weight")); vision_model.pre_ln_b = get_tensor(new_clip->ctx_data, format(TN_LN_PRE, "v", "bias")); - vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); - vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); - vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); - vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); + + // LLaVA projection + if (new_clip->proj_type == PROJECTOR_TYPE_MLP) { + vision_model.mm_0_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "weight")); + vision_model.mm_0_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 0, "bias")); + vision_model.mm_2_w = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "weight")); + vision_model.mm_2_b = get_tensor(new_clip->ctx_data, format(TN_LLAVA_PROJ, 2, "bias")); + } + else if (new_clip->proj_type == PROJECTOR_TYPE_LDP) { + // MobileVLM projection + vision_model.mm_model_mlp_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "weight")); + vision_model.mm_model_mlp_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 1, "bias")); + vision_model.mm_model_mlp_3_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "weight")); + vision_model.mm_model_mlp_3_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_MLP, 3, "bias")); + vision_model.mm_model_block_1_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "0.weight")); + vision_model.mm_model_block_1_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.weight")); + vision_model.mm_model_block_1_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 0, "1.bias")); + vision_model.mm_model_block_1_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.weight")); + vision_model.mm_model_block_1_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc1.bias")); + vision_model.mm_model_block_1_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.weight")); + vision_model.mm_model_block_1_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 1, "fc2.bias")); + vision_model.mm_model_block_1_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "0.weight")); + vision_model.mm_model_block_1_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.weight")); + vision_model.mm_model_block_1_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 1, 2, "1.bias")); + vision_model.mm_model_block_2_block_0_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "0.weight")); + vision_model.mm_model_block_2_block_0_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.weight")); + vision_model.mm_model_block_2_block_0_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 0, "1.bias")); + vision_model.mm_model_block_2_block_1_fc1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.weight")); + vision_model.mm_model_block_2_block_1_fc1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc1.bias")); + vision_model.mm_model_block_2_block_1_fc2_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.weight")); + vision_model.mm_model_block_2_block_1_fc2_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 1, "fc2.bias")); + vision_model.mm_model_block_2_block_2_0_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "0.weight")); + vision_model.mm_model_block_2_block_2_1_w = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.weight")); + vision_model.mm_model_block_2_block_2_1_b = get_tensor(new_clip->ctx_data, format(TN_MVLM_PROJ_BLOCK, 2, 2, "1.bias")); + } + else { + std::string proj_type = PROJECTOR_TYPE_NAMES[new_clip->proj_type]; + throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); + } vision_model.layers.resize(hparams.n_layer); for (int il = 0; il < hparams.n_layer; ++il) { @@ -1100,13 +1437,25 @@ bool clip_model_quantize(const char * fname_inp, const char * fname_out, const i } int clip_n_mmproj_embd(const struct clip_ctx * ctx) { - return ctx->vision_model.mm_2_b->ne[0]; + if (ctx->proj_type == PROJECTOR_TYPE_LDP) { + return ctx->vision_model.mm_model_block_1_block_2_1_b->ne[0]; + } + else if (ctx->proj_type == PROJECTOR_TYPE_MLP) { + return ctx->vision_model.mm_2_b->ne[0]; + } + else { + std::string proj_type = PROJECTOR_TYPE_NAMES[ctx->proj_type]; + throw std::runtime_error(format("%s: don't support projector with: %s currently\n", __func__, proj_type.c_str())); + } } int clip_n_patches(const struct clip_ctx * ctx) { auto & params = ctx->vision_model.hparams; - - return (params.image_size / params.patch_size) * (params.image_size / params.patch_size); + int n_patches = (params.image_size / params.patch_size) * (params.image_size / params.patch_size); + if (ctx->proj_type == PROJECTOR_TYPE_LDP) { + n_patches /= 4; + } + return n_patches; } size_t clip_embd_nbytes(const struct clip_ctx * ctx) { diff --git a/examples/llava/convert-image-encoder-to-gguf.py b/examples/llava/convert-image-encoder-to-gguf.py index 03688e0ea..f5a3c9b46 100644 --- a/examples/llava/convert-image-encoder-to-gguf.py +++ b/examples/llava/convert-image-encoder-to-gguf.py @@ -81,6 +81,7 @@ ap.add_argument("--vision-only", action="store_true", required=False, ap.add_argument("--clip_model_is_vision", action="store_true", required=False, help="The clip model is a pure vision model (ShareGPT4V vision extract for example)") ap.add_argument("--llava-projector", help="Path to llava.projector file. If specified, save an image encoder for LLaVA models.") +ap.add_argument("--projector-type", help="Type of projector. Possible values: mlp, ldp", choices=["mlp", "ldp"], default="mlp") ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values") ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values") ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None) @@ -174,6 +175,8 @@ elif args.vision_only and not has_llava_projector: fout.add_description("vision-only CLIP model") elif has_llava_projector: fout.add_description("image encoder for LLaVA") + # add projector type + fout.add_string("clip.projector_type", args.projector_type) else: fout.add_description("two-tower CLIP model") @@ -218,7 +221,8 @@ if has_llava_projector: projector = torch.load(args.llava_projector) for name, data in projector.items(): name = get_tensor_name(name) - if data.ndim == 2: + # pw and dw conv ndim==4 + if data.ndim == 2 or data.ndim == 4: data = data.squeeze().numpy().astype(np.float16) else: data = data.squeeze().numpy().astype(np.float32) diff --git a/examples/perplexity/perplexity.cpp b/examples/perplexity/perplexity.cpp index b07320190..1b7f85f49 100644 --- a/examples/perplexity/perplexity.cpp +++ b/examples/perplexity/perplexity.cpp @@ -112,6 +112,43 @@ static results_log_softmax log_softmax(int n_vocab, const float * logits, int to return {logits[tok] - max_logit - log(sum_exp), logits[tok], expf(logits[tok] - max_logit) / (float) sum_exp}; } +static inline int nearest_int(float fval) { + //assert(fval <= 4194303.f); + float val = fval + 12582912.f; + int i; memcpy(&i, &val, sizeof(int)); + return (i & 0x007fffff) - 0x00400000; +} + +static double log_softmax(int n_vocab, const float * logits, uint16_t * log_prob, int tok) { + float max_logit = logits[0]; + float min_logit = logits[0]; + for (int i = 1; i < n_vocab; ++i) { + max_logit = std::max(max_logit, logits[i]); + min_logit = std::min(min_logit, logits[i]); + } + min_logit = std::max(min_logit, max_logit - 16); + double sum_exp = 0.0; + for (int i = 0; i < n_vocab; ++i) { + sum_exp += expf(logits[i] - max_logit); + } + const float log_sum_exp = log(sum_exp); + const float min_log_prob = min_logit - max_logit - log_sum_exp; + const float scale = (max_logit - min_logit)/65535.f; + float * d = (float *)log_prob; + d[0] = scale; + d[1] = min_log_prob; + log_prob += 4; + if (scale) { + const float inv_scale = 1/scale; + for (int i = 0; i < n_vocab; ++i) { + log_prob[i] = logits[i] > min_logit ? nearest_int(inv_scale*(logits[i] - min_logit)) : 0; + } + } else { + std::memset(log_prob, 0, n_vocab*sizeof(uint16_t)); + } + return max_logit + log_sum_exp - logits[tok]; +} + static void process_logits( int n_vocab, const float * logits, const int * tokens, int n_token, std::vector & workers, double & nll, double & nll2, float * logit_history, float * prob_history @@ -147,6 +184,114 @@ static void process_logits( } } +static void process_logits(std::ostream& out, int n_vocab, const float * logits, const int * tokens, int n_token, + std::vector & workers, std::vector & log_probs, double & nll, double & nll2) { + std::mutex mutex; + const int nv = 2*((n_vocab + 1)/2) + 4; + int counter = 0; + auto compute = [&mutex, &counter, &log_probs, &nll, &nll2, n_vocab, logits, tokens, n_token, nv] () { + double local_nll = 0; + double local_nll2 = 0; + while (true) { + std::unique_lock lock(mutex); + int i = counter++; + if (i >= n_token) { + nll += local_nll; nll2 += local_nll2; + break; + } + lock.unlock(); + const double v = log_softmax(n_vocab, logits + i*n_vocab, log_probs.data() + i*nv, tokens[i+1]); + local_nll += v; + local_nll2 += v*v; + } + }; + for (auto & w : workers) { + w = std::thread(compute); + } + compute(); + for (auto & w : workers) { + w.join(); + } + out.write((const char *)log_probs.data(), n_token*nv*sizeof(uint16_t)); +} + +struct kl_divergence_result { + double sum_nll = 0; + double sum_nll2 = 0; + double sum_kld = 0; + double sum_kld2 = 0; + double sum_nll_diff = 0; + double sum_nll_diff2 = 0; + size_t count = 0; +}; + +static void log_softmax(int n_vocab, const float * logits, const uint16_t * base_log_prob, int tok, kl_divergence_result & kld) { + float max_logit = logits[0]; + for (int i = 1; i < n_vocab; ++i) { + max_logit = std::max(max_logit, logits[i]); + } + double sum_exp = 0.0; + for (int i = 0; i < n_vocab; ++i) { + sum_exp += expf(logits[i] - max_logit); + } + const float log_sum_exp = log(sum_exp); + const float * d = (const float *)base_log_prob; + const float scale = d[0]; + const float min_log_prob = d[1]; + base_log_prob += 4; + float nll = max_logit + log_sum_exp - logits[tok]; + kld.sum_nll += nll; + kld.sum_nll2 += nll*nll; + nll += (scale*base_log_prob[tok] + min_log_prob); + kld.sum_nll_diff += nll; + kld.sum_nll_diff2 += nll*nll; + max_logit += log_sum_exp; + double sum = 0; + for (int i = 0; i < n_vocab; ++i) { + const float p_log_base = scale*base_log_prob[i] + min_log_prob; + if (p_log_base > -16.f) { + const float p_base = expf(p_log_base); + sum += p_base * (p_log_base - logits[i] + max_logit); + } + } + kld.sum_kld += sum; + kld.sum_kld2 += sum*sum; + ++kld.count; +} + +static void process_logits(int n_vocab, const float * logits, const int * tokens, int n_token, + std::vector & workers, const std::vector & base_log_probs, kl_divergence_result & kld) { + std::mutex mutex; + const int nv = 2*((n_vocab + 1)/2) + 4; + int counter = 0; + auto compute = [&mutex, &counter, &base_log_probs, &kld, n_vocab, logits, tokens, n_token, nv] () { + kl_divergence_result local_kld; + while (true) { + std::unique_lock lock(mutex); + int i = counter++; + if (i >= n_token) { + kld.sum_nll += local_kld.sum_nll; + kld.sum_nll2 += local_kld.sum_nll2; + kld.sum_kld += local_kld.sum_kld; + kld.sum_kld2 += local_kld.sum_kld2; + kld.sum_nll_diff += local_kld.sum_nll_diff; + kld.sum_nll_diff2 += local_kld.sum_nll_diff2; + kld.count += local_kld.count; + break; + } + lock.unlock(); + log_softmax(n_vocab, logits + i*n_vocab, base_log_probs.data() + i*nv, tokens[i+1], local_kld); + } + }; + for (auto & w : workers) { + w = std::thread(compute); + } + compute(); + for (auto & w : workers) { + w.join(); + } +} + static results_perplexity perplexity_v2(llama_context * ctx, const gpt_params & params) { // Download: https://s3.amazonaws.com/research.metamind.io/wikitext/wikitext-2-raw-v1.zip?ref=salesforce-research // Run `./perplexity -m models/7B/ggml-model-q4_0.bin -f wiki.test.raw` @@ -294,6 +439,18 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); const int n_ctx = llama_n_ctx(ctx); + std::ofstream logits_stream; + if (!params.logits_file.empty()) { + logits_stream.open(params.logits_file.c_str()); + if (!logits_stream.is_open()) { + fprintf(stderr, "%s: failed to open %s for writing\n", __func__, params.logits_file.c_str()); + return {}; + } + fprintf(stderr, "%s: saving all logits to %s\n", __func__, params.logits_file.c_str()); + logits_stream.write("_logits_", 8); + logits_stream.write((const char *)&n_ctx, sizeof(n_ctx)); + } + auto tim1 = std::chrono::high_resolution_clock::now(); fprintf(stderr, "%s: tokenizing the input ..\n", __func__); @@ -336,6 +493,15 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par std::vector workers(std::thread::hardware_concurrency() - 1); + std::vector log_probs; + if (!params.logits_file.empty()) { + logits_stream.write((const char *)&n_vocab, sizeof(n_vocab)); + logits_stream.write((const char *)&n_chunk, sizeof(n_chunk)); + logits_stream.write((const char *)tokens.data(), n_chunk*n_ctx*sizeof(tokens[0])); + const int nv = 2*((n_vocab + 1)/2) + 4; + log_probs.resize(n_ctx * nv); + } + for (int i = 0; i < n_chunk; ++i) { const int start = i * n_ctx; const int end = start + n_ctx; @@ -398,8 +564,13 @@ static results_perplexity perplexity(llama_context * ctx, const gpt_params & par // process the entire prompt. const int first = n_ctx/2; const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); - process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, - workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); + if (!params.logits_file.empty()) { + process_logits(logits_stream, n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, + workers, log_probs, nll, nll2); + } else { + process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, + workers, nll, nll2, logit_history.data() + start + first, prob_history.data() + start + first); + } count += n_ctx - first - 1; // perplexity is e^(average negative log-likelihood) @@ -458,23 +629,24 @@ static bool decode_helper(llama_context * ctx, llama_batch & batch, std::vector< return true; } +#define K_TOKEN_CHUNK 4 + static void compute_logprobs(const float * batch_logits, int n_vocab, std::vector& workers, const std::vector>& eval_pairs, std::vector& eval_results) { - constexpr int k_token_chunk = 4; if (eval_results.size() != eval_pairs.size()) { eval_results.resize(eval_pairs.size()); } if (eval_pairs.empty()) return; - size_t max_threads = std::min((eval_pairs.size() + k_token_chunk - 1)/k_token_chunk, workers.size()); + size_t max_threads = std::min((eval_pairs.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK, workers.size()); std::atomic counter(0); auto compute = [&counter, &eval_pairs, &eval_results, batch_logits, n_vocab] () { - float local_logprobs[k_token_chunk]; + float local_logprobs[K_TOKEN_CHUNK]; while (true) { - size_t first = counter.fetch_add(k_token_chunk, std::memory_order_relaxed); + size_t first = counter.fetch_add(K_TOKEN_CHUNK, std::memory_order_relaxed); if (first >= eval_results.size()) break; - size_t last = std::min(first + k_token_chunk, eval_results.size()); + size_t last = std::min(first + K_TOKEN_CHUNK, eval_results.size()); for (size_t i = first; i < last; ++i) { auto logits = batch_logits + eval_pairs[i].first * n_vocab; float max_logit = logits[0]; @@ -497,7 +669,6 @@ static void compute_logprobs(const float * batch_logits, int n_vocab, std::vecto for (size_t it = 0; it < max_threads; ++it) { workers[it].join(); } - } static void hellaswag_score(llama_context * ctx, const gpt_params & params) { @@ -540,14 +711,14 @@ static void hellaswag_score(llama_context * ctx, const gpt_params & params) { // This is needed as usual for LLaMA models const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); + // The tasks should be randomized so the score stabilizes quickly. + bool randomize_tasks = true; + // Number of tasks to use when computing the score if (params.hellaswag_tasks < hs_task_count) { hs_task_count = params.hellaswag_tasks; } - // The tasks should be randomized so the score stabilizes quickly. - bool randomize_tasks = true; - // The random seed should not impact the final result if the computation is done over enough tasks, so kept hardcoded for now std::mt19937 rng(1); @@ -1031,6 +1202,531 @@ static void winogrande_score(llama_context * ctx, const gpt_params & params) { printf("Final Winogrande score(%d tasks): %.4lf +/- %.4lf\n", n_done, 100*p, sigma); } +static bool deserialize_string(std::istream& in, std::string& str) { + uint32_t size; + if (!in.read((char *)&size, sizeof(size)).fail()) { + str.resize(size); + if (!in.read((char *)str.data(), size).fail()) return true; + } + return false; +} + +struct multiple_choice_answers { + std::vector answers; + std::vector labels; + bool deserialize(std::istream& in) { + uint32_t n; + in.read((char *)&n, sizeof(n)); + if (in.fail() || n > 100) return false; // 100 as max. number of answers should be good enough for any practical purpose + answers.resize(n); + labels.resize(n); + for (auto& a : answers) { + if (!deserialize_string(in, a)) return false; + } + in.read((char *)labels.data(), n*sizeof(int)); + return !in.fail(); + } +}; + +struct multiple_choice_task { + std::string question; // the question (or context that needs to be continued) + multiple_choice_answers mc1; // possible answers (continuations) with a single correct answer + multiple_choice_answers mc2; // possible answers (continuations) with multiple correct answers - not handled yet + bool deserialize(std::istream& in) { + if (!deserialize_string(in, question)) return false; + return mc1.deserialize(in) && mc2.deserialize(in); + } + + // For evaluation + size_t i_batch; // starting index in the llama_batch + size_t common_prefix; // max number of initial tokens that are the same in all sentences + size_t required_tokens; // needed number of tokens to evaluate all answers + std::vector> seq_tokens; + std::vector log_probs; +}; + +static bool multiple_choice_prepare_one_task(llama_context * ctx, bool add_bos, multiple_choice_task& task, bool log_error) { + if (task.question.empty() || task.mc1.answers.empty()) { + if (log_error) { + printf("%s: found bad task with empty question and/or answers\n", __func__); + } + return false; + } + task.seq_tokens.reserve(task.mc1.answers.size()); + for (auto& answer : task.mc1.answers) { + if (answer.empty()) { + if (log_error) { + printf("%s: found empty answer\n", __func__); + } + return false; + } + task.seq_tokens.emplace_back(::llama_tokenize(ctx, task.question + " " + answer, add_bos)); + } + auto min_len = task.seq_tokens.front().size(); + for (auto& seq : task.seq_tokens) { + min_len = std::min(min_len, seq.size()); + } + task.common_prefix = 0; + for (size_t k = 0; k < min_len; ++k) { + auto token = task.seq_tokens[0][k]; + bool all_same = true; + for (size_t i = 1; i < task.seq_tokens.size(); ++i) { + if (task.seq_tokens[i][k] != token) { + all_same = false; + break; + } + } + if (!all_same) { + break; + } + ++task.common_prefix; + } + task.required_tokens = task.common_prefix; + for (auto& seq : task.seq_tokens) { + task.required_tokens += seq.size() - task.common_prefix; + } + return true; +} + +// +// Calculates score for multiple choice tasks with single correct answer from prompt. +// Commonly used LLM evaluation metrics of this type are +// * ARC +// * HellaSwag +// * MMLU +// * TruthfulQA +// +// Validation datasets for these 4 tests can be found at +// https://huggingface.co/datasets/ikawrakow/validation-datasets-for-llama.cpp +// The data for these datasets was extracted from +// git@hf.co:datasets/allenai/ai2_arc +// https://github.com/rowanz/hellaswag/blob/master/data/hellaswag_val.jsonl +// git@hf.co:datasets/Stevross/mmlu +// https://huggingface.co/datasets/truthful_qa +// +static void multiple_choice_score(llama_context * ctx, const gpt_params & params) { + + std::istringstream strstream(params.prompt); + uint32_t n_task; + strstream.read((char *)&n_task, sizeof(n_task)); + if (strstream.fail() || n_task == 0) { + printf("%s: no tasks\n", __func__); + return; + } + printf("%s: there are %u tasks in prompt\n", __func__, n_task); + std::vector task_pos(n_task); + strstream.read((char *)task_pos.data(), task_pos.size()*sizeof(uint32_t)); + if (strstream.fail()) { + printf("%s: failed to raad task positions from prompt\n", __func__); + return; + } + + std::vector tasks; + if (params.multiple_choice_tasks == 0 || params.multiple_choice_tasks >= (size_t)n_task) { + // Use all tasks + tasks.resize(n_task); + printf("%s: reading tasks", __func__); + int n_dot = n_task/100; + int i = 0; + for (auto& task : tasks) { + ++i; + if (!task.deserialize(strstream)) { + printf("%s: failed to read task %d of %u\n", __func__, i, n_task); + return; + } + if (i%n_dot == 0) printf("."); + } + printf("done\n"); + } + else { + printf("%s: selecting %zu random tasks from %u tasks available\n", __func__, params.multiple_choice_tasks, n_task); + std::mt19937 rng(1); + std::vector aux(n_task); + for (uint32_t i = 0; i < n_task; ++i) aux[i] = i; + float scale = 1.f/(1.f + (float)std::mt19937::max()); + tasks.resize(params.multiple_choice_tasks); + for (auto& task : tasks) { + int j = (int)(scale * rng() * aux.size()); + int idx = aux[j]; + aux[j] = aux.back(); + aux.pop_back(); + strstream.seekg(task_pos[idx], std::ios::beg); + if (!task.deserialize(strstream)) { + printf("%s: failed to read task %d at position %u\n", __func__, idx, task_pos[idx]); + return; + } + } + n_task = params.multiple_choice_tasks; + } + + // This is needed as usual for LLaMA models + const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); + + printf("%s: preparing task data", __func__); + fflush(stdout); + if (n_task > 500) { + printf("..."); + fflush(stdout); + std::atomic counter(0); + std::atomic n_bad(0); + auto prepare = [&counter, &n_bad, &tasks, ctx, add_bos] () { + int num_tasks = tasks.size(); + int n_bad_local = 0; + while (true) { + int first = counter.fetch_add(K_TOKEN_CHUNK); + if (first >= num_tasks) { + if (n_bad_local > 0) n_bad += n_bad_local; + break; + } + int last = std::min(first + K_TOKEN_CHUNK, num_tasks); + for (int i = first; i < last; ++i) { + if (!multiple_choice_prepare_one_task(ctx, add_bos, tasks[i], false)) ++n_bad_local; + } + } + }; + size_t max_thread = std::thread::hardware_concurrency(); + max_thread = std::min(max_thread, (tasks.size() + K_TOKEN_CHUNK - 1)/K_TOKEN_CHUNK); + std::vector workers(max_thread-1); + for (auto& w : workers) w = std::thread(prepare); + prepare(); + for (auto& w : workers) w.join(); + printf("done\n"); + fflush(stdout); + int nbad = n_bad; + if (nbad > 0) { + printf("%s: found %d malformed tasks\n", __func__, nbad); + return; + } + } else { + int n_dot = n_task/100; + int i_task = 0; + for (auto& task : tasks) { + ++i_task; + if (!multiple_choice_prepare_one_task(ctx, add_bos, task, true)) { + return; + } + if (i_task%n_dot == 0) { + printf("."); + fflush(stdout); + } + } + printf("done\n"); + } + + printf("%s : calculating TruthfulQA score over %zu tasks.\n", __func__, tasks.size()); + + printf("\ntask\tacc_norm\n"); + + const int n_vocab = llama_n_vocab(llama_get_model(ctx)); + const int n_ctx = llama_n_ctx(ctx); + const int n_batch = params.n_batch; + + const int max_tasks_per_batch = 32; + const int max_seq = 4*max_tasks_per_batch; + + llama_batch batch = llama_batch_init(n_ctx, 0, max_seq); + + std::vector tok_logits(n_vocab); + std::vector batch_logits(n_vocab*n_ctx); + + std::vector> eval_pairs; + std::vector eval_results; + std::vector workers(std::thread::hardware_concurrency()); + std::vector batch_indeces; + + int n_done = 0; + int n_correct = 0; + int n_tot_answers = 0; + + for (size_t i0 = 0; i0 < tasks.size(); i0++) { + int n_cur = 0; + + size_t i1 = i0; + size_t i_batch = 0; // this tells us where in `llama_batch` we are currently + + llama_batch_clear(batch); + + // batch as much tasks as possible into the available context + // each task has 4 unique seuqnce ids - one for each ending + // the common prefix is shared among the 4 sequences to save tokens + // we extract logits only from the last common token and from all ending tokens of each sequence + int s0 = 0; + while (n_cur + (int) tasks[i1].required_tokens <= n_ctx) { + auto& cur_task = tasks[i1]; + + int num_answers = cur_task.seq_tokens.size(); + if (s0 + num_answers > max_seq) { + break; + } + + if (int(batch_indeces.size()) != num_answers) { + batch_indeces.resize(num_answers); + } + for (int s = 0; s < num_answers; ++s) batch_indeces[s] = s0 + s; + + for (size_t i = 0; i < cur_task.common_prefix; ++i) { + //llama_batch_add(batch, cur_task.seq_tokens[0][i], i, { s0 + 0, s0 + 1, s0 + 2, s0 + 3}, false); + llama_batch_add(batch, cur_task.seq_tokens[0][i], i, batch_indeces, false); + } + batch.logits[batch.n_tokens - 1] = true; // we need logits for the last token of the common prefix + + for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { + for (size_t i = cur_task.common_prefix; i < cur_task.seq_tokens[s].size(); ++i) { + llama_batch_add(batch, cur_task.seq_tokens[s][i], i, { s0 + s }, true); + } + } + + s0 += num_answers; + + cur_task.i_batch = i_batch; + i_batch += cur_task.required_tokens; + + n_cur += cur_task.required_tokens; + if (++i1 == tasks.size()) { + break; + } + } + + if (i0 == i1) { + fprintf(stderr, "%s : task %zu does not fit in the context window\n", __func__, i0); + return; + } + + llama_kv_cache_clear(ctx); + + // decode all tasks [i0, i1) + if (!decode_helper(ctx, batch, batch_logits, n_batch, n_vocab)) { + fprintf(stderr, "%s: llama_decode() failed\n", __func__); + return; + } + + // Compute log-probs in parallel + // First we collect all tasks + eval_pairs.clear(); + for (size_t i = i0; i < i1; ++i) { + auto& cur_task = tasks[i]; + size_t li = cur_task.common_prefix; + for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { + for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { + eval_pairs.push_back(std::make_pair(cur_task.i_batch + li++, cur_task.seq_tokens[s][j + 1])); + } + ++li; + } + } + // Then we do the actual calculation + compute_logprobs(batch_logits.data(), n_vocab, workers, eval_pairs, eval_results); + + size_t ir = 0; + + // compute the logprobs for each ending of the decoded tasks + for (size_t i = i0; i < i1; ++i) { + auto & cur_task = tasks[i]; + //printf("==== Evaluating <%s> with correct answer ", cur_task.question.c_str()); + //for (int j = 0; j < int(cur_task.mc1.labels.size()); ++j) { + // if (cur_task.mc1.labels[j] == 1) { + // printf("%d", j+1); + // } + //} + //printf("\n common_prefix: %zu\n", cur_task.common_prefix); + + std::memcpy(tok_logits.data(), batch_logits.data() + n_vocab*(cur_task.i_batch + cur_task.common_prefix - 1), n_vocab*sizeof(float)); + + const auto first_probs = softmax(tok_logits); + + cur_task.log_probs.resize(cur_task.seq_tokens.size()); + for (int s = 0; s < int(cur_task.seq_tokens.size()); ++s) { + size_t count = 1; + float log_prob = std::log(first_probs[cur_task.seq_tokens[s][cur_task.common_prefix]]); + for (size_t j = cur_task.common_prefix; j < cur_task.seq_tokens[s].size() - 1; j++) { + //printf(" %zu %g\n", ir, eval_results[ir]); + ++count; + log_prob += eval_results[ir++]; + } + cur_task.log_probs[s] = log_prob / count; + //printf(" Final: %g\n", log_prob / count); + //printf(" <%s> : %g\n", cur_task.mc1.answers[s].c_str(), log_prob/count); + } + + // Find the ending with maximum logprob + size_t logprob_max_idx = 0; + float logprob_max_val = cur_task.log_probs[0]; + for (size_t s = 1; s < cur_task.log_probs.size(); s++) { + if (cur_task.log_probs[s] > logprob_max_val) { + logprob_max_val = cur_task.log_probs[s]; + logprob_max_idx = s; + } + } + + n_tot_answers += cur_task.log_probs.size(); + if (cur_task.mc1.labels[logprob_max_idx] == 1) { + ++n_correct; + } + ++n_done; + + // Print the accumulated accuracy mean x 100 + printf("%d\t%.8lf\n", n_done, 100.*n_correct/n_done); + fflush(stdout); + } + + i0 = i1 - 1; + } + + llama_batch_free(batch); + + if (n_done < 100) return; + + float p = 1.f*n_correct/n_done; + float sigma = sqrt(p*(1-p)/(n_done-1)); + printf("\n Final result: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma); + p = 1.f*n_done/n_tot_answers; + sigma = sqrt(p*(1-p)/(n_done-1)); + printf("Random chance: %.4f +/- %.4f\n", 100.f*p, 100.f*sigma); + + printf("\n"); +} + +static void kl_divergence(llama_context * ctx, const gpt_params & params) { + if (params.logits_file.empty()) { + fprintf(stderr, "%s: you must provide a name of a file containing the log probabilities of the base model\n", __func__); + return; + } + std::ifstream in(params.logits_file.c_str(), std::ios::binary); + if (!in) { + fprintf(stderr, "%s: failed to open %s\n", __func__, params.logits_file.c_str()); + return; + } + { + char check[9]; check[8] = 0; + in.read(check, 8); + if (in.fail() || strncmp("_logits_", check, 8) != 0) { + fprintf(stderr, "%s: %s does not look like a file containing log-probabilities\n", __func__, params.logits_file.c_str()); + return; + } + } + + uint32_t n_ctx; + in.read((char *)&n_ctx, sizeof(n_ctx)); + if (n_ctx > llama_n_ctx(ctx)) { + fprintf(stderr, "%s: %s has been computed with %d, while the current context is %d. Increase it with -c and retry\n", + __func__, params.logits_file.c_str(), n_ctx, params.n_ctx); + } + + int n_vocab, n_chunk; + in.read((char *)&n_vocab, sizeof(n_vocab)); + in.read((char *)&n_chunk, sizeof(n_chunk)); + if (in.fail()) { + fprintf(stderr, "%s: failed rwading n_vocab, n_chunk from %s\n", __func__, params.logits_file.c_str()); + return; + } + if (n_vocab != llama_n_vocab(llama_get_model(ctx))) { + fprintf(stderr, "%s: inconsistent vocabulary (%d vs %d)\n", __func__, n_vocab, llama_n_vocab(llama_get_model(ctx))); + } + + std::vector tokens(n_ctx * n_chunk); + if (in.read((char *)tokens.data(), tokens.size()*sizeof(tokens[0])).fail()) { + fprintf(stderr, "%s: failed reading evaluation tokens from %s\n", __func__, params.logits_file.c_str()); + return; + } + + const int n_batch = params.n_batch; + const int num_batches = (n_ctx + n_batch - 1)/n_batch; + const int nv = 2*((n_vocab + 1)/2) + 4; + const bool add_bos = llama_should_add_bos_token(llama_get_model(ctx)); + + std::vector log_probs_uint16(size_t(n_ctx - 1 - n_ctx/2) * nv); + std::vector logits; + if (num_batches > 1) { + logits.reserve(n_ctx * n_vocab); + } + + std::vector workers(std::thread::hardware_concurrency() - 1); + + auto mean_and_uncertainty = [] (double sum, double sum2, size_t count) { + if (count < 1) { + return std::make_pair(0., 0.); + } + double f = sum/count; + double df = sum2/count - f*f; + df = df > 0 && count > 10 ? sqrt(df/(count-1)) : 0.; + return std::make_pair(f, df); + }; + + kl_divergence_result kld; + + for (int i = 0; i < n_chunk; ++i) { + const int start = i * n_ctx; + const int end = start + n_ctx; + + const auto t_start = std::chrono::high_resolution_clock::now(); + + if (in.read((char *)log_probs_uint16.data(), log_probs_uint16.size()*sizeof(uint16_t)).fail()) { + fprintf(stderr, "%s: failed reading log-probs for chunk %d\n", __func__, i); + return; + } + + // clear the KV cache + llama_kv_cache_clear(ctx); + + for (int j = 0; j < num_batches; ++j) { + const int batch_start = start + j * n_batch; + const int batch_size = std::min(end - batch_start, n_batch); + + // save original token and restore it after eval + const auto token_org = tokens[batch_start]; + + // add BOS token for the first batch of each chunk + if (add_bos && j == 0) { + tokens[batch_start] = llama_token_bos(llama_get_model(ctx)); + } + + if (llama_decode(ctx, llama_batch_get_one(tokens.data() + batch_start, batch_size, j * n_batch, 0))) { + fprintf(stderr, "%s : failed to eval\n", __func__); + return; + } + + // restore the original token in case it was set to BOS + tokens[batch_start] = token_org; + + if (num_batches > 1) { + const auto * batch_logits = llama_get_logits(ctx); + logits.insert(logits.end(), batch_logits, batch_logits + batch_size * n_vocab); + } + } + + const auto t_end = std::chrono::high_resolution_clock::now(); + + if (i == 0) { + const float t_total = std::chrono::duration(t_end - t_start).count(); + fprintf(stderr, "%s: %.2f seconds per pass - ETA ", __func__, t_total); + int total_seconds = (int)(t_total * n_chunk); + if (total_seconds >= 60*60) { + fprintf(stderr, "%d hours ", total_seconds / (60*60)); + total_seconds = total_seconds % (60*60); + } + fprintf(stderr, "%.2f minutes\n", total_seconds / 60.0); + + printf("\nchunk PPL ln(PPL(Q)/PPL(base)) KL-Divergence\n"); + } + + const int first = n_ctx/2; + const float * all_logits = num_batches > 1 ? logits.data() : llama_get_logits(ctx); + process_logits(n_vocab, all_logits + first*n_vocab, tokens.data() + start + first, n_ctx - 1 - first, + workers, log_probs_uint16, kld); + + auto ppl = mean_and_uncertainty(kld.sum_nll, kld.sum_nll2, kld.count); + auto log_ppl_ratio = mean_and_uncertainty(kld.sum_nll_diff, kld.sum_nll_diff2, kld.count); + auto kl_div = mean_and_uncertainty(kld.sum_kld, kld.sum_kld2, kld.count); + + printf("%4d %10.4lf %10.5lf ± %10.5f %10.5f ± %10.5lf\n", i+1, exp(ppl.first), + log_ppl_ratio.first, log_ppl_ratio.second, kl_div.first, kl_div.second); + + fflush(stdout); + + logits.clear(); + } + printf("\n"); + +} int main(int argc, char ** argv) { gpt_params params; @@ -1091,6 +1787,10 @@ int main(int argc, char ** argv) { hellaswag_score(ctx, params); } else if (params.winogrande) { winogrande_score(ctx, params); + } else if (params.multiple_choice) { + multiple_choice_score(ctx, params); + } else if (params.kl_divergence) { + kl_divergence(ctx, params); } else { results = perplexity(ctx, params); } diff --git a/examples/quantize/quantize.cpp b/examples/quantize/quantize.cpp index 2ae046933..f4786157e 100644 --- a/examples/quantize/quantize.cpp +++ b/examples/quantize/quantize.cpp @@ -26,6 +26,7 @@ static const std::vector QUANT_OPTIONS = { { "Q2_K", LLAMA_FTYPE_MOSTLY_Q2_K, " 2.63G, +0.6717 ppl @ LLaMA-v1-7B", }, { "Q2_K_S", LLAMA_FTYPE_MOSTLY_Q2_K_S, " 2.16G, +9.0634 ppl @ LLaMA-v1-7B", }, { "Q3_K", LLAMA_FTYPE_MOSTLY_Q3_K_M, "alias for Q3_K_M" }, + { "Q3_K_XS",LLAMA_FTYPE_MOSTLY_Q3_K_XS,"3-bit extra small quantization" , }, { "Q3_K_S", LLAMA_FTYPE_MOSTLY_Q3_K_S, " 2.75G, +0.5551 ppl @ LLaMA-v1-7B", }, { "Q3_K_M", LLAMA_FTYPE_MOSTLY_Q3_K_M, " 3.07G, +0.2496 ppl @ LLaMA-v1-7B", }, { "Q3_K_L", LLAMA_FTYPE_MOSTLY_Q3_K_L, " 3.35G, +0.1764 ppl @ LLaMA-v1-7B", }, diff --git a/flake.lock b/flake.lock index cd532ef4f..1b253cb44 100644 --- a/flake.lock +++ b/flake.lock @@ -20,11 +20,11 @@ }, "nixpkgs": { "locked": { - "lastModified": 1705133751, - "narHash": "sha256-rCIsyE80jgiOU78gCWN3A0wE0tR2GI5nH6MlS+HaaSQ=", + "lastModified": 1705677747, + "narHash": "sha256-eyM3okYtMgYDgmYukoUzrmuoY4xl4FUujnsv/P6I/zI=", "owner": "NixOS", "repo": "nixpkgs", - "rev": "9b19f5e77dd906cb52dade0b7bd280339d2a1f3d", + "rev": "bbe7d8f876fbbe7c959c90ba2ae2852220573261", "type": "github" }, "original": { diff --git a/flake.nix b/flake.nix index ec62c773a..a776ba024 100644 --- a/flake.nix +++ b/flake.nix @@ -1,3 +1,17 @@ +# The flake interface to llama.cpp's Nix expressions. The flake is used as a +# more discoverable entry-point, as well as a way to pin the dependencies and +# expose default outputs, including the outputs built by the CI. + +# For more serious applications involving some kind of customization you may +# want to consider consuming the overlay, or instantiating `llamaPackages` +# directly: +# +# ```nix +# pkgs.callPackage ${llama-cpp-root}/.devops/nix/scope.nix { }` +# ``` + +# Cf. https://jade.fyi/blog/flakes-arent-real/ for a more detailed exposition +# of the relation between Nix and the Nix Flakes. { description = "Port of Facebook's LLaMA model in C/C++"; diff --git a/ggml-backend.c b/ggml-backend.c index ef518dae0..423512def 100644 --- a/ggml-backend.c +++ b/ggml-backend.c @@ -1191,6 +1191,24 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g ggml_tallocr_t src_allocr = node_allocr(src); GGML_ASSERT(src_allocr != NULL); // all inputs should be assigned by now if (src_allocr != node_allocr) { + // create a copy of the input in the split's backend + size_t id = hash_id(src); + if (sched->node_copies[id][cur_backend_id] == NULL) { + ggml_backend_t backend = get_allocr_backend(sched, cur_allocr); + struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); + ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name); + + sched->node_copies[id][cur_backend_id] = tensor_copy; + node_allocr(tensor_copy) = cur_allocr; + SET_CAUSE(tensor_copy, "4.cpy"); + + int n_inputs = sched->splits[cur_split].n_inputs++; + GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS); + sched->splits[cur_split].inputs[n_inputs] = src; + } + node->src[j] = sched->node_copies[id][cur_backend_id]; + +#if 0 // check if the input is already in the split bool found = false; for (int k = 0; k < sched->splits[cur_split].n_inputs; k++) { @@ -1206,19 +1224,7 @@ static void sched_split_graph(ggml_backend_sched_t sched, struct ggml_cgraph * g GGML_ASSERT(n_inputs < GGML_MAX_SPLIT_INPUTS); sched->splits[cur_split].inputs[n_inputs] = src; } - - // create a copy of the input in the split's backend - size_t id = hash_id(src); - if (sched->node_copies[id][cur_backend_id] == NULL) { - ggml_backend_t backend = get_allocr_backend(sched, cur_allocr); - struct ggml_tensor * tensor_copy = ggml_dup_tensor_layout(sched->ctx, src); - ggml_format_name(tensor_copy, "%s#%s", ggml_backend_name(backend), src->name); - - sched->node_copies[id][cur_backend_id] = tensor_copy; - node_allocr(tensor_copy) = cur_allocr; - SET_CAUSE(tensor_copy, "4.cpy"); - } - node->src[j] = sched->node_copies[id][cur_backend_id]; +#endif } } } @@ -1333,7 +1339,7 @@ static void sched_compute_splits(ggml_backend_sched_t sched) { uint64_t compute_start_us = ggml_time_us(); if (!sched->callback_eval) { ggml_backend_graph_compute(split_backend, &split->graph); - //ggml_backend_synchronize(split_backend); // necessary to measure compute time + //ggml_backend_synchronize(split_backend); // necessary to measure compute time } else { // similar to ggml_backend_compare_graph_backend for (int j0 = 0; j0 < split->graph.n_nodes; j0++) { diff --git a/ggml-cuda.cu b/ggml-cuda.cu index b2211d858..ec3837fb8 100644 --- a/ggml-cuda.cu +++ b/ggml-cuda.cu @@ -12,9 +12,6 @@ #include #include #include -#include "ggml-cuda.h" -#include "ggml.h" -#include "ggml-backend-impl.h" #if defined(GGML_USE_HIPBLAS) #include @@ -118,6 +115,11 @@ #endif // defined(GGML_USE_HIPBLAS) +// ggml-cuda need half type so keep ggml headers include at last +#include "ggml-cuda.h" +#include "ggml.h" +#include "ggml-backend-impl.h" + #define CUDART_HMAX 11070 // CUDA 11.7, min. ver. for which __hmax and __hmax2 are known to work (may be higher than needed) #define CC_PASCAL 600 diff --git a/ggml.c b/ggml.c index cbf2d4bdd..f85045c9c 100644 --- a/ggml.c +++ b/ggml.c @@ -1418,6 +1418,9 @@ inline static void ggml_vec_tanh_f32 (const int n, float * y, const float * x) { inline static void ggml_vec_elu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : expf(x[i])-1; } inline static void ggml_vec_relu_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = (x[i] > 0.f) ? x[i] : 0.f; } inline static void ggml_vec_leaky_relu_f32 (const int n, float * y, const float * x, const float ns) { for (int i = 0; i < n; ++i) y[i] = ((x[i] > 0.f) ? x[i] : 0.f) + ns * ((x[i] < 0.0f) ? x[i] : 0.f); } +// TODO: optimize performance +inline static void ggml_vec_hardswish_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } +inline static void ggml_vec_hardsigmoid_f32 (const int n, float * y, const float * x) { for (int i = 0; i < n; ++i) y[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f)); } static const float GELU_COEF_A = 0.044715f; static const float GELU_QUICK_COEF = -1.702f; @@ -1776,9 +1779,11 @@ static const char * GGML_UNARY_OP_NAME[GGML_UNARY_OP_COUNT] = { "GELU", "GELU_QUICK", "SILU", + "HARDSWISH", + "HARDSIGMOID", }; -static_assert(GGML_UNARY_OP_COUNT == 10, "GGML_UNARY_OP_COUNT != 10"); +static_assert(GGML_UNARY_OP_COUNT == 12, "GGML_UNARY_OP_COUNT != 12"); static_assert(sizeof(struct ggml_object)%GGML_MEM_ALIGN == 0, "ggml_object size must be a multiple of GGML_MEM_ALIGN"); @@ -3945,6 +3950,20 @@ struct ggml_tensor * ggml_silu_back( return result; } +// ggml hardswish +struct ggml_tensor * ggml_hardswish( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSWISH); +} + +// ggml hardsigmoid +struct ggml_tensor * ggml_hardsigmoid( + struct ggml_context * ctx, + struct ggml_tensor * a) { + return ggml_unary(ctx, a, GGML_UNARY_OP_HARDSIGMOID); +} + // ggml_norm static struct ggml_tensor * ggml_norm_impl( @@ -5344,6 +5363,33 @@ GGML_API struct ggml_tensor * ggml_conv_transpose_1d( return result; } +// ggml_conv_depthwise +struct ggml_tensor * ggml_conv_depthwise_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1) { + + struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]); + struct ggml_tensor * im2col = ggml_im2col(ctx, new_a, + ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]), + s0, s1, p0, p1, d0, d1, true); // [N * IC, OH, OW, KH * KW] + + struct ggml_tensor * result = + ggml_mul_mat(ctx, + ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1), // [OC,1, KH, KW] => [1, OC, 1, KH * KW] + ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3])); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW] + + result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW] + + return result; +} // ggml_conv_2d // im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW] @@ -7764,6 +7810,9 @@ static void ggml_compute_forward_acc_f32( bool inplace = (bool) ((int32_t *) dst->op_params)[4]; if (!inplace && (params->type == GGML_TASK_INIT)) { + if (params->ith != 0) { + return; + } // memcpy needs to be synchronized across threads to avoid race conditions. // => do it in INIT phase memcpy( @@ -9333,6 +9382,87 @@ static void ggml_compute_forward_silu_back( } } + +static void ggml_compute_forward_hardswish_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_hardswish_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} +static void ggml_compute_forward_hardswish( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_hardswish_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + +static void ggml_compute_forward_hardsigmoid_f32( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + assert(params->ith == 0); + assert(ggml_are_same_shape(src0, dst)); + + if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) { + return; + } + + const int n = ggml_nrows(src0); + const int nc = src0->ne[0]; + + assert(dst->nb[0] == sizeof(float)); + assert(src0->nb[0] == sizeof(float)); + + for (int i = 0; i < n; i++) { + ggml_vec_hardsigmoid_f32(nc, + (float *) ((char *) dst->data + i*( dst->nb[1])), + (float *) ((char *) src0->data + i*(src0->nb[1]))); + } +} + +static void ggml_compute_forward_hardsigmoid( + const struct ggml_compute_params * params, + const struct ggml_tensor * src0, + struct ggml_tensor * dst) { + switch (src0->type) { + case GGML_TYPE_F32: + { + ggml_compute_forward_hardsigmoid_f32(params, src0, dst); + } break; + default: + { + GGML_ASSERT(false); + } break; + } +} + + // ggml_compute_forward_norm static void ggml_compute_forward_norm_f32( @@ -9825,11 +9955,30 @@ static void ggml_compute_forward_mul_mat( #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(dst)) { - if (params->ith != 0) { - return; - } + const int64_t ne_plane = ne01*ne00; + const int64_t desired_wsize = ne13*ne12*ne_plane*sizeof(float); + UNUSED(desired_wsize); if (params->type == GGML_TASK_INIT) { + if (type != GGML_TYPE_F32) { + assert(params->wsize >= desired_wsize); + // parallelize by src0 rows + for (int64_t i13 = 0; i13 < ne13; i13++) { + for (int64_t i12 = 0; i12 < ne12; i12++) { + // broadcast src0 into src1 across 2nd,3rd dimension + const int64_t i03 = i13/r3; + const int64_t i02 = i12/r2; + + const void * x = (char *) src0->data + i02*nb02 + i03*nb03; + float * const wdata = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane; + ggml_to_float_t const to_float = type_traits[type].to_float; + + for (int64_t i01 = ith; i01 < ne01; i01 += nth) { + to_float((const char *) x + i01*nb01, wdata + i01*ne00, ne00); + } + } + } + } return; } @@ -9837,9 +9986,14 @@ static void ggml_compute_forward_mul_mat( return; } + // perform sgemm, parallelization controlled by blas lib + if (ith != 0) { + return; + } + + const int64_t tgemm0 = ggml_perf_time_us(); for (int64_t i13 = 0; i13 < ne13; i13++) { for (int64_t i12 = 0; i12 < ne12; i12++) { - // broadcast src0 into src1 across 2nd,3rd dimension const int64_t i03 = i13/r3; const int64_t i02 = i12/r2; @@ -9848,17 +10002,7 @@ static void ggml_compute_forward_mul_mat( float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3); if (type != GGML_TYPE_F32) { - float * const wdata = params->wdata; - ggml_to_float_t const to_float = type_traits[type].to_float; - - size_t id = 0; - for (int64_t i01 = 0; i01 < ne01; ++i01) { - to_float((const char *) x + i01*nb01, wdata + id, ne00); - id += ne00; - } - - assert(id*sizeof(float) <= params->wsize); - x = wdata; + x = (float *) params->wdata + i13*ne12*ne_plane + i12*ne_plane; } cblas_sgemm(CblasRowMajor, CblasNoTrans, CblasTrans, @@ -9868,6 +10012,7 @@ static void ggml_compute_forward_mul_mat( 0.0f, d, ne01); } } + //printf("cblas_sgemm = %.3f ms, %lld flops\n", (ggml_perf_time_us() - tgemm0)/1000.0, ne13*ne12*ne1*ne01*ne10*2); //printf("CBLAS = %f ms, %d x %d x %d x %d\n", (ggml_perf_time_us() - t0)/1000.0, ne0, ne1, ne2, ne3); @@ -9876,6 +10021,9 @@ static void ggml_compute_forward_mul_mat( #endif if (params->type == GGML_TASK_INIT) { + if (ith != 0) { + return; + } if (src1->type != vec_dot_type) { char * wdata = params->wdata; const size_t row_size = ggml_row_size(vec_dot_type, ne10); @@ -10040,6 +10188,9 @@ static void ggml_compute_forward_mul_mat_id( #define MMID_MATRIX_ROW(row_id, i1) matrix_rows[(row_id)*ne11 + (i1)] if (params->type == GGML_TASK_INIT) { + if (ith != 0) { + return; + } char * wdata = params->wdata; if (src1->type != vec_dot_type) { const size_t row_size = ggml_row_size(vec_dot_type, ne10); @@ -10225,6 +10376,9 @@ static void ggml_compute_forward_out_prod_f32( return; } #endif + if (ith != 0) { + return; + } ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); return; } @@ -10408,6 +10562,9 @@ static void ggml_compute_forward_out_prod_q_f32( // TODO: #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) || defined(GGML_USE_CLBLAST) if (params->type == GGML_TASK_INIT) { + if (ith != 0) { + return; + } ggml_vec_set_f32(ne0*ne1*ne2*ne3, dst->data, 0); return; } @@ -10592,6 +10749,9 @@ static void ggml_compute_forward_set_f32( bool inplace = (bool) ((int32_t *) dst->op_params)[4]; if (!inplace && (params->type == GGML_TASK_INIT)) { + if (params->ith != 0) { + return; + } // memcpy needs to be synchronized across threads to avoid race conditions. // => do it in INIT phase memcpy( @@ -10916,6 +11076,9 @@ static void ggml_compute_forward_get_rows_back_f32_f16( // ggml_compute_forward_dup_same_cont(params, opt0, dst); if (params->type == GGML_TASK_INIT) { + if (params->ith != 0) { + return; + } memset(dst->data, 0, ggml_nbytes(dst)); } @@ -10950,6 +11113,9 @@ static void ggml_compute_forward_get_rows_back_f32( // ggml_compute_forward_dup_same_cont(params, opt0, dst); if (params->type == GGML_TASK_INIT) { + if (params->ith != 0) { + return; + } memset(dst->data, 0, ggml_nbytes(dst)); } @@ -11087,6 +11253,9 @@ static void ggml_compute_forward_diag_mask_f32( GGML_ASSERT(n_past >= 0); if (!inplace && (params->type == GGML_TASK_INIT)) { + if (ith != 0) { + return; + } // memcpy needs to be synchronized across threads to avoid race conditions. // => do it in INIT phase GGML_ASSERT(ggml_nelements(dst) == ggml_nelements(src0)); @@ -12057,6 +12226,9 @@ static void ggml_compute_forward_conv_transpose_1d_f16_f32( GGML_ASSERT(nb10 == sizeof(float)); if (params->type == GGML_TASK_INIT) { + if (ith != 0) { + return; + } memset(params->wdata, 0, params->wsize); // permute kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout) @@ -12151,6 +12323,9 @@ static void ggml_compute_forward_conv_transpose_1d_f32( GGML_ASSERT(nb10 == sizeof(float)); if (params->type == GGML_TASK_INIT) { + if (ith != 0) { + return; + } memset(params->wdata, 0, params->wsize); // prepare kernel data (src0) from (K x Cout x Cin) to (Cin x K x Cout) @@ -12349,6 +12524,7 @@ static void ggml_compute_forward_im2col( } } + // ggml_compute_forward_conv_transpose_2d static void ggml_compute_forward_conv_transpose_2d( @@ -12374,6 +12550,9 @@ static void ggml_compute_forward_conv_transpose_2d( GGML_ASSERT(nb10 == sizeof(float)); if (params->type == GGML_TASK_INIT) { + if (ith != 0) { + return; + } memset(params->wdata, 0, params->wsize); // permute kernel data (src0) from (Kw x Kh x Cout x Cin) to (Cin x Kw x Kh x Cout) @@ -13917,6 +14096,14 @@ static void ggml_compute_forward_unary( { ggml_compute_forward_silu(params, src0, dst); } break; + case GGML_UNARY_OP_HARDSWISH: + { + ggml_compute_forward_hardswish(params, src0, dst); + } break; + case GGML_UNARY_OP_HARDSIGMOID: + { + ggml_compute_forward_hardsigmoid(params, src0, dst); + } break; default: { GGML_ASSERT(false); @@ -13980,6 +14167,9 @@ static void ggml_compute_forward_add_rel_pos_f32( const bool inplace = (bool) ((int32_t *) dst->op_params)[0]; if (!inplace && params->type == GGML_TASK_INIT) { + if (params->ith != 0) { + return; + } memcpy((char *) dst->data, (char *) src0->data, ggml_nbytes(dst)); return; } @@ -16273,8 +16463,9 @@ struct ggml_compute_state_shared { const int n_threads; // synchronization primitives - atomic_int n_active; // num active threads - atomic_int node_n; // active graph node + atomic_int n_active; // num active threads + atomic_int node_n; // active graph node + atomic_int node_task; // active graph node task phase bool (*abort_callback)(void * data); // abort ggml_graph_compute when true void * abort_callback_data; @@ -16330,6 +16521,8 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { case GGML_UNARY_OP_TANH: case GGML_UNARY_OP_ELU: case GGML_UNARY_OP_RELU: + case GGML_UNARY_OP_HARDSWISH: // to opt for multiple threads + case GGML_UNARY_OP_HARDSIGMOID: // to opt for multiple threads { n_tasks = 1; } break; @@ -16520,6 +16713,34 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads) { return n_tasks; } +static void ggml_graph_compute_thread_sync_node(int * node_n, struct ggml_compute_state * state, const bool do_yield) { + // wait for other threads to finish + const int last_node_n = * node_n; + + while (true) { + if (do_yield) { + sched_yield(); + } + + * node_n = atomic_load(&state->shared->node_n); + if (* node_n != last_node_n) break; + } +} + +static void ggml_graph_compute_thread_sync_task(int * task_phase, struct ggml_compute_state * state, const bool do_yield) { + // wait for other threads to finish + const int last_task_phase = * task_phase; + + while (true) { + if (do_yield) { + sched_yield(); + } + + * task_phase = atomic_load(&state->shared->node_task); + if (* task_phase != last_task_phase) break; + } +} + static thread_ret_t ggml_graph_compute_thread(void * data) { struct ggml_compute_state * state = (struct ggml_compute_state *) data; @@ -16530,7 +16751,8 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { set_numa_thread_affinity(state->ith, n_threads); - int node_n = -1; + int node_n = -1; + int task_phase = GGML_TASK_FINALIZE; while (true) { if (cplan->abort_callback && cplan->abort_callback(cplan->abort_callback_data)) { @@ -16562,7 +16784,6 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { // distribute new work or execute it direct if 1T while (++node_n < cgraph->n_nodes) { GGML_PRINT_DEBUG_5("%s: %d/%d\n", __func__, node_n, cgraph->n_nodes); - struct ggml_tensor * node = cgraph->nodes[node_n]; const int n_tasks = ggml_get_n_tasks(node, n_threads); @@ -16571,13 +16792,13 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { params.nth = n_tasks; - /* INIT */ - if (GGML_OP_HAS_INIT[node->op]) { - params.type = GGML_TASK_INIT; - ggml_compute_forward(¶ms, node); - } - if (n_tasks == 1) { + /* INIT */ + if (GGML_OP_HAS_INIT[node->op]) { + params.type = GGML_TASK_INIT; + ggml_compute_forward(¶ms, node); + } + // TODO: maybe push node_n to the atomic but if other threads see n_tasks is 1, // they do something more efficient than spinning (?) params.type = GGML_TASK_COMPUTE; @@ -16598,38 +16819,24 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { } } - atomic_store(&state->shared->n_active, n_threads); - atomic_store(&state->shared->node_n, node_n); + task_phase = GGML_TASK_INIT; + atomic_store(&state->shared->n_active, n_threads); + atomic_store(&state->shared->node_n, node_n); + atomic_store(&state->shared->node_task, task_phase); } else { - // wait for other threads to finish - const int last = node_n; - - const bool do_yield = last < 0 || cgraph->nodes[last]->op == GGML_OP_MUL_MAT; - - while (true) { - // TODO: this sched_yield can have significant impact on the performance - either positive or negative - // depending on the workload and the operating system. - // since it is not clear what is the best approach, it should potentially become user-configurable - // ref: https://github.com/ggerganov/ggml/issues/291 - // UPD: adding the do_yield flag seems to resolve the issue universally - if (do_yield) { - sched_yield(); - } - - node_n = atomic_load(&state->shared->node_n); - if (node_n != last) break; - }; + ggml_graph_compute_thread_sync_node(&node_n, state, false); + ggml_graph_compute_thread_sync_task(&task_phase, state, false); } // check if we should stop if (node_n >= cgraph->n_nodes) break; - /* COMPUTE */ + /* INIT & COMPUTE */ struct ggml_tensor * node = cgraph->nodes[node_n]; const int n_tasks = ggml_get_n_tasks(node, n_threads); struct ggml_compute_params params = { - /*.type =*/ GGML_TASK_COMPUTE, + /*.type =*/ GGML_TASK_INIT, /*.ith =*/ state->ith, /*.nth =*/ n_tasks, /*.wsize =*/ cplan->work_size, @@ -16637,8 +16844,39 @@ static thread_ret_t ggml_graph_compute_thread(void * data) { }; if (state->ith < n_tasks) { + if (GGML_OP_HAS_INIT[node->op]) { + ggml_compute_forward(¶ms, node); + } + } + + if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) { + task_phase = GGML_TASK_COMPUTE; + atomic_store(&state->shared->n_active, n_threads); + atomic_store(&state->shared->node_task, task_phase); + } + else { + // TODO: this sched_yield can have significant impact on the performance - either positive or negative + // depending on the workload and the operating system. + // since it is not clear what is the best approach, it should potentially become user-configurable + // ref: https://github.com/ggerganov/ggml/issues/291 + // UPD: adding the do_yield flag seems to resolve the issue universally + const bool do_yield = node_n < 0 || cgraph->nodes[node_n]->op == GGML_OP_MUL_MAT; + ggml_graph_compute_thread_sync_task(&task_phase, state, do_yield); + } + + if (state->ith < n_tasks) { + params.type = GGML_TASK_COMPUTE; ggml_compute_forward(¶ms, node); } + + if (atomic_fetch_sub(&state->shared->n_active, 1) == 1) { + task_phase = GGML_TASK_FINALIZE; + atomic_store(&state->shared->n_active, n_threads); + atomic_store(&state->shared->node_task, task_phase); + } + else { + ggml_graph_compute_thread_sync_task(&task_phase, state, false); + } } return GGML_EXIT_SUCCESS; @@ -16695,8 +16933,8 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa #if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS) if (ggml_compute_forward_mul_mat_use_blas(node)) { if (node->src[0]->type != GGML_TYPE_F32) { - // here we need memory just for single 2D matrix from src0 - cur = ggml_type_size(GGML_TYPE_F32)*(node->src[0]->ne[0]*node->src[0]->ne[1]); + // here we need memory for fully dequantized matrix from src0 + cur = ggml_type_size(GGML_TYPE_F32)*ggml_nelements(node->src[0]); } } else #endif @@ -16850,6 +17088,7 @@ int ggml_graph_compute(struct ggml_cgraph * cgraph, struct ggml_cplan * cplan) { /*.n_threads =*/ n_threads, /*.n_active =*/ n_threads, /*.node_n =*/ -1, + /*.node_task =*/ GGML_TASK_FINALIZE, /*.abort_callback =*/ NULL, /*.abort_callback_data =*/ NULL, }; diff --git a/ggml.h b/ggml.h index de8162b81..dca7bd9ce 100644 --- a/ggml.h +++ b/ggml.h @@ -489,6 +489,8 @@ extern "C" { GGML_UNARY_OP_GELU, GGML_UNARY_OP_GELU_QUICK, GGML_UNARY_OP_SILU, + GGML_UNARY_OP_HARDSWISH, + GGML_UNARY_OP_HARDSIGMOID, GGML_UNARY_OP_COUNT, }; @@ -1032,6 +1034,16 @@ extern "C" { struct ggml_tensor * a, struct ggml_tensor * b); + // hardswish(x) = x * relu6(x + 3) / 6 + GGML_API struct ggml_tensor * ggml_hardswish( + struct ggml_context * ctx, + struct ggml_tensor * a); + + // hardsigmoid(x) = relu6(x + 3) / 6 + GGML_API struct ggml_tensor * ggml_hardsigmoid( + struct ggml_context * ctx, + struct ggml_tensor * a); + // normalize along rows GGML_API struct ggml_tensor * ggml_norm( struct ggml_context * ctx, @@ -1483,6 +1495,18 @@ extern "C" { int d1, bool is_2D); + GGML_API struct ggml_tensor * ggml_conv_depthwise_2d( + struct ggml_context * ctx, + struct ggml_tensor * a, + struct ggml_tensor * b, + struct ggml_tensor * c, + int s0, + int s1, + int p0, + int p1, + int d0, + int d1); + GGML_API struct ggml_tensor * ggml_conv_1d( struct ggml_context * ctx, struct ggml_tensor * a, diff --git a/llama.cpp b/llama.cpp index 90579ac85..8c906a22f 100644 --- a/llama.cpp +++ b/llama.cpp @@ -1325,8 +1325,10 @@ static llama_state g_state; // available llama models enum e_model { MODEL_UNKNOWN, + MODEL_0_5B, MODEL_1B, MODEL_3B, + MODEL_4B, MODEL_7B, MODEL_8B, MODEL_13B, @@ -2659,6 +2661,7 @@ static std::string llama_model_ftype_name(llama_ftype ftype) { case LLAMA_FTYPE_MOSTLY_Q6_K: return "Q6_K"; case LLAMA_FTYPE_MOSTLY_IQ2_XXS:return "IQ2_XSS - 2.0625 bpw"; case LLAMA_FTYPE_MOSTLY_IQ2_XS: return "IQ2_XS - 2.3125 bpw"; + case LLAMA_FTYPE_MOSTLY_Q3_K_XS:return "Q3_K - Extra small"; default: return "unknown, may not work"; } @@ -2874,6 +2877,7 @@ static void llm_load_hparams( ml.get_key(LLM_KV_ATTENTION_LAYERNORM_EPS, hparams.f_norm_eps); switch (hparams.n_layer) { + case 24: model.type = e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_3B; break; default: model.type = e_model::MODEL_UNKNOWN; } @@ -2892,9 +2896,9 @@ static void llm_load_hparams( { ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps); switch (hparams.n_layer) { - case 24: model.type = e_model::MODEL_1B; break; + case 24: model.type = hparams.n_embd == 1024 ? e_model::MODEL_0_5B : e_model::MODEL_1B; break; case 32: model.type = e_model::MODEL_7B; break; - case 40: model.type = e_model::MODEL_13B; break; + case 40: model.type = hparams.n_head == 20 ? e_model::MODEL_4B : e_model::MODEL_13B; break; case 80: model.type = e_model::MODEL_70B; break; default: model.type = e_model::MODEL_UNKNOWN; } @@ -3697,6 +3701,11 @@ static bool llm_load_tensors( layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa}); layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd}); + // optional bias tensors, present in Stable LM 2 1.6B + layer.bq = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_Q, "bias", i), {n_embd}, false); + layer.bk = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_K, "bias", i), {n_embd_gqa}, false); + layer.bv = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_V, "bias", i), {n_embd_gqa}, false); + layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd}); layer.ffn_norm_b = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "bias", i), {n_embd}); @@ -4315,6 +4324,7 @@ static struct ggml_tensor * llm_build_kqv( const llama_model & model, const llama_hparams & hparams, const llama_kv_cache & kv, + struct ggml_cgraph * graph, struct ggml_tensor * wo, struct ggml_tensor * wo_b, struct ggml_tensor * q_cur, @@ -4393,6 +4403,8 @@ static struct ggml_tensor * llm_build_kqv( struct ggml_tensor * cur = ggml_cont_2d(ctx, kqv_merged, n_embd_head_k*n_head, n_tokens); cb(cur, "kqv_merged_cont", il); + ggml_build_forward_expand(graph, cur); + cur = ggml_mul_mat(ctx, wo, cur); if (wo_b) { cb(cur, "kqv_wo", il); @@ -4405,6 +4417,44 @@ static struct ggml_tensor * llm_build_kqv( return cur; } +static struct ggml_tensor * llm_build_kv( + struct ggml_context * ctx, + const llama_model & model, + const llama_hparams & hparams, + const llama_kv_cache & kv, + struct ggml_cgraph * graph, + struct ggml_tensor * wo, + struct ggml_tensor * wo_b, + struct ggml_tensor * k_cur, + struct ggml_tensor * v_cur, + struct ggml_tensor * q_cur, + struct ggml_tensor * kq_mask, + int64_t n_ctx, + int32_t n_tokens, + int32_t kv_head, + int32_t n_kv, + float max_alibi_bias, + float kq_scale, + const llm_build_cb & cb, + int il) { + + // these nodes are added to the graph together so that they are not reordered + // by doing so, the number of splits in the graph is reduced + ggml_build_forward_expand(graph, k_cur); + ggml_build_forward_expand(graph, v_cur); + ggml_build_forward_expand(graph, q_cur); + + llm_build_kv_store(ctx, hparams, kv, graph, k_cur, v_cur, n_ctx, n_tokens, kv_head, cb, il); + + struct ggml_tensor * cur; + cur = llm_build_kqv(ctx, model, hparams, kv, graph, + wo, wo_b, + q_cur, kq_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, kq_scale, cb, il); + cb(cur, "kqv_out", il); + + return cur; +} + struct llm_build_context { const llama_model & model; const llama_hparams & hparams; @@ -4562,12 +4612,6 @@ struct llm_build_context { cb(Vcur, "Vcur", il); } - // these nodes are added to the graph together so that they are not reordered - // by doing so, the number of splits in the graph is reduced - ggml_build_forward_expand(gf, Qcur); - ggml_build_forward_expand(gf, Kcur); - ggml_build_forward_expand(gf, Vcur); - Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale, @@ -4582,11 +4626,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -4763,14 +4805,13 @@ struct llm_build_context { cb(Qcur, "Qcur", il); cb(Kcur, "Kcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); // apply ALiBi for 13B model const float max_alibi_bias = model.type == MODEL_13B ? 8.0f : -1.0f; - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -4892,11 +4933,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -4993,11 +5032,9 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5200,12 +5237,9 @@ struct llm_build_context { ); cb(Vcur, "Vcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - // TODO: not tested, could be broken - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Q, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Q, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5292,11 +5326,9 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); cb(Qcur, "Qcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5390,11 +5422,9 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, 8.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5485,11 +5515,9 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, hparams.f_max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, hparams.f_max_alibi_bias, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5576,12 +5604,24 @@ struct llm_build_context { // compute Q and K and RoPE them struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur); cb(Qcur, "Qcur", il); + if (model.layers[il].bq) { + Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq); + cb(Qcur, "Qcur", il); + } struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur); cb(Kcur, "Kcur", il); + if (model.layers[il].bk) { + Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk); + cb(Kcur, "Kcur", il); + } struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur); cb(Vcur, "Vcur", il); + if (model.layers[il].bv) { + Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv); + cb(Vcur, "Vcur", il); + } Qcur = ggml_rope_custom( ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos, @@ -5597,11 +5637,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5714,11 +5752,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5837,11 +5873,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -5966,11 +6000,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f, cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f, cb, il); cb(cur, "kqv_out", il); } @@ -6071,11 +6103,9 @@ struct llm_build_context { ext_factor, attn_factor, beta_fast, beta_slow); cb(Kcur, "Kcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, NULL, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } struct ggml_tensor * sa_out = cur; @@ -6172,11 +6202,9 @@ struct llm_build_context { Qcur = ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -6283,11 +6311,9 @@ struct llm_build_context { ); cb(Kcur, "Kcur", il); - llm_build_kv_store(ctx0, hparams, kv_self, gf, Kcur, Vcur, n_ctx, n_tokens, kv_head, cb, il); - - cur = llm_build_kqv(ctx0, model, hparams, kv_self, + cur = llm_build_kv(ctx0, model, hparams, kv_self, gf, model.layers[il].wo, model.layers[il].bo, - Qcur, KQ_mask, n_ctx, n_tokens, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); + Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il); cb(cur, "kqv_out", il); } @@ -6355,6 +6381,14 @@ static struct ggml_cgraph * llama_build_graph( ggml_set_name(cur, name); } + + if (!lctx.cparams.offload_kqv) { + if (strcmp(name, "kqv_merged_cont") == 0) { + // all nodes between the KV store and the attention output are run on the CPU + ggml_backend_sched_set_node_backend(lctx.sched, cur, lctx.backend_cpu); + } + } + // // allocate input tensors and set input data // @@ -8750,9 +8784,13 @@ struct quantize_state_internal { const llama_model_quantize_params * params; int n_attention_wv = 0; - int n_feed_forward_w2 = 0; + int n_ffn_down = 0; + int n_ffn_gate = 0; + int n_ffn_up = 0; int i_attention_wv = 0; - int i_feed_forward_w2 = 0; + int i_ffn_down = 0; + int i_ffn_gate = 0; + int i_ffn_up = 0; int n_k_quantized = 0; int n_fallback = 0; @@ -8855,8 +8893,8 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty ++qs.i_attention_wv; } else if (name.find("ffn_down") != std::string::npos) { - if (qs.i_feed_forward_w2 < qs.n_feed_forward_w2/8) new_type = GGML_TYPE_Q2_K; - ++qs.i_feed_forward_w2; + if (qs.i_ffn_down < qs.n_ffn_down/8) new_type = GGML_TYPE_Q2_K; + ++qs.i_ffn_down; } else if (name == "token_embd.weight") new_type = GGML_TYPE_Q2_K; } else if (name.find("attn_v.weight") != std::string::npos) { @@ -8893,18 +8931,21 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty // TODO: explore better strategies new_type = GGML_TYPE_Q8_0; } + else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) { + new_type = GGML_TYPE_Q2_K; + } } else if (name.find("ffn_down") != std::string::npos) { const int n_expert = std::max(1, (int)qs.model.hparams.n_expert); int i_layer, n_layer; if (n_expert == 1) { - i_layer = qs.i_feed_forward_w2; - n_layer = qs.n_feed_forward_w2; + i_layer = qs.i_ffn_down; + n_layer = qs.n_ffn_down; } else { // Believe it or not, "experts" in the FFN of Mixtral-8x7B are not consecutive, but iccasionally randomly - // sprinkled in the model. Hence, simply dividing i_feed_forward_w2 by n_expert does not work + // sprinkled in the model. Hence, simply dividing i_ffn_down by n_expert does not work // for getting the current layer as I initially thought, and we need to resort to parsing the // tensor name. - n_layer = qs.n_feed_forward_w2 / n_expert; + n_layer = qs.n_ffn_down / n_expert; if (sscanf(name.c_str(), "blk.%d.ffn_down", &i_layer) != 1) { throw std::runtime_error(format("Failed to determine layer for tensor %s", name.c_str())); } @@ -8913,7 +8954,7 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty } } if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; - else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S) { + else if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS) { if (i_layer < n_layer/8) new_type = GGML_TYPE_Q4_K; } else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) { @@ -8943,11 +8984,12 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty // same quantization as before imatrix stuff, and b) Q4_1/Q5_1 do go crazy on ffn_down without an imatrix. new_type = ftype == LLAMA_FTYPE_MOSTLY_Q4_0 ? GGML_TYPE_Q4_1 : GGML_TYPE_Q5_1; } - ++qs.i_feed_forward_w2; + ++qs.i_ffn_down; } else if (name.find("attn_output.weight") != std::string::npos) { if (arch != LLM_ARCH_FALCON) { if (qs.model.hparams.n_expert == 8) { - if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || + if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS || + ftype == LLAMA_FTYPE_MOSTLY_Q3_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S || ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) { new_type = GGML_TYPE_Q5_K; } @@ -8965,6 +9007,20 @@ static ggml_type get_k_quant_type(quantize_state_internal & qs, ggml_type new_ty else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) new_type = GGML_TYPE_Q5_K; else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) new_type = GGML_TYPE_Q6_K; } + else if (name.find("ffn_gate") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(qs.i_ffn_gate, qs.n_ffn_gate)) { + new_type = GGML_TYPE_Q2_K; + } + ++qs.i_ffn_gate; + } + else if (name.find("ffn_up") != std::string::npos) { + if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_XS && !use_more_bits(qs.i_ffn_up, qs.n_ffn_up)) { + new_type = GGML_TYPE_Q2_K; + } + ++qs.i_ffn_up; + } + // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; + //} // IK: let's remove this, else Q2_K is almost the same as Q3_K_S //else if (name.find("ffn_gate") != std::string::npos || name.find("ffn_up") != std::string::npos) { // if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) new_type = GGML_TYPE_Q3_K; @@ -9019,8 +9075,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s case LLAMA_FTYPE_ALL_F32: quantized_type = GGML_TYPE_F32; break; // K-quants + case LLAMA_FTYPE_MOSTLY_Q2_K_S: case LLAMA_FTYPE_MOSTLY_Q2_K: quantized_type = GGML_TYPE_Q2_K; break; - case LLAMA_FTYPE_MOSTLY_Q2_K_S: quantized_type = GGML_TYPE_Q2_K; break; + case LLAMA_FTYPE_MOSTLY_Q3_K_XS: case LLAMA_FTYPE_MOSTLY_Q3_K_S: case LLAMA_FTYPE_MOSTLY_Q3_K_M: case LLAMA_FTYPE_MOSTLY_Q3_K_L: quantized_type = GGML_TYPE_Q3_K; break; @@ -9088,12 +9145,18 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s ++qs.n_attention_wv; } else if (name.find("ffn_down") != std::string::npos) { - ++qs.n_feed_forward_w2; + ++qs.n_ffn_down; + } + else if (name.find("ffn_gate") != std::string::npos) { + ++qs.n_ffn_gate; + } + else if (name.find("ffn_up") != std::string::npos) { + ++qs.n_ffn_up; } } - if (qs.n_attention_wv != qs.n_feed_forward_w2 || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) { - LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_feed_forward_w2 = %d, hparams.n_layer = %d\n", - __func__, qs.n_attention_wv, qs.n_feed_forward_w2, model.hparams.n_layer); + if (qs.n_attention_wv != qs.n_ffn_down || (uint32_t)qs.n_attention_wv != model.hparams.n_layer) { + LLAMA_LOG_WARN("%s ============ Strange model: n_attention_wv = %d, n_ffn_down = %d, hparams.n_layer = %d\n", + __func__, qs.n_attention_wv, qs.n_ffn_down, model.hparams.n_layer); } size_t total_size_org = 0; diff --git a/llama.h b/llama.h index e268d7a1d..bb6054557 100644 --- a/llama.h +++ b/llama.h @@ -107,6 +107,7 @@ extern "C" { LLAMA_FTYPE_MOSTLY_IQ2_XXS = 19, // except 1d tensors LLAMA_FTYPE_MOSTLY_IQ2_XS = 20, // except 1d tensors LLAMA_FTYPE_MOSTLY_Q2_K_S = 21, // except 1d tensors + LLAMA_FTYPE_MOSTLY_Q3_K_XS = 22, // except 1d tensors LLAMA_FTYPE_GUESSED = 1024, // not specified in the model file }; diff --git a/mypy.ini b/mypy.ini index 7215a05dd..e51910ca7 100644 --- a/mypy.ini +++ b/mypy.ini @@ -4,3 +4,4 @@ allow_untyped_calls = true allow_untyped_defs = true allow_incomplete_defs = true disable_error_code = import-untyped +warn_return_any = false diff --git a/unicode.h b/unicode.h index aeca879ea..844eff3da 100644 --- a/unicode.h +++ b/unicode.h @@ -2,8 +2,9 @@ #include #include -#include +#include #include +#include static const std::vector> digit_ranges = { {0x30, 0x39}, {0xB2, 0xB3}, {0xB9, 0xB9}, {0x660, 0x669}, {0x6F0, 0x6F9}, {0x7C0, 0x7C9}, {0x966, 0x96F}, {0x9E6, 0x9EF}, {0xA66, 0xA6F}, {0xAE6, 0xAEF}, {0xB66, 0xB6F}, {0xBE6, 0xBEF}, {0xC66, 0xC6F},