Merge branch 'master' into embedding-parameters

This commit is contained in:
Brian 2024-05-25 16:54:57 +10:00 committed by GitHub
commit 590720fa38
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
67 changed files with 3965 additions and 6821 deletions

5
.github/labeler.yml vendored
View file

@ -62,6 +62,8 @@ server:
ggml:
- changed-files:
- any-glob-to-any-file:
- ggml.c
- ggml.h
- ggml-*.c
- ggml-*.h
- ggml-cuda/**
@ -71,3 +73,6 @@ nix:
- "**/*.nix"
- .github/workflows/nix-*.yml
- .devops/nix/nixpkgs-instances.nix
embedding:
- changed-files:
- any-glob-to-any-file: examples/embedding/

View file

@ -42,8 +42,9 @@ jobs:
- { tag: "light-rocm", dockerfile: ".devops/main-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "full-rocm", dockerfile: ".devops/full-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "server-rocm", dockerfile: ".devops/server-rocm.Dockerfile", platforms: "linux/amd64,linux/arm64" }
- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
# TODO: Disabled due to build issues https://github.com/ggerganov/llama.cpp/issues/7507
#- { tag: "light-intel", dockerfile: ".devops/main-intel.Dockerfile", platforms: "linux/amd64" }
#- { tag: "server-intel", dockerfile: ".devops/server-intel.Dockerfile", platforms: "linux/amd64" }
steps:
- name: Check out the repo
uses: actions/checkout@v4

View file

@ -1,29 +0,0 @@
name: Zig CI
on:
pull_request:
push:
branches:
- master
concurrency:
group: ${{ github.workflow }}-${{ github.head_ref && github.ref || github.run_id }}
cancel-in-progress: true
jobs:
build:
strategy:
fail-fast: false
matrix:
runs-on: [ubuntu-latest, macos-latest, windows-latest]
runs-on: ${{ matrix.runs-on }}
steps:
- uses: actions/checkout@v4
with:
submodules: recursive
fetch-depth: 0
- uses: goto-bus-stop/setup-zig@v2
with:
version: 0.11.0
- name: Build Summary
run: zig build --summary all -freference-trace

View file

@ -124,7 +124,6 @@ set(LLAMA_METAL_MACOSX_VERSION_MIN "" CACHE STRING
set(LLAMA_METAL_STD "" CACHE STRING "llama: metal standard version (-std flag)")
option(LLAMA_KOMPUTE "llama: use Kompute" OFF)
option(LLAMA_RPC "llama: use RPC" OFF)
option(LLAMA_QKK_64 "llama: use super-block size of 64 for k-quants" OFF)
option(LLAMA_SYCL "llama: use SYCL" OFF)
option(LLAMA_SYCL_F16 "llama: use 16 bit floats for sycl calculations" OFF)
set(LLAMA_SYCL_TARGET "INTEL" CACHE STRING "llama: sycl target device")
@ -384,10 +383,6 @@ if (LLAMA_LLAMAFILE)
set(GGML_SOURCES_LLAMAFILE sgemm.cpp)
endif()
if (LLAMA_QKK_64)
add_compile_definitions(GGML_QKK_64)
endif()
if (LLAMA_CUBLAS)
message(WARNING "LLAMA_CUBLAS is deprecated and will be removed in the future.\nUse LLAMA_CUDA instead")
set(LLAMA_CUDA ON)
@ -505,6 +500,12 @@ if (LLAMA_VULKAN)
add_compile_definitions(GGML_USE_VULKAN)
# Workaround to the "can't dereference invalidated vector iterator" bug in clang-cl debug build
# Posssibly relevant: https://stackoverflow.com/questions/74748276/visual-studio-no-displays-the-correct-length-of-stdvector
if (MSVC AND CMAKE_CXX_COMPILER_ID STREQUAL "Clang")
add_compile_definitions(_ITERATOR_DEBUG_LEVEL=0)
endif()
if (LLAMA_VULKAN_CHECK_RESULTS)
add_compile_definitions(GGML_VULKAN_CHECK_RESULTS)
endif()

View file

@ -389,10 +389,6 @@ else
MK_CXXFLAGS += -march=rv64gcv -mabi=lp64d
endif
ifdef LLAMA_QKK_64
MK_CPPFLAGS += -DGGML_QKK_64
endif
ifndef LLAMA_NO_ACCELERATE
# Mac OS - include Accelerate framework.
# `-framework Accelerate` works both with Apple Silicon and Mac Intel

View file

@ -127,6 +127,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [SEA-LION](https://huggingface.co/models?search=sea-lion)
- [x] [GritLM-7B](https://huggingface.co/GritLM/GritLM-7B) + [GritLM-8x7B](https://huggingface.co/GritLM/GritLM-8x7B)
- [x] [OLMo](https://allenai.org/olmo)
- [x] [GPT-NeoX](https://github.com/EleutherAI/gpt-neox) + [Pythia](https://github.com/EleutherAI/pythia)
(instructions for supporting more models: [HOWTO-add-model.md](./docs/HOWTO-add-model.md))
@ -140,6 +141,7 @@ Typically finetunes of the base models below are supported as well.
- [x] [Yi-VL](https://huggingface.co/models?search=Yi-VL)
- [x] [Mini CPM](https://huggingface.co/models?search=MiniCPM)
- [x] [Moondream](https://huggingface.co/vikhyatk/moondream2)
- [x] [Bunny](https://github.com/BAAI-DCAI/Bunny)
**HTTP server**

172
build.zig
View file

@ -1,172 +0,0 @@
// Compatible with Zig Version 0.11.0
const std = @import("std");
const ArrayList = std.ArrayList;
const Compile = std.Build.Step.Compile;
const ConfigHeader = std.Build.Step.ConfigHeader;
const Mode = std.builtin.Mode;
const CrossTarget = std.zig.CrossTarget;
const Maker = struct {
builder: *std.build.Builder,
target: CrossTarget,
optimize: Mode,
enable_lto: bool,
include_dirs: ArrayList([]const u8),
cflags: ArrayList([]const u8),
cxxflags: ArrayList([]const u8),
objs: ArrayList(*Compile),
fn addInclude(m: *Maker, dir: []const u8) !void {
try m.include_dirs.append(dir);
}
fn addProjectInclude(m: *Maker, path: []const []const u8) !void {
try m.addInclude(try m.builder.build_root.join(m.builder.allocator, path));
}
fn addCFlag(m: *Maker, flag: []const u8) !void {
try m.cflags.append(flag);
}
fn addCxxFlag(m: *Maker, flag: []const u8) !void {
try m.cxxflags.append(flag);
}
fn addFlag(m: *Maker, flag: []const u8) !void {
try m.addCFlag(flag);
try m.addCxxFlag(flag);
}
fn init(builder: *std.build.Builder) !Maker {
const target = builder.standardTargetOptions(.{});
const zig_version = @import("builtin").zig_version_string;
const commit_hash = try std.ChildProcess.exec(
.{ .allocator = builder.allocator, .argv = &.{ "git", "rev-parse", "HEAD" } },
);
try std.fs.cwd().writeFile("common/build-info.cpp", builder.fmt(
\\int LLAMA_BUILD_NUMBER = {};
\\char const *LLAMA_COMMIT = "{s}";
\\char const *LLAMA_COMPILER = "Zig {s}";
\\char const *LLAMA_BUILD_TARGET = "{s}";
\\
, .{ 0, commit_hash.stdout[0 .. commit_hash.stdout.len - 1], zig_version, try target.allocDescription(builder.allocator) }));
var m = Maker{
.builder = builder,
.target = target,
.optimize = builder.standardOptimizeOption(.{}),
.enable_lto = false,
.include_dirs = ArrayList([]const u8).init(builder.allocator),
.cflags = ArrayList([]const u8).init(builder.allocator),
.cxxflags = ArrayList([]const u8).init(builder.allocator),
.objs = ArrayList(*Compile).init(builder.allocator),
};
try m.addCFlag("-std=c11");
try m.addCxxFlag("-std=c++11");
try m.addProjectInclude(&.{});
try m.addProjectInclude(&.{"common"});
return m;
}
fn obj(m: *const Maker, name: []const u8, src: []const u8) *Compile {
const o = m.builder.addObject(.{ .name = name, .target = m.target, .optimize = m.optimize });
if (o.target.getAbi() != .msvc)
o.defineCMacro("_GNU_SOURCE", null);
if (std.mem.endsWith(u8, src, ".c")) {
o.addCSourceFiles(&.{src}, m.cflags.items);
o.linkLibC();
} else {
o.addCSourceFiles(&.{src}, m.cxxflags.items);
if (o.target.getAbi() == .msvc) {
o.linkLibC(); // need winsdk + crt
} else {
// linkLibCpp already add (libc++ + libunwind + libc)
o.linkLibCpp();
}
}
for (m.include_dirs.items) |i| o.addIncludePath(.{ .path = i });
o.want_lto = m.enable_lto;
return o;
}
fn exe(m: *const Maker, name: []const u8, src: []const u8, deps: []const *Compile) *Compile {
const e = m.builder.addExecutable(.{ .name = name, .target = m.target, .optimize = m.optimize });
e.addCSourceFiles(&.{src}, m.cxxflags.items);
for (deps) |d| e.addObject(d);
for (m.objs.items) |o| e.addObject(o);
for (m.include_dirs.items) |i| e.addIncludePath(.{ .path = i });
// https://github.com/ziglang/zig/issues/15448
if (e.target.getAbi() == .msvc) {
e.linkLibC(); // need winsdk + crt
} else {
// linkLibCpp already add (libc++ + libunwind + libc)
e.linkLibCpp();
}
m.builder.installArtifact(e);
e.want_lto = m.enable_lto;
return e;
}
};
pub fn build(b: *std.build.Builder) !void {
var make = try Maker.init(b);
make.enable_lto = b.option(bool, "lto", "Enable LTO optimization, (default: false)") orelse false;
const ggml = make.obj("ggml", "ggml.c");
const sgemm = make.obj("sgemm", "sgemm.cpp");
const ggml_alloc = make.obj("ggml-alloc", "ggml-alloc.c");
const ggml_backend = make.obj("ggml-backend", "ggml-backend.c");
const ggml_quants = make.obj("ggml-quants", "ggml-quants.c");
const unicode = make.obj("unicode", "unicode.cpp");
const unicode_data = make.obj("unicode-data", "unicode-data.cpp");
const llama = make.obj("llama", "llama.cpp");
const buildinfo = make.obj("common", "common/build-info.cpp");
const common = make.obj("common", "common/common.cpp");
const console = make.obj("console", "common/console.cpp");
const sampling = make.obj("sampling", "common/sampling.cpp");
const grammar_parser = make.obj("grammar-parser", "common/grammar-parser.cpp");
const json_schema_to_grammar = make.obj("json-schema-to-grammar", "common/json-schema-to-grammar.cpp");
const train = make.obj("train", "common/train.cpp");
const clip = make.obj("clip", "examples/llava/clip.cpp");
const llava = make.obj("llava", "examples/llava/llava.cpp");
_ = make.exe("main", "examples/main/main.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, console, grammar_parser });
_ = make.exe("quantize", "examples/quantize/quantize.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
_ = make.exe("perplexity", "examples/perplexity/perplexity.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
_ = make.exe("embedding", "examples/embedding/embedding.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo });
_ = make.exe("finetune", "examples/finetune/finetune.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
_ = make.exe("train-text-from-scratch", "examples/train-text-from-scratch/train-text-from-scratch.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, train });
const server = make.exe("server", "examples/server/server.cpp", &.{ ggml, sgemm, ggml_alloc, ggml_backend, ggml_quants, llama, unicode, unicode_data, common, json_schema_to_grammar, buildinfo, sampling, grammar_parser, clip, llava });
if (server.target.isWindows()) {
server.linkSystemLibrary("ws2_32");
}
const server_assets = [_][]const u8{ "index.html", "index.js", "completion.js", "json-schema-to-grammar.mjs" };
for (server_assets) |asset| {
const input_path = b.fmt("examples/server/public/{s}", .{asset});
const output_path = b.fmt("examples/server/{s}.hpp", .{asset});
// Portable equivalent of `b.addSystemCommand(&.{ "xxd", "-n", asset, "-i", input_path, output_path }) })`:
const input = try std.fs.cwd().readFileAlloc(b.allocator, input_path, std.math.maxInt(usize));
defer b.allocator.free(input);
var buf = std.ArrayList(u8).init(b.allocator);
defer buf.deinit();
for (input) |byte| {
try std.fmt.format(buf.writer(), "0x{X:0>2}, ", .{byte});
}
var name = try std.mem.replaceOwned(u8, b.allocator, asset, "-", "_");
defer b.allocator.free(name);
std.mem.replaceScalar(u8, name, '.', '_');
try std.fs.cwd().writeFile(output_path, b.fmt(
"unsigned char {s}[] = {{{s}}};\nunsigned int {s}_len = {d};\n",
.{ name, buf.items, name, input.len },
));
std.debug.print("Dumped hex of \"{s}\" ({s}) to {s}\n", .{ input_path, name, output_path });
}
}

423
ci/run.sh
View file

@ -202,12 +202,15 @@ function gg_sum_test_scripts_release {
}
function gg_get_model {
local gguf_3b="$MNT/models/open-llama/3B-v2/ggml-model-f16.gguf"
local gguf_7b="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
if [[ -s $gguf_3b ]]; then
echo -n "$gguf_3b"
elif [[ -s $gguf_7b ]]; then
echo -n "$gguf_7b"
local gguf_0="$MNT/models/pythia/1.4B/ggml-model-f16.gguf"
local gguf_1="$MNT/models/pythia/2.8B/ggml-model-f16.gguf"
local gguf_2="$MNT/models/open-llama/7B-v2/ggml-model-f16.gguf"
if [[ -s $gguf_0 ]]; then
echo -n "$gguf_0"
elif [[ -s $gguf_1 ]]; then
echo -n "$gguf_1"
elif [[ -s $gguf_2 ]]; then
echo -n "$gguf_2"
else
echo >&2 "No model found. Can't run gg_run_ctest_with_model."
exit 1
@ -256,139 +259,6 @@ function gg_sum_ctest_with_model_release {
gg_printf '```\n'
}
# open_llama_3b_v2
function gg_run_open_llama_3b_v2 {
cd ${SRC}
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/config.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/tokenizer.model
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/tokenizer_config.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/special_tokens_map.json
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/resolve/main/pytorch_model.bin
gg_wget models-mnt/open-llama/3B-v2/ https://huggingface.co/openlm-research/open_llama_3b_v2/raw/main/generation_config.json
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
path_models="../models-mnt/open-llama/3B-v2"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_QKK_64=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models}
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test_60="${path_wiki}/wiki.test-60.raw"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_open_llama_3b_v2 {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'OpenLLaMA 3B-v2:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# open_llama_7b_v2
# requires: GG_BUILD_CUDA
@ -417,7 +287,7 @@ function gg_run_open_llama_7b_v2 {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert.py ${path_models}
python3 ../convert.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@ -526,6 +396,272 @@ function gg_sum_open_llama_7b_v2 {
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# pythia_1.4b
function gg_run_pythia_1_4b {
cd ${SRC}
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/1.4B/ https://huggingface.co/EleutherAI/pythia-1.4b/resolve/main/pytorch_model.bin
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
head -n 60 models-mnt/wikitext/wikitext-2-raw/wiki.test.raw > models-mnt/wikitext/wikitext-2-raw/wiki.test-60.raw
path_models="../models-mnt/pythia/1.4B"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test_60="${path_wiki}/wiki.test-60.raw"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -s 1234 -n 64 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test_60} -c 128 -b 128 --chunks 1 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_pythia_1_4b {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 1.4B:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# pythia_2_8b
# requires: GG_BUILD_CUDA
function gg_run_pythia_2_8b {
cd ${SRC}
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/tokenizer_config.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/raw/main/special_tokens_map.json
gg_wget models-mnt/pythia/2.8B/ https://huggingface.co/EleutherAI/pythia-2.8b/resolve/main/pytorch_model.bin
gg_wget models-mnt/wikitext/ https://huggingface.co/datasets/ggml-org/ci/resolve/main/wikitext-2-raw-v1.zip
unzip -o models-mnt/wikitext/wikitext-2-raw-v1.zip -d models-mnt/wikitext/
path_models="../models-mnt/pythia/2.8B"
path_wiki="../models-mnt/wikitext/wikitext-2-raw"
rm -rf build-ci-release && mkdir build-ci-release && cd build-ci-release
set -e
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} -DLLAMA_CUDA=1 .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
model_q4_0="${path_models}/ggml-model-q4_0.gguf"
model_q4_1="${path_models}/ggml-model-q4_1.gguf"
model_q5_0="${path_models}/ggml-model-q5_0.gguf"
model_q5_1="${path_models}/ggml-model-q5_1.gguf"
model_q2_k="${path_models}/ggml-model-q2_k.gguf"
model_q3_k="${path_models}/ggml-model-q3_k.gguf"
model_q4_k="${path_models}/ggml-model-q4_k.gguf"
model_q5_k="${path_models}/ggml-model-q5_k.gguf"
model_q6_k="${path_models}/ggml-model-q6_k.gguf"
wiki_test="${path_wiki}/wiki.test.raw"
./bin/quantize ${model_f16} ${model_q8_0} q8_0
./bin/quantize ${model_f16} ${model_q4_0} q4_0
./bin/quantize ${model_f16} ${model_q4_1} q4_1
./bin/quantize ${model_f16} ${model_q5_0} q5_0
./bin/quantize ${model_f16} ${model_q5_1} q5_1
./bin/quantize ${model_f16} ${model_q2_k} q2_k
./bin/quantize ${model_f16} ${model_q3_k} q3_k
./bin/quantize ${model_f16} ${model_q4_k} q4_k
./bin/quantize ${model_f16} ${model_q5_k} q5_k
./bin/quantize ${model_f16} ${model_q6_k} q6_k
(time ./bin/main --model ${model_f16} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/main --model ${model_q8_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/main --model ${model_q4_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/main --model ${model_q4_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/main --model ${model_q5_0} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/main --model ${model_q5_1} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/main --model ${model_q2_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/main --model ${model_q3_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/main --model ${model_q4_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/main --model ${model_q5_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/main --model ${model_q6_k} -t 1 -ngl 999 -s 1234 -n 256 --ignore-eos -p "I believe the meaning of life is" ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/perplexity --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-f16.log
(time ./bin/perplexity --model ${model_q8_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q8_0.log
(time ./bin/perplexity --model ${model_q4_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_0.log
(time ./bin/perplexity --model ${model_q4_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_1.log
(time ./bin/perplexity --model ${model_q5_0} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_0.log
(time ./bin/perplexity --model ${model_q5_1} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_1.log
(time ./bin/perplexity --model ${model_q2_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q2_k.log
(time ./bin/perplexity --model ${model_q3_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q3_k.log
(time ./bin/perplexity --model ${model_q4_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q4_k.log
(time ./bin/perplexity --model ${model_q5_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q5_k.log
(time ./bin/perplexity --model ${model_q6_k} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-tg-q6_k.log
(time ./bin/imatrix --model ${model_f16} -f ${wiki_test} -t 1 -ngl 999 -c 2048 -b 512 --chunks 4 ) 2>&1 | tee -a $OUT/${ci}-imatrix.log
(time ./bin/save-load-state -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 10 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
(time ./bin/save-load-state -fa -ngl 99 --model ${model_q4_0} ) 2>&1 | tee -a $OUT/${ci}-save-load-state.log
function check_ppl {
qnt="$1"
ppl=$(echo "$2" | grep -oE "[0-9]+\.[0-9]+" | tail -n 1)
if [ $(echo "$ppl > 20.0" | bc) -eq 1 ]; then
printf ' - %s @ %s (FAIL: ppl > 20.0)\n' "$qnt" "$ppl"
return 20
fi
printf ' - %s @ %s OK\n' "$qnt" "$ppl"
return 0
}
check_ppl "f16" "$(cat $OUT/${ci}-tg-f16.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q8_0" "$(cat $OUT/${ci}-tg-q8_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_0" "$(cat $OUT/${ci}-tg-q4_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_1" "$(cat $OUT/${ci}-tg-q4_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_0" "$(cat $OUT/${ci}-tg-q5_0.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_1" "$(cat $OUT/${ci}-tg-q5_1.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
#check_ppl "q2_k" "$(cat $OUT/${ci}-tg-q2_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log # note: ppl > 20.0 for this quant and model
check_ppl "q3_k" "$(cat $OUT/${ci}-tg-q3_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q4_k" "$(cat $OUT/${ci}-tg-q4_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q5_k" "$(cat $OUT/${ci}-tg-q5_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
check_ppl "q6_k" "$(cat $OUT/${ci}-tg-q6_k.log | grep "^\[1\]")" | tee -a $OUT/${ci}-ppl.log
cat $OUT/${ci}-imatrix.log | grep "Final" >> $OUT/${ci}-imatrix-sum.log
set +e
}
function gg_sum_pythia_2_8b {
gg_printf '### %s\n\n' "${ci}"
gg_printf 'Pythia 2.8B:\n'
gg_printf '- status: %s\n' "$(cat $OUT/${ci}.exit)"
gg_printf '- perplexity:\n%s\n' "$(cat $OUT/${ci}-ppl.log)"
gg_printf '- imatrix:\n```\n%s\n```\n' "$(cat $OUT/${ci}-imatrix-sum.log)"
gg_printf '- f16: \n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-f16.log)"
gg_printf '- q8_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q8_0.log)"
gg_printf '- q4_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_0.log)"
gg_printf '- q4_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_1.log)"
gg_printf '- q5_0:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_0.log)"
gg_printf '- q5_1:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_1.log)"
gg_printf '- q2_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q2_k.log)"
gg_printf '- q3_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q3_k.log)"
gg_printf '- q4_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q4_k.log)"
gg_printf '- q5_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q5_k.log)"
gg_printf '- q6_k:\n```\n%s\n```\n' "$(cat $OUT/${ci}-tg-q6_k.log)"
gg_printf '- save-load-state: \n```\n%s\n```\n' "$(cat $OUT/${ci}-save-load-state.log)"
}
# bge-small
function gg_run_embd_bge_small {
@ -552,7 +688,7 @@ function gg_run_embd_bge_small {
(time cmake -DCMAKE_BUILD_TYPE=Release ${CMAKE_EXTRA} .. ) 2>&1 | tee -a $OUT/${ci}-cmake.log
(time make -j ) 2>&1 | tee -a $OUT/${ci}-make.log
python3 ../convert-hf-to-gguf.py ${path_models}
python3 ../convert-hf-to-gguf.py ${path_models} --outfile ${path_models}/ggml-model-f16.gguf
model_f16="${path_models}/ggml-model-f16.gguf"
model_q8_0="${path_models}/ggml-model-q8_0.gguf"
@ -606,9 +742,10 @@ if [ -z ${GG_BUILD_LOW_PERF} ]; then
if [ -z ${GG_BUILD_VRAM_GB} ] || [ ${GG_BUILD_VRAM_GB} -ge 8 ]; then
if [ -z ${GG_BUILD_CUDA} ]; then
test $ret -eq 0 && gg_run open_llama_3b_v2
test $ret -eq 0 && gg_run pythia_1_4b
else
test $ret -eq 0 && gg_run open_llama_7b_v2
test $ret -eq 0 && gg_run pythia_2_8b
#test $ret -eq 0 && gg_run open_llama_7b_v2
fi
test $ret -eq 0 && gg_run ctest_with_model_debug
test $ret -eq 0 && gg_run ctest_with_model_release

File diff suppressed because it is too large Load diff

View file

@ -27,7 +27,7 @@
#define die_fmt(fmt, ...) do { fprintf(stderr, "error: " fmt "\n", __VA_ARGS__); exit(1); } while (0)
#define print_build_info() do { \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
fprintf(stderr, "%s: build = %d (%s)\n", __func__, LLAMA_BUILD_NUMBER, LLAMA_COMMIT); \
fprintf(stderr, "%s: built with %s for %s\n", __func__, LLAMA_COMPILER, LLAMA_BUILD_TARGET); \
} while(0)
@ -35,14 +35,18 @@
// build info
extern int LLAMA_BUILD_NUMBER;
extern char const *LLAMA_COMMIT;
extern char const *LLAMA_COMPILER;
extern char const *LLAMA_BUILD_TARGET;
extern char const * LLAMA_COMMIT;
extern char const * LLAMA_COMPILER;
extern char const * LLAMA_BUILD_TARGET;
struct llama_control_vector_load_info;
int get_math_cpu_count();
int32_t get_num_physical_cores();
//
// CPU utils
//
int32_t cpu_get_num_physical_cores();
int32_t cpu_get_num_math();
//
// CLI argument parsing
@ -51,7 +55,7 @@ int32_t get_num_physical_cores();
struct gpt_params {
uint32_t seed = LLAMA_DEFAULT_SEED; // RNG seed
int32_t n_threads = get_math_cpu_count();
int32_t n_threads = cpu_get_num_math();
int32_t n_threads_draft = -1;
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
int32_t n_threads_batch_draft = -1;
@ -182,33 +186,34 @@ struct gpt_params {
void gpt_params_handle_model_default(gpt_params & params);
bool parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
bool gpt_params_parse_ex (int argc, char ** argv, gpt_params & params);
bool gpt_params_parse (int argc, char ** argv, gpt_params & params);
bool gpt_params_find_arg (int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
void gpt_params_print_usage(int argc, char ** argv, const gpt_params & params);
bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params);
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
void gpt_print_usage(int argc, char ** argv, const gpt_params & params);
bool gpt_params_find_arg(int argc, char ** argv, const std::string & arg, gpt_params & params, int & i, bool & invalid_param);
std::string get_system_info(const gpt_params & params);
std::string gpt_random_prompt(std::mt19937 & rng);
void process_escapes(std::string& input);
bool validate_file_name(const std::string & filename);
std::string gpt_params_get_system_info(const gpt_params & params);
//
// String utils
//
std::vector<llama_sampler_type> sampler_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<llama_sampler_type> sampler_types_from_chars(const std::string & names_string);
std::vector<std::string> string_split(std::string input, char separator);
std::string string_strip(const std::string & str);
std::string sampler_type_to_name_string(llama_sampler_type sampler_type);
std::string string_get_sortable_timestamp();
std::string string_random_prompt(std::mt19937 & rng);
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);
//
// Filesystem utils
//
bool fs_validate_filename(const std::string & filename);
bool fs_create_directory_with_parents(const std::string & path);
std::string fs_get_cache_directory();
//
// Model utils
@ -279,30 +284,15 @@ std::string llama_detokenize_bpe(
// defaults to true when model type is SPM, otherwise false.
bool llama_should_add_bos_token(const llama_model * model);
//
// YAML utils
//
bool create_directory_with_parents(const std::string & path);
std::string get_cache_directory();
void dump_vector_float_yaml(FILE * stream, const char * prop_name, const std::vector<float> & data);
void dump_vector_int_yaml(FILE * stream, const char * prop_name, const std::vector<int> & data);
void dump_string_yaml_multiline(FILE * stream, const char * prop_name, const char * data);
std::string get_sortable_timestamp();
void dump_non_result_info_yaml(
FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);
//
// KV cache utils
//
// Dump the KV cache view with the number of sequences per cell.
void dump_kv_cache_view(const llama_kv_cache_view & view, int row_size = 80);
void llama_kv_cache_dump_view(const llama_kv_cache_view & view, int row_size = 80);
// Dump the KV cache view showing individual sequences in each cell (long output).
void dump_kv_cache_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
void llama_kv_cache_dump_view_seqs(const llama_kv_cache_view & view, int row_size = 40);
//
// Embedding utils
@ -336,6 +326,20 @@ llama_control_vector_data llama_control_vector_load(const std::vector<llama_cont
//
// Split utils
//
static const char * const LLM_KV_SPLIT_NO = "split.no";
static const char * const LLM_KV_SPLIT_COUNT = "split.count";
static const char * const LLM_KV_SPLIT_TENSORS_COUNT = "split.tensors.count";
//
// YAML utils
//
void yaml_dump_vector_float (FILE * stream, const char * prop_name, const std::vector<float> & data);
void yaml_dump_vector_int (FILE * stream, const char * prop_name, const std::vector<int> & data);
void yaml_dump_string_multiline(FILE * stream, const char * prop_name, const char * data);
void yaml_dump_non_result_info(
FILE * stream, const gpt_params & params, const llama_context * lctx,
const std::string & timestamp, const std::vector<int> & prompt_tokens, const char * model_desc);

View file

@ -125,7 +125,7 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) {
std::string result = "CFG -> Penalties ";
if (params.mirostat == 0) {
for (auto sampler_type : params.samplers_sequence) {
const auto sampler_type_name = sampler_type_to_name_string(sampler_type);
const auto sampler_type_name = llama_sampling_type_to_str(sampler_type);
if (!sampler_type_name.empty()) {
result += "-> " + sampler_type_name + " ";
}
@ -137,6 +137,87 @@ std::string llama_sampling_order_print(const llama_sampling_params & params) {
return result;
}
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type) {
switch (sampler_type) {
case llama_sampler_type::TOP_K: return "top_k";
case llama_sampler_type::TFS_Z: return "tfs_z";
case llama_sampler_type::TYPICAL_P: return "typical_p";
case llama_sampler_type::TOP_P: return "top_p";
case llama_sampler_type::MIN_P: return "min_p";
case llama_sampler_type::TEMPERATURE: return "temperature";
default : return "";
}
}
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names) {
std::unordered_map<std::string, llama_sampler_type> sampler_canonical_name_map {
{"top_k", llama_sampler_type::TOP_K},
{"top_p", llama_sampler_type::TOP_P},
{"typical_p", llama_sampler_type::TYPICAL_P},
{"min_p", llama_sampler_type::MIN_P},
{"tfs_z", llama_sampler_type::TFS_Z},
{"temperature", llama_sampler_type::TEMPERATURE}
};
// since samplers names are written multiple ways
// make it ready for both system names and input names
std::unordered_map<std::string, llama_sampler_type> sampler_alt_name_map {
{"top-k", llama_sampler_type::TOP_K},
{"top-p", llama_sampler_type::TOP_P},
{"nucleus", llama_sampler_type::TOP_P},
{"typical-p", llama_sampler_type::TYPICAL_P},
{"typical", llama_sampler_type::TYPICAL_P},
{"min-p", llama_sampler_type::MIN_P},
{"tfs-z", llama_sampler_type::TFS_Z},
{"tfs", llama_sampler_type::TFS_Z},
{"temp", llama_sampler_type::TEMPERATURE}
};
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names.size());
for (const auto & name : names)
{
auto sampler_item = sampler_canonical_name_map.find(name);
if (sampler_item != sampler_canonical_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
else
{
if (allow_alt_names)
{
sampler_item = sampler_alt_name_map.find(name);
if (sampler_item != sampler_alt_name_map.end())
{
sampler_types.push_back(sampler_item->second);
}
}
}
}
return sampler_types;
}
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string) {
std::unordered_map<char, llama_sampler_type> sampler_name_map {
{'k', llama_sampler_type::TOP_K},
{'p', llama_sampler_type::TOP_P},
{'y', llama_sampler_type::TYPICAL_P},
{'m', llama_sampler_type::MIN_P},
{'f', llama_sampler_type::TFS_Z},
{'t', llama_sampler_type::TEMPERATURE}
};
std::vector<llama_sampler_type> sampler_types;
sampler_types.reserve(names_string.size());
for (const auto & c : names_string) {
const auto sampler_item = sampler_name_map.find(c);
if (sampler_item != sampler_name_map.end()) {
sampler_types.push_back(sampler_item->second);
}
}
return sampler_types;
}
// no reasons to expose this function in header
static void sampler_queue(
struct llama_context * ctx_main,

View file

@ -116,6 +116,11 @@ std::string llama_sampling_print(const llama_sampling_params & params);
// Print sampling order into a string
std::string llama_sampling_order_print(const llama_sampling_params & params);
std::string llama_sampling_type_to_str(llama_sampler_type sampler_type);
std::vector<llama_sampler_type> llama_sampling_types_from_names(const std::vector<std::string> & names, bool allow_alt_names);
std::vector<llama_sampler_type> llama_sampling_types_from_chars(const std::string & names_string);
// this is a common sampling function used across the examples for convenience
// it can serve as a starting point for implementing your own sampling function
// Note: When using multiple sequences, it is the caller's responsibility to call

View file

@ -1380,7 +1380,7 @@ bool consume_common_train_arg(
void finish_processing_train_args(struct train_params_common * params) {
if (params->escape) {
process_escapes(params->sample_start);
string_process_escapes(params->sample_start);
}
}

View file

@ -313,11 +313,10 @@ class Model:
data = data.astype(np.float32)
data_qtype = gguf.GGMLQuantizationType.F32
block_size, type_size = gguf.GGML_QUANT_SIZES[data_qtype]
shape = gguf.quant_shape_from_byte_shape(data.shape, data_qtype) if data.dtype == np.uint8 else data.shape
# reverse shape to make it similar to the internal ggml dimension order
shape_str = f"""{{{', '.join(str(n) for n in reversed(
(*data.shape[:-1], data.shape[-1] * data.dtype.itemsize // type_size * block_size))
)}}}"""
shape_str = f"{{{', '.join(str(n) for n in reversed(shape))}}}"
# n_dims is implicit in the shape
logger.info(f"{f'%-{max_name_len}s' % f'{new_name},'} {old_dtype} --> {data_qtype.name}, shape = {shape_str}")
@ -673,6 +672,44 @@ class GPTNeoXModel(Model):
self.gguf_writer.add_parallel_residual(self.hparams.get("use_parallel_residual", True))
self.gguf_writer.add_layer_norm_eps(self.hparams["layer_norm_eps"])
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
del bid # unused
n_head = self.hparams.get("n_head", self.hparams.get("num_attention_heads"))
n_embed = self.hparams.get("hidden_size", self.hparams.get("n_embed"))
tensors: list[tuple[str, Tensor]] = []
if re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.weight", name):
# Map bloom-style qkv_linear to gpt-style qkv_linear
# bloom: https://github.com/huggingface/transformers/blob/main/src/transformers/models/bloom/modeling_bloom.py#L238-L252 # noqa
# gpt-2: https://github.com/huggingface/transformers/blob/main/src/transformers/models/gpt2/modeling_gpt2.py#L312 # noqa
qkv_weights = data_torch.reshape((n_head, 3, n_embed // n_head, n_embed))
data_torch = torch.cat(
(
qkv_weights[:, 0, :, :].reshape((-1, n_embed)),
qkv_weights[:, 1, :, :].reshape((-1, n_embed)),
qkv_weights[:, 2, :, :].reshape((-1, n_embed)),
),
dim=0,
)
logger.info("re-format attention.linear_qkv.weight")
elif re.match(r"gpt_neox\.layers\.\d+\.attention\.query_key_value\.bias", name):
qkv_bias = data_torch.reshape((n_head, 3, n_embed // n_head))
data_torch = torch.cat(
(
qkv_bias[:, 0, :].reshape((n_embed,)),
qkv_bias[:, 1, :].reshape((n_embed,)),
qkv_bias[:, 2, :].reshape((n_embed,)),
),
dim=0,
)
logger.info("re-format attention.linear_qkv.bias")
tensors.append((self.map_tensor_name(name), data_torch))
return tensors
@Model.register("BloomForCausalLM")
class BloomModel(Model):
@ -2428,6 +2465,157 @@ class JinaBertV2Model(BertModel):
self.gguf_writer.add_add_eos_token(True)
@Model.register("ArcticForCausalLM")
class ArcticModel(Model):
model_arch = gguf.MODEL_ARCH.ARCTIC
def set_vocab(self):
# The reason for using a custom implementation here is that the
# snowflake-arctic-instruct model redefined tokens 31998 and 31999 from
# tokenizer.model and used them as BOS and EOS instead of adding new tokens.
from sentencepiece import SentencePieceProcessor
tokenizer_path = self.dir_model / 'tokenizer.model'
if not tokenizer_path.is_file():
logger.error(f'Error: Missing {tokenizer_path}')
sys.exit(1)
# Read the whole vocabulary from the tokenizer.model file
tokenizer = SentencePieceProcessor()
tokenizer.LoadFromFile(str(tokenizer_path))
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)]
scores: list[float] = [-10000.0] * vocab_size
toktypes: list[int] = [SentencePieceTokenTypes.UNKNOWN] * vocab_size
for token_id in range(tokenizer.vocab_size()):
piece = tokenizer.IdToPiece(token_id)
text = piece.encode("utf-8")
score = tokenizer.GetScore(token_id)
toktype = SentencePieceTokenTypes.NORMAL
if tokenizer.IsUnknown(token_id):
toktype = SentencePieceTokenTypes.UNKNOWN
elif tokenizer.IsControl(token_id):
toktype = SentencePieceTokenTypes.CONTROL
elif tokenizer.IsUnused(token_id):
toktype = SentencePieceTokenTypes.UNUSED
elif tokenizer.IsByte(token_id):
toktype = SentencePieceTokenTypes.BYTE
tokens[token_id] = text
scores[token_id] = score
toktypes[token_id] = toktype
# Use the added_tokens_decoder field from tokeniser_config.json as the source
# of information about added/redefined tokens and modify them accordingly.
tokenizer_config_file = self.dir_model / 'tokenizer_config.json'
if tokenizer_config_file.is_file():
with open(tokenizer_config_file, "r", encoding="utf-8") as f:
tokenizer_config_json = json.load(f)
if "added_tokens_decoder" in tokenizer_config_json:
added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"]
for token_id, token_json in added_tokens_decoder.items():
token_id = int(token_id)
if (token_id >= vocab_size):
logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}')
continue
token_content = token_json["content"]
token_type = SentencePieceTokenTypes.USER_DEFINED
token_score = -10000.0
# Map unk_token to UNKNOWN, other special tokens to CONTROL
# Set the score to 0.0 as in the original tokenizer.model
if ("special" in token_json) and token_json["special"]:
if token_content == tokenizer_config_json["unk_token"]:
token_type = SentencePieceTokenTypes.UNKNOWN
else:
token_type = SentencePieceTokenTypes.CONTROL
token_score = 0.0
logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})")
tokens[token_id] = token_content.encode("utf-8")
toktypes[token_id] = token_type
scores[token_id] = token_score
self.gguf_writer.add_tokenizer_model("llama")
self.gguf_writer.add_tokenizer_pre("default")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_scores(scores)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer)
def set_gguf_parameters(self):
super().set_gguf_parameters()
hparams = self.hparams
self.gguf_writer.add_vocab_size(hparams["vocab_size"])
self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"])
_experts: list[dict[str, Tensor]] | None = None
def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]:
n_head = self.hparams["num_attention_heads"]
n_kv_head = self.hparams.get("num_key_value_heads")
if name.endswith("q_proj.weight"):
data_torch = LlamaModel.permute(data_torch, n_head, n_head)
if name.endswith("k_proj.weight"):
data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head)
# process the experts separately
if name.find("block_sparse_moe.experts") != -1:
n_experts = self.hparams["num_local_experts"]
assert bid is not None
if self._experts is None:
self._experts = [{} for _ in range(self.block_count)]
self._experts[bid][name] = data_torch
if len(self._experts[bid]) >= n_experts * 3:
tensors: list[tuple[str, Tensor]] = []
# merge the experts into a single 3d tensor
for wid in ["w1", "w2", "w3"]:
datas: list[Tensor] = []
for xid in range(n_experts):
ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight"
datas.append(self._experts[bid][ename])
del self._experts[bid][ename]
data_torch = torch.stack(datas, dim=0)
merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight"
new_name = self.map_tensor_name(merged_name)
tensors.append((new_name, data_torch))
return tensors
else:
return []
return [(self.map_tensor_name(name), data_torch)]
def write_tensors(self):
super().write_tensors()
if self._experts is not None:
# flatten `list[dict[str, Tensor]]` into `list[str]`
experts = [k for d in self._experts for k in d.keys()]
if len(experts) > 0:
raise ValueError(f"Unprocessed experts: {experts}")
###### CONVERSION LOGIC ######

View file

@ -48,7 +48,7 @@ int main(int argc, char ** argv) {
params.prompt = "Hello my name is";
}
process_escapes(params.prompt);
string_process_escapes(params.prompt);
// init LLM

View file

@ -80,7 +80,7 @@ int main(int argc, char ** argv) {
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
params.prompt = string_random_prompt(rng);
}
llama_backend_init();
@ -107,7 +107,7 @@ int main(int argc, char ** argv) {
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
}
// split the prompt into lines

View file

@ -152,7 +152,7 @@ int main(int argc, char ** argv) {
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
params.prompt = string_random_prompt(rng);
}
llama_backend_init();
@ -176,7 +176,7 @@ int main(int argc, char ** argv) {
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
}
bool OK = run(ctx, params);

View file

@ -643,7 +643,8 @@ static struct ggml_tensor * llama_build_lora_finetune_graphs(
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd_head, n_head_kv, n_batch);
struct ggml_tensor * t16;
if (enable_flash_attn) {
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
//t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd_head, N, n_head, n_batch);
} else {
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);

View file

@ -598,7 +598,7 @@ int main(int argc, char ** argv) {
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
params.prompt = string_random_prompt(rng);
}
sparams.dataset = params.prompt_file;
@ -667,7 +667,7 @@ int main(int argc, char ** argv) {
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
}
bool OK = compute_imatrix(ctx, params, compute_ppl, from_chunk);

View file

@ -50,9 +50,9 @@ static void write_logfile(
return;
}
const std::string timestamp = get_sortable_timestamp();
const std::string timestamp = string_get_sortable_timestamp();
const bool success = create_directory_with_parents(params.logdir);
const bool success = fs_create_directory_with_parents(params.logdir);
if (!success) {
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
__func__, params.logdir.c_str());
@ -70,7 +70,7 @@ static void write_logfile(
fprintf(logfile, "binary: infill\n");
char model_desc[128];
llama_model_desc(model, model_desc, sizeof(model_desc));
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
fprintf(logfile, "\n");
fprintf(logfile, "######################\n");
@ -78,8 +78,8 @@ static void write_logfile(
fprintf(logfile, "######################\n");
fprintf(logfile, "\n");
dump_string_yaml_multiline(logfile, "output", output.c_str());
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
yaml_dump_string_multiline(logfile, "output", output.c_str());
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
llama_dump_timing_info_yaml(logfile, ctx);
fclose(logfile);
@ -236,7 +236,7 @@ int main(int argc, char ** argv) {
// print system information
{
LOG_TEE("\n");
LOG_TEE("%s\n", get_system_info(params).c_str());
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
}
const bool add_bos = llama_should_add_bos_token(model);
GGML_ASSERT(llama_add_eos_token(model) != 1);
@ -621,8 +621,8 @@ int main(int argc, char ** argv) {
if (params.escape) {
//process escape sequences, for the initial prompt this is done in common.cpp when we load the params, but for the interactive mode we need to do it here
process_escapes(params.input_prefix);
process_escapes(params.input_suffix);
string_process_escapes(params.input_prefix);
string_process_escapes(params.input_suffix);
}
suff_rm_leading_spc = params.escape;
if (suff_rm_leading_spc && params.input_suffix.find_first_of(' ') == 0 && params.input_suffix.size() > 1) {

View file

@ -195,12 +195,12 @@ static const cmd_params cmd_params_defaults = {
/* model */ {"models/7B/ggml-model-q4_0.gguf"},
/* n_prompt */ {512},
/* n_gen */ {128},
/* n_pg */ {{512, 128}},
/* n_pg */ {},
/* n_batch */ {2048},
/* n_ubatch */ {512},
/* type_k */ {GGML_TYPE_F16},
/* type_v */ {GGML_TYPE_F16},
/* n_threads */ {get_math_cpu_count()},
/* n_threads */ {cpu_get_num_math()},
/* n_gpu_layers */ {99},
/* split_mode */ {LLAMA_SPLIT_MODE_LAYER},
/* main_gpu */ {0},

View file

@ -290,7 +290,7 @@ int main(int argc, char ** argv) {
#endif // LOG_DISABLE_LOGS
if (params.mmproj.empty() || (params.image.empty() && !prompt_contains_image(params.prompt))) {
gpt_print_usage(argc, argv, params);
gpt_params_print_usage(argc, argv, params);
show_additional_info(argc, argv);
return 1;
}

View file

@ -174,7 +174,7 @@ int main(int argc, char ** argv) {
// debug
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
dump_kv_cache_view_seqs(kvc_view, 40);
llama_kv_cache_dump_view_seqs(kvc_view, 40);
}
// build the mask from https://lmsys.org/blog/2023-11-21-lookahead-decoding/

View file

@ -121,7 +121,7 @@ int main(int argc, char ** argv){
// debug
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
dump_kv_cache_view_seqs(kvc_view, 40);
llama_kv_cache_dump_view_seqs(kvc_view, 40);
}
// print current draft sequence

View file

@ -60,9 +60,9 @@ static void write_logfile(
return;
}
const std::string timestamp = get_sortable_timestamp();
const std::string timestamp = string_get_sortable_timestamp();
const bool success = create_directory_with_parents(params.logdir);
const bool success = fs_create_directory_with_parents(params.logdir);
if (!success) {
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
__func__, params.logdir.c_str());
@ -80,7 +80,7 @@ static void write_logfile(
fprintf(logfile, "binary: main\n");
char model_desc[128];
llama_model_desc(model, model_desc, sizeof(model_desc));
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
yaml_dump_non_result_info(logfile, params, ctx, timestamp, input_tokens, model_desc);
fprintf(logfile, "\n");
fprintf(logfile, "######################\n");
@ -88,8 +88,8 @@ static void write_logfile(
fprintf(logfile, "######################\n");
fprintf(logfile, "\n");
dump_string_yaml_multiline(logfile, "output", output.c_str());
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
yaml_dump_string_multiline(logfile, "output", output.c_str());
yaml_dump_vector_int(logfile, "output_tokens", output_tokens);
llama_dump_timing_info_yaml(logfile, ctx);
fclose(logfile);
@ -181,7 +181,7 @@ int main(int argc, char ** argv) {
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
params.prompt = string_random_prompt(rng);
}
LOG("%s: llama backend init\n", __func__);
@ -219,7 +219,7 @@ int main(int argc, char ** argv) {
// print system information
{
LOG_TEE("\n");
LOG_TEE("%s\n", get_system_info(params).c_str());
LOG_TEE("%s\n", gpt_params_get_system_info(params).c_str());
}
std::string path_session = params.path_prompt_cache;
@ -474,12 +474,12 @@ int main(int argc, char ** argv) {
LOG_TEE("\n\n");
if (params.interactive) {
const char *control_message;
const char * control_message;
if (params.multiline_input) {
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
control_message = " - To return control to the AI, end your input with '\\'.\n"
" - To return control without starting a new line, end your input with '/'.\n";
} else {
control_message = " - Press Return to return control to LLaMa.\n"
control_message = " - Press Return to return control to the AI.\n"
" - To return control without starting a new line, end your input with '/'.\n"
" - If you want to submit another line, end your input with '\\'.\n";
}
@ -879,7 +879,7 @@ int main(int argc, char ** argv) {
embd_inp.insert(embd_inp.end(), cml_pfx.begin(), cml_pfx.end());
}
if (params.escape) {
process_escapes(buffer);
string_process_escapes(buffer);
}
const auto line_pfx = ::llama_tokenize(ctx, params.input_prefix, false, true);

View file

@ -210,7 +210,7 @@ int main(int argc, char ** argv) {
while (true) {
if (dump_kv_cache) {
llama_kv_cache_view_update(ctx, &kvc_view);
dump_kv_cache_view_seqs(kvc_view, 40);
llama_kv_cache_dump_view_seqs(kvc_view, 40);
}
llama_batch_clear(batch);

View file

@ -44,9 +44,9 @@ static void write_logfile(
return;
}
const std::string timestamp = get_sortable_timestamp();
const std::string timestamp = string_get_sortable_timestamp();
const bool success = create_directory_with_parents(params.logdir);
const bool success = fs_create_directory_with_parents(params.logdir);
if (!success) {
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
__func__, params.logdir.c_str());
@ -64,7 +64,7 @@ static void write_logfile(
fprintf(logfile, "binary: main\n");
char model_desc[128];
llama_model_desc(model, model_desc, sizeof(model_desc));
dump_non_result_info_yaml(logfile, params, ctx, timestamp, results.tokens, model_desc);
yaml_dump_non_result_info(logfile, params, ctx, timestamp, results.tokens, model_desc);
fprintf(logfile, "\n");
fprintf(logfile, "######################\n");
@ -72,9 +72,9 @@ static void write_logfile(
fprintf(logfile, "######################\n");
fprintf(logfile, "\n");
dump_vector_float_yaml(logfile, "logits", results.logits);
yaml_dump_vector_float(logfile, "logits", results.logits);
fprintf(logfile, "ppl_value: %f\n", results.ppl_value);
dump_vector_float_yaml(logfile, "probs", results.probs);
yaml_dump_vector_float(logfile, "probs", results.probs);
llama_dump_timing_info_yaml(logfile, ctx);
fclose(logfile);
@ -2007,7 +2007,7 @@ int main(int argc, char ** argv) {
std::mt19937 rng(params.seed);
if (params.random_prompt) {
params.prompt = gpt_random_prompt(rng);
params.prompt = string_random_prompt(rng);
}
llama_backend_init();
@ -2035,7 +2035,7 @@ int main(int argc, char ** argv) {
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
}
struct results_perplexity results;

View file

@ -259,7 +259,7 @@ int main(int argc, char ** argv) {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--override-kv") == 0) {
if (arg_idx == argc-1 || !parse_kv_override(argv[++arg_idx], kv_overrides)) {
if (arg_idx == argc-1 || !string_parse_kv_override(argv[++arg_idx], kv_overrides)) {
usage(argv[0]);
}
} else if (strcmp(argv[arg_idx], "--allow-requantize") == 0) {

View file

@ -11,7 +11,7 @@ struct retrieval_params {
};
static void retrieval_params_print_usage(int argc, char ** argv, gpt_params & gpt_params, retrieval_params & params) {
gpt_print_usage(argc, argv, gpt_params);
gpt_params_print_usage(argc, argv, gpt_params);
printf("retrieval options:\n");
printf(" --context-file FNAME file containing context to embed.\n");
printf(" specify multiple files by providing --context-file option multiple times.\n");
@ -226,7 +226,7 @@ int main(int argc, char ** argv) {
// print system information
{
fprintf(stderr, "\n");
fprintf(stderr, "%s\n", get_system_info(params).c_str());
fprintf(stderr, "%s\n", gpt_params_get_system_info(params).c_str());
}
// max batch size

View file

@ -0,0 +1,52 @@
<!DOCTYPE html>
<html lang="en">
<head>
<title>SimpleChat (LlamaCPP, ...) </title>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="message" content="Save Nature Save Earth" />
<meta name="description" content="SimpleChat: trigger LLM web service endpoints /chat/completions and /completions, single/multi chat sessions" />
<meta name="author" content="by Humans for All" />
<meta http-equiv="Cache-Control" content="no-cache, no-store, must-revalidate" />
<script src="simplechat.js" defer></script>
<link rel="stylesheet" href="simplechat.css" />
</head>
<body>
<div class="samecolumn" id="fullbody">
<div class="sameline">
<p class="heading flex-grow" > <b> SimpleChat </b> </p>
<div class="sameline">
<label for="api-ep">Mode:</label>
<select name="api-ep" id="api-ep">
<option value="chat" selected>Chat</option>
<option value="completion">Completion</option>
</select>
</div>
</div>
<div id="sessions-div" class="sameline"></div>
<hr>
<div class="sameline">
<label for="system-in">System</label>
<input type="text" name="system" id="system-in" class="flex-grow"/>
</div>
<hr>
<div id="chat-div">
<p> Enter the system prompt above, before entering/submitting any user query.</p>
<p> Enter your text to the ai assistant below.</p>
<p> Use shift+enter for inserting enter.</p>
<p> Refresh the page to start over fresh.</p>
</div>
<hr>
<div class="sameline">
<textarea id="user-in" class="flex-grow" rows="3"></textarea>
<button id="user-btn">submit</button>
</div>
</div>
</body>
</html>

View file

@ -0,0 +1,81 @@
# SimpleChat
by Humans for All.
## overview
This simple web frontend, allows triggering/testing the server's /completions or /chat/completions endpoints
in a simple way with minimal code from a common code base. Inturn additionally it tries to allow single or
multiple independent back and forth chatting to an extent, with the ai llm model at a basic level, with their
own system prompts.
The UI follows a responsive web design so that the layout can adapt to available display space in a usable
enough manner, in general.
NOTE: Given that the idea is for basic minimal testing, it doesnt bother with any model context length and
culling of old messages from the chat.
NOTE: It doesnt set any parameters other than temperature for now. However if someone wants they can update
the js file as needed.
## usage
One could run this web frontend directly using server itself or if anyone is thinking of adding a built in web
frontend to configure the server over http(s) or so, then run this web frontend using something like python's
http module.
### running using examples/server
bin/server -m path/model.gguf --path ../examples/server/public_simplechat [--port PORT]
### running using python3's server module
first run examples/server
* bin/server -m path/model.gguf
next run this web front end in examples/server/public_simplechat
* cd ../examples/server/public_simplechat
* python3 -m http.server PORT
### using the front end
Open this simple web front end from your local browser
* http://127.0.0.1:PORT/index.html
Once inside
* Select between chat and completion mode. By default it is set to chat mode.
* If you want to provide a system prompt, then ideally enter it first, before entering any user query.
* if chat.add_system_begin is used
* you cant change the system prompt, after it is has been submitted once along with user query.
* you cant set a system prompt, after you have submitted any user query
* if chat.add_system_anytime is used
* one can change the system prompt any time during chat, by changing the contents of system prompt.
* inturn the updated/changed system prompt will be inserted into the chat session.
* this allows for the subsequent user chatting to be driven by the new system prompt set above.
* Enter your query and either press enter or click on the submit button.
If you want to insert enter (\n) as part of your chat/query to ai model, use shift+enter.
* Wait for the logic to communicate with the server and get the response.
* the user is not allowed to enter any fresh query during this time.
* the user input box will be disabled and a working message will be shown in it.
* just refresh the page, to reset wrt the chat history and or system prompt and start afresh.
* Using NewChat one can start independent chat sessions.
* two independent chat sessions are setup by default.
## Devel note
Sometimes the browser may be stuborn with caching of the file, so your updates to html/css/js
may not be visible. Also remember that just refreshing/reloading page in browser or for that
matter clearing site data, dont directly override site caching in all cases. Worst case you may
have to change port. Or in dev tools of browser, you may be able to disable caching fully.
Concept of multiple chat sessions with different servers, as well as saving and restoring of
those across browser usage sessions, can be woven around the SimpleChat/MultiChatUI class and
its instances relatively easily, however given the current goal of keeping this simple, it has
not been added, for now.
By switching between chat.add_system_begin/anytime, one can control whether one can change
the system prompt, anytime during the conversation or only at the beginning.

View file

@ -0,0 +1,61 @@
/**
* the styling of the simplechat web frontend
* by Humans for All
*/
#fullbody {
height: 98vh;
}
.heading {
background-color: lightgray;
}
.session-selected {
background-color: lightblue;
}
.role-system {
background-color: lightblue;
}
.role-user {
background-color: lightgray;
}
.flex-grow {
flex-grow: 1;
}
.float-right {
float: right;
}
#chat-div {
overflow: scroll;
flex-grow: 1;
flex-shrink: 1;
min-height: 40vh;
}
button {
min-width: 8vw;
}
.sameline {
display: flex;
flex-direction: row;
}
.samecolumn {
display: flex;
flex-direction: column;
}
* {
margin: 0.6vmin;
}
@media print {
#fullbody {
height: auto;
}
}

View file

@ -0,0 +1,478 @@
// @ts-check
// A simple completions and chat/completions test related web front end logic
// by Humans for All
class Roles {
static System = "system";
static User = "user";
static Assistant = "assistant";
}
class ApiEP {
static Chat = "chat";
static Completion = "completion";
}
let gUsageMsg = `
<p> Enter the system prompt above, before entering/submitting any user query.</p>
<p> Enter your text to the ai assistant below.</p>
<p> Use shift+enter for inserting enter.</p>
<p> Refresh the page to start over fresh.</p>
`;
class SimpleChat {
constructor() {
/**
* Maintain in a form suitable for common LLM web service chat/completions' messages entry
* @type {{role: string, content: string}[]}
*/
this.xchat = [];
this.iLastSys = -1;
}
/**
* Add an entry into xchat
* @param {string} role
* @param {string|undefined|null} content
*/
add(role, content) {
if ((content == undefined) || (content == null) || (content == "")) {
return false;
}
this.xchat.push( {role: role, content: content} );
if (role == Roles.System) {
this.iLastSys = this.xchat.length - 1;
}
return true;
}
/**
* Show the contents in the specified div
* @param {HTMLDivElement} div
* @param {boolean} bClear
*/
show(div, bClear=true) {
if (bClear) {
div.replaceChildren();
}
let last = undefined;
for(const x of this.xchat) {
let entry = document.createElement("p");
entry.className = `role-${x.role}`;
entry.innerText = `${x.role}: ${x.content}`;
div.appendChild(entry);
last = entry;
}
if (last !== undefined) {
last.scrollIntoView(false);
} else {
if (bClear) {
div.innerHTML = gUsageMsg;
}
}
}
/**
* Add needed fields wrt json object to be sent wrt LLM web services completions endpoint
* Convert the json into string.
* @param {Object} obj
*/
request_jsonstr(obj) {
obj["temperature"] = 0.7;
return JSON.stringify(obj);
}
/**
* Return a string form of json object suitable for chat/completions
*/
request_messages_jsonstr() {
let req = {
messages: this.xchat,
}
return this.request_jsonstr(req);
}
/**
* Return a string form of json object suitable for /completions
*/
request_prompt_jsonstr() {
let prompt = "";
for(const chat of this.xchat) {
prompt += `${chat.role}: ${chat.content}\n`;
}
let req = {
prompt: prompt,
}
return this.request_jsonstr(req);
}
/**
* Allow setting of system prompt, but only at begining.
* @param {string} sysPrompt
* @param {string} msgTag
*/
add_system_begin(sysPrompt, msgTag) {
if (this.xchat.length == 0) {
if (sysPrompt.length > 0) {
return this.add(Roles.System, sysPrompt);
}
} else {
if (sysPrompt.length > 0) {
if (this.xchat[0].role !== Roles.System) {
console.error(`ERRR:SimpleChat:SC:${msgTag}:You need to specify system prompt before any user query, ignoring...`);
} else {
if (this.xchat[0].content !== sysPrompt) {
console.error(`ERRR:SimpleChat:SC:${msgTag}:You cant change system prompt, mid way through, ignoring...`);
}
}
}
}
return false;
}
/**
* Allow setting of system prompt, at any time.
* @param {string} sysPrompt
* @param {string} msgTag
*/
add_system_anytime(sysPrompt, msgTag) {
if (sysPrompt.length <= 0) {
return false;
}
if (this.iLastSys < 0) {
return this.add(Roles.System, sysPrompt);
}
let lastSys = this.xchat[this.iLastSys].content;
if (lastSys !== sysPrompt) {
return this.add(Roles.System, sysPrompt);
}
return false;
}
/**
* Retrieve the latest system prompt.
*/
get_system_latest() {
if (this.iLastSys == -1) {
return "";
}
let sysPrompt = this.xchat[this.iLastSys].content;
return sysPrompt;
}
}
let gBaseURL = "http://127.0.0.1:8080";
let gChatURL = {
'chat': `${gBaseURL}/chat/completions`,
'completion': `${gBaseURL}/completions`,
}
const gbCompletionFreshChatAlways = true;
/**
* Set the class of the children, based on whether it is the idSelected or not.
* @param {HTMLDivElement} elBase
* @param {string} idSelected
* @param {string} classSelected
* @param {string} classUnSelected
*/
function el_children_config_class(elBase, idSelected, classSelected, classUnSelected="") {
for(let child of elBase.children) {
if (child.id == idSelected) {
child.className = classSelected;
} else {
child.className = classUnSelected;
}
}
}
/**
* Create button and set it up.
* @param {string} id
* @param {(this: HTMLButtonElement, ev: MouseEvent) => any} callback
* @param {string | undefined} name
* @param {string | undefined} innerText
*/
function el_create_button(id, callback, name=undefined, innerText=undefined) {
if (!name) {
name = id;
}
if (!innerText) {
innerText = id;
}
let btn = document.createElement("button");
btn.id = id;
btn.name = name;
btn.innerText = innerText;
btn.addEventListener("click", callback);
return btn;
}
class MultiChatUI {
constructor() {
/** @type {Object<string, SimpleChat>} */
this.simpleChats = {};
/** @type {string} */
this.curChatId = "";
// the ui elements
this.elInSystem = /** @type{HTMLInputElement} */(document.getElementById("system-in"));
this.elDivChat = /** @type{HTMLDivElement} */(document.getElementById("chat-div"));
this.elBtnUser = /** @type{HTMLButtonElement} */(document.getElementById("user-btn"));
this.elInUser = /** @type{HTMLInputElement} */(document.getElementById("user-in"));
this.elSelectApiEP = /** @type{HTMLSelectElement} */(document.getElementById("api-ep"));
this.elDivSessions = /** @type{HTMLDivElement} */(document.getElementById("sessions-div"));
this.validate_element(this.elInSystem, "system-in");
this.validate_element(this.elDivChat, "chat-div");
this.validate_element(this.elInUser, "user-in");
this.validate_element(this.elSelectApiEP, "api-ep");
this.validate_element(this.elDivChat, "sessions-div");
}
/**
* Check if the element got
* @param {HTMLElement | null} el
* @param {string} msgTag
*/
validate_element(el, msgTag) {
if (el == null) {
throw Error(`ERRR:SimpleChat:MCUI:${msgTag} element missing in html...`);
} else {
console.debug(`INFO:SimpleChat:MCUI:${msgTag} Id[${el.id}] Name[${el["name"]}]`);
}
}
/**
* Reset user input ui.
* * clear user input
* * enable user input
* * set focus to user input
*/
ui_reset_userinput() {
this.elInUser.value = "";
this.elInUser.disabled = false;
this.elInUser.focus();
}
/**
* Setup the needed callbacks wrt UI, curChatId to defaultChatId and
* optionally switch to specified defaultChatId.
* @param {string} defaultChatId
* @param {boolean} bSwitchSession
*/
setup_ui(defaultChatId, bSwitchSession=false) {
this.curChatId = defaultChatId;
if (bSwitchSession) {
this.handle_session_switch(this.curChatId);
}
this.elBtnUser.addEventListener("click", (ev)=>{
if (this.elInUser.disabled) {
return;
}
this.handle_user_submit(this.curChatId, this.elSelectApiEP.value).catch((/** @type{Error} */reason)=>{
let msg = `ERRR:SimpleChat\nMCUI:HandleUserSubmit:${this.curChatId}\n${reason.name}:${reason.message}`;
console.debug(msg.replace("\n", ":"));
alert(msg);
this.ui_reset_userinput();
});
});
this.elInUser.addEventListener("keyup", (ev)=> {
// allow user to insert enter into their message using shift+enter.
// while just pressing enter key will lead to submitting.
if ((ev.key === "Enter") && (!ev.shiftKey)) {
this.elBtnUser.click();
ev.preventDefault();
}
});
this.elInSystem.addEventListener("keyup", (ev)=> {
// allow user to insert enter into the system prompt using shift+enter.
// while just pressing enter key will lead to setting the system prompt.
if ((ev.key === "Enter") && (!ev.shiftKey)) {
let chat = this.simpleChats[this.curChatId];
chat.add_system_anytime(this.elInSystem.value, this.curChatId);
chat.show(this.elDivChat);
ev.preventDefault();
}
});
}
/**
* Setup a new chat session and optionally switch to it.
* @param {string} chatId
* @param {boolean} bSwitchSession
*/
new_chat_session(chatId, bSwitchSession=false) {
this.simpleChats[chatId] = new SimpleChat();
if (bSwitchSession) {
this.handle_session_switch(chatId);
}
}
/**
* Handle user query submit request, wrt specified chat session.
* @param {string} chatId
* @param {string} apiEP
*/
async handle_user_submit(chatId, apiEP) {
let chat = this.simpleChats[chatId];
chat.add_system_anytime(this.elInSystem.value, chatId);
let content = this.elInUser.value;
if (!chat.add(Roles.User, content)) {
console.debug(`WARN:SimpleChat:MCUI:${chatId}:HandleUserSubmit:Ignoring empty user input...`);
return;
}
chat.show(this.elDivChat);
let theBody;
let theUrl = gChatURL[apiEP]
if (apiEP == ApiEP.Chat) {
theBody = chat.request_messages_jsonstr();
} else {
theBody = chat.request_prompt_jsonstr();
}
this.elInUser.value = "working...";
this.elInUser.disabled = true;
console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:${theUrl}:ReqBody:${theBody}`);
let resp = await fetch(theUrl, {
method: "POST",
headers: {
"Content-Type": "application/json",
},
body: theBody,
});
let respBody = await resp.json();
console.debug(`DBUG:SimpleChat:MCUI:${chatId}:HandleUserSubmit:RespBody:${JSON.stringify(respBody)}`);
let assistantMsg;
if (apiEP == ApiEP.Chat) {
assistantMsg = respBody["choices"][0]["message"]["content"];
} else {
try {
assistantMsg = respBody["choices"][0]["text"];
} catch {
assistantMsg = respBody["content"];
}
}
chat.add(Roles.Assistant, assistantMsg);
if (chatId == this.curChatId) {
chat.show(this.elDivChat);
} else {
console.debug(`DBUG:SimpleChat:MCUI:HandleUserSubmit:ChatId has changed:[${chatId}] [${this.curChatId}]`);
}
// Purposefully clear at end rather than begin of this function
// so that one can switch from chat to completion mode and sequece
// in a completion mode with multiple user-assistant chat data
// from before to be sent/occur once.
if ((apiEP == ApiEP.Completion) && (gbCompletionFreshChatAlways)) {
chat.xchat.length = 0;
}
this.ui_reset_userinput();
}
/**
* Show buttons for NewChat and available chat sessions, in the passed elDiv.
* If elDiv is undefined/null, then use this.elDivSessions.
* Take care of highlighting the selected chat-session's btn.
* @param {HTMLDivElement | undefined} elDiv
*/
show_sessions(elDiv=undefined) {
if (!elDiv) {
elDiv = this.elDivSessions;
}
elDiv.replaceChildren();
// Btn for creating new chat session
let btnNew = el_create_button("New CHAT", (ev)=> {
if (this.elInUser.disabled) {
console.error(`ERRR:SimpleChat:MCUI:NewChat:Current session [${this.curChatId}] awaiting response, ignoring request...`);
alert("ERRR:SimpleChat\nMCUI:NewChat\nWait for response to pending query, before starting new chat session");
return;
}
let chatId = `Chat${Object.keys(this.simpleChats).length}`;
let chatIdGot = prompt("INFO:SimpleChat\nMCUI:NewChat\nEnter id for new chat session", chatId);
if (!chatIdGot) {
console.error("ERRR:SimpleChat:MCUI:NewChat:Skipping based on user request...");
return;
}
this.new_chat_session(chatIdGot, true);
this.create_session_btn(elDiv, chatIdGot);
el_children_config_class(elDiv, chatIdGot, "session-selected", "");
});
elDiv.appendChild(btnNew);
// Btns for existing chat sessions
let chatIds = Object.keys(this.simpleChats);
for(let cid of chatIds) {
let btn = this.create_session_btn(elDiv, cid);
if (cid == this.curChatId) {
btn.className = "session-selected";
}
}
}
create_session_btn(elDiv, cid) {
let btn = el_create_button(cid, (ev)=>{
let target = /** @type{HTMLButtonElement} */(ev.target);
console.debug(`DBUG:SimpleChat:MCUI:SessionClick:${target.id}`);
if (this.elInUser.disabled) {
console.error(`ERRR:SimpleChat:MCUI:SessionClick:${target.id}:Current session [${this.curChatId}] awaiting response, ignoring switch...`);
alert("ERRR:SimpleChat\nMCUI:SessionClick\nWait for response to pending query, before switching");
return;
}
this.handle_session_switch(target.id);
el_children_config_class(elDiv, target.id, "session-selected", "");
});
elDiv.appendChild(btn);
return btn;
}
/**
* Switch ui to the specified chatId and set curChatId to same.
* @param {string} chatId
*/
async handle_session_switch(chatId) {
let chat = this.simpleChats[chatId];
if (chat == undefined) {
console.error(`ERRR:SimpleChat:MCUI:HandleSessionSwitch:${chatId} missing...`);
return;
}
this.elInSystem.value = chat.get_system_latest();
this.elInUser.value = "";
chat.show(this.elDivChat);
this.elInUser.focus();
this.curChatId = chatId;
console.log(`INFO:SimpleChat:MCUI:HandleSessionSwitch:${chatId} entered...`);
}
}
let gMuitChat;
const gChatIds = [ "Default", "Other" ];
function startme() {
console.log("INFO:SimpleChat:StartMe:Starting...");
gMuitChat = new MultiChatUI();
for (let cid of gChatIds) {
gMuitChat.new_chat_session(cid);
}
gMuitChat.setup_ui(gChatIds[0]);
gMuitChat.show_sessions();
}
document.addEventListener("DOMContentLoaded", startme);

View file

@ -1019,7 +1019,7 @@ struct server_context {
sampler_names.emplace_back(sampler_name);
}
}
slot.sparams.samplers_sequence = sampler_types_from_names(sampler_names, false);
slot.sparams.samplers_sequence = llama_sampling_types_from_names(sampler_names, false);
} else {
slot.sparams.samplers_sequence = default_sparams.samplers_sequence;
}
@ -1256,7 +1256,7 @@ struct server_context {
std::vector<std::string> samplers_sequence;
samplers_sequence.reserve(slot.sparams.samplers_sequence.size());
for (const auto & sampler_type : slot.sparams.samplers_sequence) {
samplers_sequence.emplace_back(sampler_type_to_name_string(sampler_type));
samplers_sequence.emplace_back(llama_sampling_type_to_str(sampler_type));
}
return json {
@ -2852,7 +2852,7 @@ static void server_params_parse(int argc, char ** argv, server_params & sparams,
invalid_param = true;
break;
}
if (!parse_kv_override(argv[i], params.kv_overrides)) {
if (!string_parse_kv_override(argv[i], params.kv_overrides)) {
fprintf(stderr, "error: Invalid type for KV override: %s\n", argv[i]);
invalid_param = true;
break;
@ -3310,7 +3310,7 @@ int main(int argc, char ** argv) {
const auto handle_slots_save = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body);
std::string filename = request_data.at("filename");
if (!validate_file_name(filename)) {
if (!fs_validate_filename(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return;
}
@ -3340,7 +3340,7 @@ int main(int argc, char ** argv) {
const auto handle_slots_restore = [&ctx_server, &res_error, &sparams](const httplib::Request & req, httplib::Response & res, int id_slot) {
json request_data = json::parse(req.body);
std::string filename = request_data.at("filename");
if (!validate_file_name(filename)) {
if (!fs_validate_filename(filename)) {
res_error(res, format_error_response("Invalid filename", ERROR_TYPE_INVALID_REQUEST));
return;
}

View file

@ -13,10 +13,10 @@ if %errorlevel% neq 0 goto ERROR
:: for FP16
:: faster for long-prompt inference
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
:: cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release -DLLAMA_SYCL_F16=ON
:: for FP32
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DCMAKE_BUILD_TYPE=Release
cmake -G "MinGW Makefiles" .. -DLLAMA_SYCL=ON -DCMAKE_C_COMPILER=icx -DCMAKE_CXX_COMPILER=icx -DBUILD_SHARED_LIBS=ON -DCMAKE_BUILD_TYPE=Release
if %errorlevel% neq 0 goto ERROR
:: build example/main only
:: make main

View file

@ -3,40 +3,390 @@
#include <cmath>
#include <cstdio>
#include <fstream>
#include <string>
#include <vector>
int main(int argc, char ** argv) {
if (argc < 3 || argv[1][0] == '-') {
printf("usage: %s MODEL_PATH PROMPT [--ids]\n" , argv[0]);
#if defined(_WIN32)
#define WIN32_LEAN_AND_MEAN
#include <windows.h>
#include <shellapi.h> // For CommandLineToArgvW
#endif
static void print_usage_information(const char * argv0, FILE * stream) {
fprintf(stream, "usage: %s [options]\n\n", argv0);
fprintf(stream, "The tokenize program tokenizes a prompt using a given model,\n");
fprintf(stream, "and prints the resulting tokens to standard output.\n\n");
fprintf(stream, "It needs a model file, a prompt, and optionally other flags\n");
fprintf(stream, "to control the behavior of the tokenizer.\n\n");
fprintf(stream, " The possible options are:\n");
fprintf(stream, "\n");
fprintf(stream, " -h, --help print this help and exit\n");
fprintf(stream, " -m MODEL_PATH, --model MODEL_PATH path to model.\n");
fprintf(stream, " --ids if given, only print numerical token IDs, and not token strings.\n");
fprintf(stream, " The output format looks like [1, 2, 3], i.e. parseable by Python.\n");
fprintf(stream, " -f PROMPT_FNAME, --file PROMPT_FNAME read prompt from a file.\n");
fprintf(stream, " -p PROMPT, --prompt PROMPT read prompt from the argument.\n");
fprintf(stream, " --stdin read prompt from standard input.\n");
fprintf(stream, " --no-bos do not ever add a BOS token to the prompt, even if normally the model uses a BOS token.\n");
fprintf(stream, " --log-disable disable logs. Makes stderr quiet when loading the model.\n");
}
static void llama_log_callback_null(ggml_log_level level, const char * text, void * user_data) {
(void) level;
(void) text;
(void) user_data;
}
static std::string read_prompt_from_file(const char * filepath, bool & success) {
success = false;
std::ifstream in(filepath, std::ios::binary);
if (!in) {
fprintf(stderr, "%s: could not open file '%s' for reading: %s\n", __func__, filepath, strerror(errno));
return std::string();
}
// do not assume the file is seekable (e.g. /dev/stdin)
std::stringstream buffer;
buffer << in.rdbuf();
if (in.fail()) {
fprintf(stderr, "%s: could not read the entire file '%s': %s\n", __func__, filepath, strerror(errno));
return std::string();
}
success = true;
return buffer.str();
}
//
// Function: ingest_args(...) -> vector<string>
//
// Takes argc and argv arguments, and converts them to a vector of UTF-8 encoded
// strings, as an STL vector<string>.
//
// In particular, it handles character encoding shenanigans on Windows.
//
// Note: raw_argc and raw_argv are not actually read at all on Windows.
// On Windows we call GetCommandLineW to get the arguments in wchar_t
// format, ignoring the regular argc/argv arguments to main().
//
// TODO: potential opportunity to roll common stuff into common/console.cpp
// in relation to Windows wchar_t shenanigans.
static std::vector<std::string> ingest_args(int raw_argc, char ** raw_argv) {
std::vector<std::string> argv;
// Handle Windows, if given non-ASCII arguments.
// We convert wchar_t arguments into UTF-8 char* on this platform.
// Lets you invoke 'tokenize' on Windows cmd.exe with non-ASCII characters
// without throwing tantrums.
#if defined(_WIN32)
int argc;
const LPWSTR cmdline_wargv = GetCommandLineW();
LPWSTR * wargv = CommandLineToArgvW(cmdline_wargv, &argc);
// silence unused arg warnings
(void) raw_argc;
(void) raw_argv;
for (int i = 0; i < argc; ++i) {
int length_needed = WideCharToMultiByte(CP_UTF8, 0, wargv[i], wcslen(wargv[i]), 0, 0, NULL, NULL);
char * output_buf = (char *) calloc(length_needed+1, sizeof(char));
GGML_ASSERT(output_buf);
WideCharToMultiByte(CP_UTF8, 0, wargv[i], wcslen(wargv[i]), output_buf, length_needed, NULL, NULL);
output_buf[length_needed] = '\0';
argv.push_back(output_buf);
free(output_buf);
}
LocalFree((HLOCAL) wargv);
#else
int argc = raw_argc;
for (int i = 0; i < argc; ++i) {
argv.push_back(raw_argv[i]);
}
#endif
GGML_ASSERT((unsigned int) argc == argv.size());
return argv;
}
//
// Function: write_utf8_cstr_to_stdout(const char *) -> <writes to stdout>
//
// writes a string to standard output; taking into account that on Windows
// to display correctly you have to use special handling. Works even if the
// user has not set a unicode code page on a Windows cmd.exe.
//
// In case of invalid UTF-8, invalid_utf8 is set to true on Windows, and something
// a human-readable is written instead.
//
// On non-Windows systems, simply printfs() the string.
static void write_utf8_cstr_to_stdout(const char * str, bool & invalid_utf8) {
invalid_utf8 = false;
#if defined(_WIN32)
// Are we in a console?
HANDLE hConsole = GetStdHandle(STD_OUTPUT_HANDLE);
DWORD dwMode = 0;
// According to Microsoft docs:
// "WriteConsole fails if it is used with a standard handle that is redirected to a file."
// Also according to the docs, you can use GetConsoleMode to check for that.
if (hConsole == INVALID_HANDLE_VALUE || !GetConsoleMode(hConsole, &dwMode)) {
printf("%s", str);
return;
}
// MultiByteToWideChar reports an error if str is empty, don't report
// them as invalid_utf8.
if (*str == 0) {
return;
}
int length_needed = MultiByteToWideChar(CP_UTF8, MB_ERR_INVALID_CHARS, str, strlen(str), NULL, 0);
if (length_needed == 0) {
DWORD err = GetLastError();
if (err == ERROR_NO_UNICODE_TRANSLATION) {
invalid_utf8 = true;
int len = strlen(str);
printf("<");
for (int i = 0; i < len; ++i) {
if (i > 0) {
printf(" ");
}
printf("%02x", (uint8_t) str[i]);
}
printf(">");
return;
}
GGML_ASSERT(false && "MultiByteToWideChar() failed in an unexpected way.");
}
LPWSTR wstr = (LPWSTR) calloc(length_needed+1, sizeof(*wstr));
GGML_ASSERT(wstr);
MultiByteToWideChar(CP_UTF8, 0, str, strlen(str), wstr, length_needed);
WriteConsoleW(hConsole, wstr, length_needed, NULL, NULL);
free(wstr);
#else
// TODO: reporting invalid_utf8 would be useful on non-Windows too.
// printf will silently just write bad unicode.
printf("%s", str);
#endif
}
int main(int raw_argc, char ** raw_argv) {
const std::vector<std::string> argv = ingest_args(raw_argc, raw_argv);
const int argc = argv.size();
if (argc <= 1) {
print_usage_information(argv[0].c_str(), stderr);
return 1;
}
const char * model_path = argv[1];
const char * prompt = argv[2];
//////
// Read out all the command line arguments.
//////
const bool printing_ids = argc > 3 && std::string(argv[3]) == "--ids";
// variables where to put any arguments we see.
bool printing_ids = false;
bool no_bos = false;
bool disable_logging = false;
const char * model_path = NULL;
const char * prompt_path = NULL;
const char * prompt_arg = NULL;
// track which arguments were explicitly given
// used for sanity checking down the line
bool model_path_set = false;
bool prompt_path_set = false;
bool prompt_set = false;
bool stdin_set = false;
int iarg = 1;
for (; iarg < argc; ++iarg) {
std::string arg{argv[iarg]};
if (arg == "-h" || arg == "--help") {
print_usage_information(argv[0].c_str(), stdout);
return 0;
}
else if (arg == "--ids") {
printing_ids = true;
}
else if (arg == "-m" || arg == "--model") {
if (model_path_set) {
fprintf(stderr, "Error: -m or --model specified multiple times.\n");
return 1;
}
model_path = argv[++iarg].c_str();
model_path_set = true;
}
else if (arg == "--no-bos") {
no_bos = true;
}
else if (arg == "-p" || arg == "--prompt") {
if (prompt_set) {
fprintf(stderr, "Error: -p or --prompt specified multiple times.\n");
return 1;
}
prompt_arg = argv[++iarg].c_str();
prompt_set = true;
}
else if (arg == "-f" || arg == "--file") {
if (prompt_path_set) {
fprintf(stderr, "Error: -f or --file specified multiple times.\n");
return 1;
}
prompt_path = argv[++iarg].c_str();
prompt_path_set = true;
}
else if (arg == "--stdin") {
stdin_set = true;
}
else if (arg == "--log-disable") {
disable_logging = true;
}
else {
fprintf(stderr, "Error: unknown option '%s'\n", argv[iarg].c_str());
return 1;
}
}
//////
// Sanity check the command line arguments.
//////
// Check that we have the required stuff set.
if (model_path_set && model_path == NULL) {
fprintf(stderr, "Error: --model requires an argument.\n");
return 1;
}
if (!model_path_set) {
fprintf(stderr, "Error: must specify --model.\n");
return 1;
}
if (prompt_path_set && prompt_path == NULL) {
fprintf(stderr, "Error: --file requires an argument.\n");
return 1;
}
if (prompt_set && prompt_arg == NULL) {
fprintf(stderr, "Error: --prompt requires an argument.\n");
return 1;
}
const int prompts_set = !!(prompt_path_set) + !!(prompt_set) + !!(stdin_set);
if (prompts_set > 1) {
fprintf(stderr, "Error: --stdin, --file and --prompt are mutually exclusive.\n");
return 1;
}
// Must have some prompt.
if (prompts_set == 0) {
fprintf(stderr, "Error: must specify one of: --stdin, --file or --prompt.\n");
return 1;
}
GGML_ASSERT(model_path);
GGML_ASSERT(prompt_path || prompt_arg || stdin_set);
//////
// Figure out where will the prompt come from.
//////
std::string prompt;
if (prompt_path_set) {
bool success = false;
prompt = read_prompt_from_file(prompt_path, success);
if (!success) {
return 1;
}
} else if (prompt_set) {
prompt = prompt_arg;
} else {
GGML_ASSERT(stdin_set);
// we read stdin *after* loading model (early exit if model cannot
// be loaded, which can be a nicer user experience)
}
//////
// Start actually doing the tokenizing stuff.
//////
#ifdef LOG_DISABLE_LOGS
disable_logging = true;
#endif
if (disable_logging) {
llama_log_set(llama_log_callback_null, NULL);
}
llama_backend_init();
llama_model_params model_params = llama_model_default_params();
model_params.vocab_only = true;
llama_model * model = llama_load_model_from_file(model_path, model_params);
if (!model) {
fprintf(stderr, "Error: could not load model from file '%s'.\n", model_path);
return 1;
}
llama_context_params ctx_params = llama_context_default_params();
llama_context * ctx = llama_new_context_with_model(model, ctx_params);
if (!ctx) {
fprintf(stderr, "Error: could not create context.\n");
return 1;
}
// read entire prompt from stdin?
if (stdin_set) {
GGML_ASSERT(!prompt_path_set && !prompt_set);
std::stringstream stdin_buffer;
stdin_buffer << std::cin.rdbuf();
if (std::cin.fail()) {
fprintf(stderr, "Error: could not read the entire standard input.\n");
return 1;
}
prompt = stdin_buffer.str();
}
const bool model_wants_add_bos = llama_should_add_bos_token(model);
const bool add_bos = model_wants_add_bos && !no_bos;
std::vector<llama_token> tokens;
tokens = ::llama_tokenize(model, prompt, add_bos, true);
tokens = ::llama_tokenize(model, prompt, true, true);
if (printing_ids) {
printf("[");
}
for (int i = 0; i < (int) tokens.size(); i++) {
if (printing_ids) {
printf("%d\n", tokens[i]);
if (i > 0) {
printf(", ");
}
printf("%d", tokens[i]);
} else {
printf("%6d -> '%s'\n", tokens[i], llama_token_to_piece(ctx, tokens[i]).c_str());
bool invalid_utf8 = false;
printf("%6d -> '", tokens[i]);
write_utf8_cstr_to_stdout(llama_token_to_piece(ctx, tokens[i]).c_str(), invalid_utf8);
if (invalid_utf8) {
printf("' (utf-8 decode failure)\n");
} else {
printf("'\n");
}
}
}
if (printing_ids) {
printf("]\n");
}
// silence valgrind
llama_free(ctx);
llama_free_model(model);
return 0;
}

View file

@ -341,7 +341,8 @@ static struct ggml_tensor * llama_build_train_graphs(
struct ggml_tensor * t15 = ggml_permute (ctx, t12, 0, 3, 1, 2); set_name(t15, "t15"); assert_shape_4d(t15, N, n_embd/n_head, n_head, n_batch);
struct ggml_tensor * t16;
if (enable_flash_attn) {
t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
GGML_ASSERT(false && "TODO: ggml_flash_attn_ext() not yet supported");
//t16 = ggml_flash_attn(ctx, t13, t14, t15, true); set_name(t16, "t16"); assert_shape_4d(t16, n_embd/n_head, N, n_head, n_batch);
} else {
struct ggml_tensor * t16_0 = ggml_mul_mat (ctx, t14, t13); set_name(t16_0, "t16_0"); assert_shape_4d(t16_0, N, N, n_head, n_batch);
struct ggml_tensor * t16_1 = ggml_scale_inplace (ctx, t16_0, kv_scale); set_name(t16_1, "t16_1"); assert_shape_4d(t16_1, N, N, n_head, n_batch);

12
flake.lock generated
View file

@ -5,11 +5,11 @@
"nixpkgs-lib": "nixpkgs-lib"
},
"locked": {
"lastModified": 1714641030,
"narHash": "sha256-yzcRNDoyVP7+SCNX0wmuDju1NUCt8Dz9+lyUXEI0dbI=",
"lastModified": 1715865404,
"narHash": "sha256-/GJvTdTpuDjNn84j82cU6bXztE0MSkdnTWClUCRub78=",
"owner": "hercules-ci",
"repo": "flake-parts",
"rev": "e5d10a24b66c3ea8f150e47dfdb0416ab7c3390e",
"rev": "8dc45382d5206bd292f9c2768b8058a8fd8311d9",
"type": "github"
},
"original": {
@ -20,11 +20,11 @@
},
"nixpkgs": {
"locked": {
"lastModified": 1714635257,
"narHash": "sha256-4cPymbty65RvF1DWQfc+Bc8B233A1BWxJnNULJKQ1EY=",
"lastModified": 1715961556,
"narHash": "sha256-+NpbZRCRisUHKQJZF3CT+xn14ZZQO+KjxIIanH3Pvn4=",
"owner": "NixOS",
"repo": "nixpkgs",
"rev": "63c3a29ca82437c87573e4c6919b09a24ea61b0f",
"rev": "4a6b83b05df1a8bd7d99095ec4b4d271f2956b64",
"type": "github"
},
"original": {

View file

@ -65,13 +65,8 @@ typedef sycl::half2 ggml_half2;
// QK = number of values after dequantization
// QK_K = super-block size
#ifdef GGML_QKK_64
#define QK_K 64
#define K_SCALE_SIZE 4
#else
#define QK_K 256
#define K_SCALE_SIZE 12
#endif // GGML_QKK_64
#if defined(GGML_COMMON_DECL_CUDA) || defined(GGML_COMMON_DECL_HIP) || defined(GGML_COMMON_DECL_SYCL)
// QR = QK / number of values before dequantization
@ -131,13 +126,8 @@ typedef sycl::half2 ggml_half2;
#define QI4_NL (QK4_NL / (4*QR4_NL))
#define QR4_NL 2
#if QK_K == 64
#define QI4_XS QI4_NL
#define QR4_XS QR4_NL
#else
#define QI4_XS (QK_K / (4*QR4_XS))
#define QR4_XS 8
#endif
#endif // GGML_COMMON_DECL_CUDA || GGML_COMMON_DECL_HIP
@ -228,15 +218,6 @@ static_assert(sizeof(block_q2_K) == 2*sizeof(ggml_half) + QK_K/16 + QK_K/4, "wro
// weight is represented as x = a * q
// 16 blocks of 16 elements each
// Effectively 3.4375 bits per weight
#ifdef GGML_QKK_64
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
uint8_t scales[2];
ggml_half d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 2, "wrong q3_K block size/padding");
#else
typedef struct {
uint8_t hmask[QK_K/8]; // quants - high bit
uint8_t qs[QK_K/4]; // quants - low 2 bits
@ -244,20 +225,11 @@ typedef struct {
ggml_half d; // super-block scale
} block_q3_K;
static_assert(sizeof(block_q3_K) == sizeof(ggml_half) + QK_K / 4 + QK_K / 8 + 12, "wrong q3_K block size/padding");
#endif
// 4-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 4.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_half d[2]; // super-block scales/mins
uint8_t scales[2]; // 4-bit block scales/mins
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + QK_K/2 + 2, "wrong q4_K block size/padding");
#else
typedef struct {
union {
struct {
@ -270,21 +242,11 @@ typedef struct {
uint8_t qs[QK_K/2]; // 4--bit quants
} block_q4_K;
static_assert(sizeof(block_q4_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2, "wrong q4_K block size/padding");
#endif
// 5-bit quantization
// 8 blocks of 32 elements each
// weight is represented as x = a * q + b
// Effectively 5.5 bits per weight
#ifdef GGML_QKK_64
typedef struct {
ggml_half d; // super-block scale
int8_t scales[QK_K/16]; // 8-bit block scales
uint8_t qh[QK_K/8]; // quants, high bit
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == sizeof(ggml_half) + QK_K/2 + QK_K/8 + QK_K/16, "wrong q5_K block size/padding");
#else
typedef struct {
union {
struct {
@ -298,7 +260,6 @@ typedef struct {
uint8_t qs[QK_K/2]; // quants, low 4 bits
} block_q5_K;
static_assert(sizeof(block_q5_K) == 2*sizeof(ggml_half) + K_SCALE_SIZE + QK_K/2 + QK_K/8, "wrong q5_K block size/padding");
#endif
// 6-bit quantization
// weight is represented as x = a * q
@ -356,11 +317,7 @@ typedef struct {
static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_half) + 3*(QK_K/8), "wrong iq3_xxs block size/padding");
// 3.4375 bpw
#if QK_K == 64
#define IQ3S_N_SCALE 2
#else
#define IQ3S_N_SCALE QK_K/64
#endif
typedef struct {
ggml_half d;
uint8_t qs[QK_K/4];
@ -381,16 +338,9 @@ static_assert(sizeof(block_iq1_s) == sizeof(ggml_half) + QK_K/8 + QK_K/16, "wron
typedef struct {
uint8_t qs[QK_K/8]; // grid index, low 8 bits
uint8_t qh[QK_K/16]; // grid index, high 3 bits + grid shift bit (for two groups of 8)
#if QK_K == 64
ggml_half d;
#endif
uint8_t scales[QK_K/32]; // 3-bit block scales (4-bit if QK_K == 64)
} block_iq1_m;
#if QK_K == 64
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32 + sizeof(ggml_half), "wrong iq1_m block size/padding");
#else
static_assert(sizeof(block_iq1_m) == QK_K/8 + QK_K/16 + QK_K/32, "wrong iq1_m block size/padding");
#endif
// Used by IQ1_M quants
typedef union {
@ -406,9 +356,6 @@ typedef struct {
} block_iq4_nl;
static_assert(sizeof(block_iq4_nl) == sizeof(ggml_half) + QK4_NL/2, "wrong iq4_nl block size/padding");
#if QK_K == 64
#define block_iq4_xs block_iq4_nl
#else
typedef struct {
ggml_half d;
uint16_t scales_h;
@ -416,7 +363,6 @@ typedef struct {
uint8_t qs[QK_K/2];
} block_iq4_xs;
static_assert(sizeof(block_iq4_xs) == sizeof(ggml_half) + sizeof(uint16_t) + QK_K/64 + QK_K/2, "wrong iq4_xs block size/padding");
#endif
#endif // GGML_COMMON_DECL
#endif // GGML_COMMON_DECL

View file

@ -131,7 +131,6 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
const block_q2_K * x = (const block_q2_K *) vx;
const int64_t tid = threadIdx.x;
#if QK_K == 256
const int64_t n = tid/32;
const int64_t l = tid - 32*n;
const int64_t is = 8*n + l/16;
@ -145,17 +144,6 @@ static __global__ void dequantize_block_q2_K(const void * __restrict__ vx, dst_t
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
#else
const int64_t is = tid/16; // 0 or 1
const int64_t il = tid%16; // 0...15
const uint8_t q = x[i].qs[il] >> (2*is);
dst_t * y = yy + i*QK_K + 16*is + il;
float dall = __low2half(x[i].dm);
float dmin = __high2half(x[i].dm);
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
#endif
}
template<typename dst_t>
@ -164,7 +152,6 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
const int64_t i = blockIdx.x;
const block_q3_K * x = (const block_q3_K *) vx;
#if QK_K == 256
const int64_t r = threadIdx.x/4;
const int64_t tid = r/2;
const int64_t is0 = r%2;
@ -188,31 +175,8 @@ static __global__ void dequantize_block_q3_K(const void * __restrict__ vx, dst_t
const uint8_t * hm = x[i].hmask;
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
#else
const int64_t tid = threadIdx.x;
const int64_t is = tid/16; // 0 or 1
const int64_t il = tid%16; // 0...15
const int64_t im = il/8; // 0...1
const int64_t in = il%8; // 0...7
dst_t * y = yy + i*QK_K + 16*is + il;
const uint8_t q = x[i].qs[il] >> (2*is);
const uint8_t h = x[i].hmask[in] >> (2*is + im);
const float d = (float)x[i].d;
if (is == 0) {
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
} else {
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
}
#endif
}
#if QK_K == 256
static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
if (j < 4) {
d = q[j] & 63; m = q[j + 4] & 63;
@ -221,7 +185,6 @@ static inline __device__ void get_scale_min_k4(int j, const uint8_t * q, uint8_t
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
}
}
#endif
template<typename dst_t>
static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy) {
@ -229,7 +192,6 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
const int64_t i = blockIdx.x;
#if QK_K == 256
// assume 32 threads
const int64_t tid = threadIdx.x;
const int64_t il = tid/8;
@ -253,15 +215,6 @@ static __global__ void dequantize_block_q4_K(const void * __restrict__ vx, dst_t
y[l + 0] = d1 * (q[l] & 0xF) - m1;
y[l +32] = d2 * (q[l] >> 4) - m2;
}
#else
const int64_t tid = threadIdx.x;
const uint8_t * q = x[i].qs;
dst_t * y = yy + i*QK_K;
const float d = (float)x[i].dm[0];
const float m = (float)x[i].dm[1];
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
#endif
}
template<typename dst_t>
@ -270,7 +223,6 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
const int64_t i = blockIdx.x;
#if QK_K == 256
// assume 64 threads - this is very slightly better than the one below
const int64_t tid = threadIdx.x;
const int64_t il = tid/16; // il is in 0...3
@ -297,18 +249,6 @@ static __global__ void dequantize_block_q5_K(const void * __restrict__ vx, dst_t
hm <<= 1;
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
#else
const int64_t tid = threadIdx.x;
const uint8_t q = x[i].qs[tid];
const int64_t im = tid/8; // 0...3
const int64_t in = tid%8; // 0...7
const int64_t is = tid/16; // 0 or 1
const uint8_t h = x[i].qh[in] >> im;
const float d = x[i].d;
dst_t * y = yy + i*QK_K + tid;
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
#endif
}
template<typename dst_t>
@ -316,7 +256,6 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
const block_q6_K * x = (const block_q6_K *) vx;
const int64_t i = blockIdx.x;
#if QK_K == 256
// assume 64 threads - this is very slightly better than the one below
const int64_t tid = threadIdx.x;
@ -336,24 +275,6 @@ static __global__ void dequantize_block_q6_K(const void * __restrict__ vx, dst_t
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
#else
// assume 32 threads
const int64_t tid = threadIdx.x;
const int64_t ip = tid/16; // 0 or 1
const int64_t il = tid - 16*ip; // 0...15
dst_t * y = yy + i*QK_K + 16*ip + il;
const float d = x[i].d;
const uint8_t ql = x[i].ql[16*ip + il];
const uint8_t qh = x[i].qh[il] >> (2*ip);
const int8_t * sc = x[i].scales;
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
#endif
}
template<typename dst_t>
@ -363,7 +284,6 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
const int64_t tid = threadIdx.x;
#if QK_K == 256
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -374,10 +294,6 @@ static __global__ void dequantize_block_iq2_xxs(const void * __restrict__ vx, ds
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
const uint8_t signs = ksigns_iq2xs[(aux32 >> 7*il) & 127];
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
#else
NO_DEVICE_CODE;
#endif
}
template<typename dst_t>
@ -387,7 +303,6 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
const block_iq2_xs * x = (const block_iq2_xs *) vx;
const int64_t tid = threadIdx.x;
#if QK_K == 256
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -396,10 +311,6 @@ static __global__ void dequantize_block_iq2_xs(const void * __restrict__ vx, dst
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
#else
NO_DEVICE_CODE;
#endif
}
template<typename dst_t>
@ -409,7 +320,6 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_
const block_iq2_s * x = (const block_iq2_s *) vx;
const int64_t tid = threadIdx.x;
#if QK_K == 256
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -417,10 +327,6 @@ static __global__ void dequantize_block_iq2_s(const void * __restrict__ vx, dst_
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
#else
NO_DEVICE_CODE;
#endif
}
template<typename dst_t>
@ -430,7 +336,6 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
const int64_t tid = threadIdx.x;
#if QK_K == 256
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -445,10 +350,6 @@ static __global__ void dequantize_block_iq3_xxs(const void * __restrict__ vx, ds
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
#else
NO_DEVICE_CODE;
#endif
}
template<typename dst_t>
@ -458,7 +359,6 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
const block_iq3_s * x = (const block_iq3_s *) vx;
const int64_t tid = threadIdx.x;
#if QK_K == 256
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -471,10 +371,6 @@ static __global__ void dequantize_block_iq3_s(const void * __restrict__ vx, dst_
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
#else
NO_DEVICE_CODE;
#endif
}
template<typename dst_t>
@ -484,7 +380,6 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
const block_iq1_s * x = (const block_iq1_s *) vx;
const int64_t tid = threadIdx.x;
#if QK_K == 256
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -497,10 +392,6 @@ static __global__ void dequantize_block_iq1_s(const void * __restrict__ vx, dst_
for (int j = 0; j < 8; ++j) {
y[j] = d * (q[j] + delta);
}
#else
NO_DEVICE_CODE;
#endif
}
template<typename dst_t>
@ -510,7 +401,6 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_
const block_iq1_m * x = (const block_iq1_m *) vx;
const int64_t tid = threadIdx.x;
#if QK_K == 256
const int64_t il = tid/8; // 0...3
const int64_t ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -527,13 +417,8 @@ static __global__ void dequantize_block_iq1_m(const void * __restrict__ vx, dst_
for (int j = 0; j < 8; ++j) {
y[j] = d * (q[j] + delta);
}
#else
NO_DEVICE_CODE;
#endif
}
template<typename dst_t>
static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst_t * __restrict__ yy) {
@ -550,10 +435,8 @@ static __global__ void dequantize_block_iq4_nl(const void * __restrict__ vx, dst
y[j+ 0] = d * kvalues_iq4nl[q4[j] & 0xf];
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
}
}
#if QK_K != 64
template<typename dst_t>
static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst_t * __restrict__ yy) {
const int64_t i = blockIdx.x;
@ -570,7 +453,6 @@ static __global__ void dequantize_block_iq4_xs(const void * __restrict__ vx, dst
y[j+16] = d * kvalues_iq4nl[q4[j] >> 4];
}
}
#endif
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static void dequantize_block_cuda(const void * __restrict__ vx, dst_t * __restrict__ y, const int64_t k, cudaStream_t stream) {
@ -592,21 +474,13 @@ static void dequantize_block_q8_0_f16_cuda(const void * __restrict__ vx, half *
template<typename dst_t>
static void dequantize_row_q2_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
const int nb = k / QK_K;
#if QK_K == 256
dequantize_block_q2_K<<<nb, 64, 0, stream>>>(vx, y);
#else
dequantize_block_q2_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}
template<typename dst_t>
static void dequantize_row_q3_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
const int nb = k / QK_K;
#if QK_K == 256
dequantize_block_q3_K<<<nb, 64, 0, stream>>>(vx, y);
#else
dequantize_block_q3_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}
template<typename dst_t>
@ -632,21 +506,13 @@ static void dequantize_row_q4_K_cuda(const void * vx, dst_t * y, const int64_t k
template<typename dst_t>
static void dequantize_row_q5_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
const int nb = k / QK_K;
#if QK_K == 256
dequantize_block_q5_K<<<nb, 64, 0, stream>>>(vx, y);
#else
dequantize_block_q5_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}
template<typename dst_t>
static void dequantize_row_q6_K_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
const int nb = k / QK_K;
#if QK_K == 256
dequantize_block_q6_K<<<nb, 64, 0, stream>>>(vx, y);
#else
dequantize_block_q6_K<<<nb, 32, 0, stream>>>(vx, y);
#endif
}
template<typename dst_t>
@ -700,11 +566,7 @@ static void dequantize_row_iq1_m_cuda(const void * vx, dst_t * y, const int64_t
template<typename dst_t>
static void dequantize_row_iq4_xs_cuda(const void * vx, dst_t * y, const int64_t k, cudaStream_t stream) {
const int nb = (k + QK_K - 1) / QK_K;
#if QK_K == 64
dequantize_block_iq4_nl<<<nb, 32, 0, stream>>>(vx, y);
#else
dequantize_block_iq4_xs<<<nb, 32, 0, stream>>>(vx, y);
#endif
}
template <typename src_t, typename dst_t>

View file

@ -22,7 +22,6 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
float tmp = 0; // partial sum for thread in warp
#if QK_K == 256
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...15
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0,1
@ -71,37 +70,6 @@ static __global__ void dequantize_mul_mat_vec_q2_k(const void * __restrict__ vx,
tmp += dall * sum1 - dmin * sum2;
}
#else
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
const int offset = tid * K_QUANTS_PER_ITERATION;
uint32_t uaux[2];
const uint8_t * d = (const uint8_t *)uaux;
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + offset;
const uint8_t * q = x[i].qs + offset;
const uint32_t * s = (const uint32_t *)x[i].scales;
uaux[0] = s[0] & 0x0f0f0f0f;
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
const float2 dall = __half22float2(x[i].dm);
float sum1 = 0, sum2 = 0;
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
const uint8_t ql = q[l];
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
+ y[l+16] * d[1] * ((ql >> 2) & 3)
+ y[l+32] * d[2] * ((ql >> 4) & 3)
+ y[l+48] * d[3] * ((ql >> 6) & 3);
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
}
tmp += dall.x * sum1 - dall.y * sum2;
}
#endif
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
@ -123,8 +91,6 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
float tmp = 0; // partial sum for thread in warp
#if QK_K == 256
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
@ -175,34 +141,6 @@ static __global__ void dequantize_mul_mat_vec_q3_k(const void * __restrict__ vx,
tmp += d * sum;
}
#else
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
const int in = offset/8; // 0 or 1
const int im = offset%8; // 0...7
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + offset;
const uint8_t * q = x[i].qs + offset;
const uint8_t * s = x[i].scales;
const float dall = (float)x[i].d;
float sum = 0;
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
const uint8_t hl = x[i].hmask[im+l] >> in;
const uint8_t ql = q[l];
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
@ -221,7 +159,6 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
const block_q4_K * x = (const block_q4_K *)vx + ib0;
#if QK_K == 256
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
@ -306,36 +243,6 @@ static __global__ void dequantize_mul_mat_vec_q4_k(const void * __restrict__ vx,
#endif
}
#else
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
const int step = tid * K_QUANTS_PER_ITERATION;
uint16_t aux16[2];
const uint8_t * s = (const uint8_t *)aux16;
float tmp = 0;
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const uint8_t * q = x[i].qs + step;
const float * y = yy + i*QK_K + step;
const uint16_t * a = (const uint16_t *)x[i].scales;
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
const float d = (float)x[i].dm[0];
const float m = (float)x[i].dm[1];
float sum = 0.f;
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
@ -355,7 +262,6 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
float tmp = 0; // partial sum for thread in warp
#if QK_K == 256
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
@ -426,30 +332,6 @@ static __global__ void dequantize_mul_mat_vec_q5_k(const void * __restrict__ vx,
tmp += dall * (sum.x * sc[0] + sum.y * sc[1] + sum.z * sc[4] + sum.w * sc[5]) - dmin * smin;
}
#else
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...15
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION);
const int step = tid * K_QUANTS_PER_ITERATION;
const int im = step/8;
const int in = step%8;
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const uint8_t * q = x[i].qs + step;
const int8_t * s = x[i].scales;
const float * y = yy + i*QK_K + step;
const float d = x[i].d;
float sum = 0.f;
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
const uint8_t h = x[i].qh[in+j] >> im;
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);
@ -470,8 +352,6 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
const block_q6_K * x = (const block_q6_K *)vx + ib0;
#if QK_K == 256
const int tid = threadIdx.x/K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix = threadIdx.x%K_QUANTS_PER_ITERATION; // 0 or 0, 1
@ -526,37 +406,6 @@ static __global__ void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx,
}
#else
const int tid = threadIdx.x/(2*K_QUANTS_PER_ITERATION); // 0...7
const int ix = threadIdx.x%(2*K_QUANTS_PER_ITERATION); // 0...3
const int step = tid * K_QUANTS_PER_ITERATION;
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + step;
const uint8_t * ql = x[i].ql + step;
const uint8_t * qh = x[i].qh + step;
const int8_t * s = x[i].scales;
const float d = x[i+0].d;
float sum = 0;
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
tmp = warp_reduce_sum(tmp);

View file

@ -83,7 +83,7 @@ static __global__ void flash_attn_tile_ext_f16(
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
const float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
Q_h2[j][i] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
}
}
@ -238,6 +238,10 @@ static __global__ void flash_attn_tile_ext_f16(
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
half kqsum_j = __low2half(kqsum[j_VKQ_0/nwarps]) + __high2half(kqsum[j_VKQ_0/nwarps]);
kqsum_j = warp_reduce_sum(kqsum_j);

View file

@ -79,7 +79,7 @@ static __global__ void flash_attn_tile_ext_f32(
#pragma unroll
for (int i0 = 0; i0 < D; i0 += 2*WARP_SIZE) {
float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x];
float2 tmp = ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i0/2 + threadIdx.x] : make_float2(0.0f, 0.0f);
Q_f[j][i0 + 0*WARP_SIZE + threadIdx.x] = tmp.x * scale;
Q_f[j][i0 + 1*WARP_SIZE + threadIdx.x] = tmp.y * scale;
}
@ -237,6 +237,10 @@ static __global__ void flash_attn_tile_ext_f32(
for (int j_VKQ_0 = 0; j_VKQ_0 < ncols; j_VKQ_0 += nwarps) {
const int j_VKQ = j_VKQ_0 + threadIdx.y;
if (ic0 + j_VKQ >= ne01) {
return;
}
float kqsum_j = kqsum[j_VKQ_0/nwarps];
kqsum_j = warp_reduce_sum(kqsum_j);
@ -283,8 +287,7 @@ void launch_fattn_tile_f32_64_128(ggml_backend_cuda_context & ctx, ggml_tensor *
}
void ggml_cuda_flash_attn_ext_tile_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
const ggml_tensor * KQV = dst;
const ggml_tensor * Q = dst->src[0];
const ggml_tensor * Q = dst->src[0];
if (Q->ne[1] <= 16) {
constexpr int cols_per_block = 16;

View file

@ -94,7 +94,7 @@ static __global__ void flash_attn_vec_ext_f16(
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
const float2 tmp = Q_f2[j*(nb01/sizeof(float2)) + i];
const float2 tmp = ncols <= 2 || ic0 + j < ne01 ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
Q_h2[j][i0/WARP_SIZE] = make_half2(scale, scale) * make_half2(tmp.x, tmp.y);
}
}
@ -212,6 +212,10 @@ static __global__ void flash_attn_vec_ext_f16(
#pragma unroll
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
break;
}
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
@ -223,7 +227,7 @@ static __global__ void flash_attn_vec_ext_f16(
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
}
if (parallel_blocks != 1 && tid < ncols) {
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
}
#else

View file

@ -91,7 +91,7 @@ static __global__ void flash_attn_vec_ext_f32(
for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) {
const int i = i0 + threadIdx.x;
Q_h2[j][i0/WARP_SIZE] = Q_f2[j*(nb01/sizeof(float2)) + i];
Q_h2[j][i0/WARP_SIZE] = ncols <= 2 || ic0 + j ? Q_f2[j*(nb01/sizeof(float2)) + i] : make_float2(0.0f, 0.0f);
Q_h2[j][i0/WARP_SIZE].x *= scale;
Q_h2[j][i0/WARP_SIZE].y *= scale;
}
@ -200,6 +200,10 @@ static __global__ void flash_attn_vec_ext_f32(
#pragma unroll
for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) {
if (ncols > 2 && ic0 + j_VKQ >= ne01) {
break;
}
kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x];
kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]);
@ -211,7 +215,7 @@ static __global__ void flash_attn_vec_ext_f32(
dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val;
}
if (parallel_blocks != 1 && tid < ncols) {
if (parallel_blocks != 1 && tid < ncols && (ncols <= 2 || ic0 + tid < ne01)) {
dst_meta[(ic0 + tid)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[tid], kqsum[tid]);
}
}

View file

@ -826,11 +826,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
#if QK_K == 256
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
#else
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
#endif
}
#pragma unroll
@ -933,9 +929,7 @@ template <int mmq_y, int nwarps, bool need_check> static __device__ __forceinlin
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
#if QK_K == 256
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
#endif
}
#pragma unroll

View file

@ -712,7 +712,6 @@ static __device__ __forceinline__ float vec_dot_q3_K_q8_1(
static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#ifndef GGML_QKK_64
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
int v[2];
@ -754,58 +753,11 @@ static __device__ __forceinline__ float vec_dot_q4_K_q8_1(
}
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
#else
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
float sumf_d = 0.0f;
float sumf_m = 0.0f;
uint16_t aux16[2];
const uint8_t * s = (const uint8_t *)aux16;
const uint16_t * a = (const uint16_t *)bq4_K->scales;
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
const float dall = bq4_K->dm[0];
const float dmin = bq4_K->dm[1];
const float d8_1 = __low2float(bq8_1[0].ds);
const float d8_2 = __low2float(bq8_1[1].ds);
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
const int * q4 = (const int *)bq4_K->qs + (iqs/2);
const int v1 = q4[0];
const int v2 = q4[4];
const int dot1 = __dp4a(ui2, v2 & 0x0f0f0f0f, __dp4a(ui1, v1 & 0x0f0f0f0f, 0));
const int dot2 = __dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, __dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
const int dot3 = __dp4a(0x01010101, ui2, __dp4a(0x01010101, ui1, 0));
const int dot4 = __dp4a(0x01010101, ui4, __dp4a(0x01010101, ui3, 0));
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
return dall * sumf_d - dmin * sumf_m;
#else
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
#endif
}
static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#ifndef GGML_QKK_64
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
int vl[2];
@ -847,48 +799,6 @@ static __device__ __forceinline__ float vec_dot_q5_K_q8_1(
}
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
#else
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
const int8_t * s = bq5_K->scales;
const float d = bq5_K->d;
const float d8_1 = __low2half(bq8_1[0].ds);
const float d8_2 = __low2half(bq8_1[1].ds);
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
const int * ql = (const int *)bq5_K->qs + (iqs/2);
const int vl1 = ql[0];
const int vl2 = ql[4];
const int step = 4 * (iqs/2); // 0, 4, 8, 12
const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
const int in = step%8; // 0, 4, 0, 4
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
const float sumf_d = d8_1 * (__dp4a(ui1, v1, 0) * s[0] + __dp4a(ui2, v2, 0) * s[1])
+ d8_2 * (__dp4a(ui3, v3, 0) * s[2] + __dp4a(ui4, v4, 0) * s[3]);
return d * sumf_d;
#else
NO_DEVICE_CODE;
#endif // __CUDA_ARCH__ >= MIN_CC_DP4A
#endif
}
static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
@ -919,7 +829,6 @@ static __device__ __forceinline__ float vec_dot_q6_K_q8_1(
static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#if QK_K == 256
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
#if QR2_XXS == 8
@ -960,15 +869,11 @@ static __device__ __forceinline__ float vec_dot_iq2_xxs_q8_1(
}
return d * (sumi1 + sumi2);
#endif
#else
NO_DEVICE_CODE;
#endif
}
static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
#if QK_K == 256
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
const int ib32 = iqs;
@ -1002,17 +907,12 @@ static __device__ __forceinline__ float vec_dot_iq2_xs_q8_1(
GGML_UNUSED(ksigns64);
NO_DEVICE_CODE;
#endif
#else
GGML_UNUSED(ksigns64);
NO_DEVICE_CODE;
#endif
}
// TODO
static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
#if QK_K == 256
const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
const int ib32 = iqs;
@ -1048,16 +948,11 @@ static __device__ __forceinline__ float vec_dot_iq2_s_q8_1(
GGML_UNUSED(ksigns64);
NO_DEVICE_CODE;
#endif
#else
GGML_UNUSED(ksigns64);
NO_DEVICE_CODE;
#endif
}
static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
#if QK_K == 256
const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
const int ib32 = iqs;
@ -1082,16 +977,12 @@ static __device__ __forceinline__ float vec_dot_iq3_xxs_q8_1(
#else
NO_DEVICE_CODE;
#endif
#else
NO_DEVICE_CODE;
#endif
}
// TODO: don't use lookup table for signs
static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
#if QK_K == 256
const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
const int ib32 = iqs;
@ -1114,14 +1005,10 @@ static __device__ __forceinline__ float vec_dot_iq3_s_q8_1(
#else
NO_DEVICE_CODE;
#endif
#else
NO_DEVICE_CODE;
#endif
}
static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#if QK_K == 256
const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
const int ib32 = iqs;
@ -1149,14 +1036,10 @@ static __device__ __forceinline__ float vec_dot_iq1_s_q8_1(
const float d = d1q * __low2float (bq8_1[ib32].ds);
const float m = d1q * __high2float(bq8_1[ib32].ds);
return d * sumi + m * delta;
#else
NO_DEVICE_CODE;
#endif
}
static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#if QK_K == 256
const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
const int ib32 = iqs;
@ -1192,9 +1075,6 @@ static __device__ __forceinline__ float vec_dot_iq1_m_q8_1(
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
const float d = (float)scale.f16 * __low2float (bq8_1[ib32].ds);
return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
#else
NO_DEVICE_CODE;
#endif
}
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
@ -1250,9 +1130,7 @@ static __device__ __forceinline__ float vec_dot_iq4_nl_q8_1(
static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
const void * __restrict__ vbq, const block_q8_1 * __restrict__ bq8_1, const int & iqs) {
#if QK_K == 256
#if __CUDA_ARCH__ >= MIN_CC_DP4A // lowest compute capability for integer intrinsics
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
@ -1270,10 +1148,6 @@ static __device__ __forceinline__ float vec_dot_iq4_xs_q8_1(
sumi2 = __dp4a(v2, q8[j+4], sumi2);
}
return d * (sumi1 + sumi2);
#else
NO_DEVICE_CODE;
#endif
#else
return vec_dot_iq4_xs_q8_1(vbq, bq8_1, iqs);
#endif

View file

@ -381,10 +381,6 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
// dictionary of preprocessor macros
NSMutableDictionary * prep = [NSMutableDictionary dictionary];
#ifdef GGML_QKK_64
prep[@"GGML_QKK_64"] = @(1);
#endif
MTLCompileOptions* options = [MTLCompileOptions new];
options.preprocessorMacros = prep;
@ -1773,11 +1769,7 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
}
else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, ne11, ne12*ne13) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
@ -2018,12 +2010,7 @@ static enum ggml_status ggml_metal_graph_compute(
{
nth0 = 4;
nth1 = 16;
#if QK_K == 64
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_NL_F32].pipeline;
#else
pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_MUL_MV_ID_IQ4_XS_F32].pipeline;
#endif
} break;
default:
{
@ -2088,11 +2075,7 @@ static enum ggml_status ggml_metal_graph_compute(
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
}
else if (src0t == GGML_TYPE_Q3_K) {
#ifdef GGML_QKK_64
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#else
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
#endif
}
else if (src0t == GGML_TYPE_Q5_K) {
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 3)/4, _ne1, tgz) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];

View file

@ -3386,7 +3386,6 @@ void kernel_mul_mv_q2_K_f32_impl(
const int step = sizeof(block_q2_K) * nb;
#if QK_K == 256
const int ix = tiisg/8; // 0...3
const int it = tiisg%8; // 0...7
const int iq = it/4; // 0 or 1
@ -3438,57 +3437,6 @@ void kernel_mul_mv_q2_K_f32_impl(
y4 += 4 * QK_K;
}
#else
const int ix = tiisg/2; // 0...15
const int it = tiisg%2; // 0...1
device const float * y4 = y + ix * QK_K + 8 * it;
for (int ib = ix; ib < nb; ib += 16) {
float4 sumy = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i+ 0] = y4[i+ 0]; sumy[0] += yl[i+ 0];
yl[i+ 8] = y4[i+16]; sumy[1] += yl[i+ 8];
yl[i+16] = y4[i+32]; sumy[2] += yl[i+16];
yl[i+24] = y4[i+48]; sumy[3] += yl[i+24];
}
device const uint8_t * sc = (device const uint8_t *)x[ib].scales;
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
device const half * dh = &x[ib].d;
for (int row = 0; row < N_DST; row++) {
float4 acc1 = {0.f, 0.f, 0.f, 0.f};
float4 acc2 = {0.f, 0.f, 0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+ 0] * (qs[i/2] & 0x0003);
acc2[0] += yl[i+ 1] * (qs[i/2] & 0x0300);
acc1[1] += yl[i+ 8] * (qs[i/2] & 0x000c);
acc2[1] += yl[i+ 9] * (qs[i/2] & 0x0c00);
acc1[2] += yl[i+16] * (qs[i/2] & 0x0030);
acc2[2] += yl[i+17] * (qs[i/2] & 0x3000);
acc1[3] += yl[i+24] * (qs[i/2] & 0x00c0);
acc2[3] += yl[i+25] * (qs[i/2] & 0xc000);
}
float dall = dh[0];
float dmin = dh[1];
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc2[0]) * (sc[0] & 0xF) * 1.f/ 1.f +
(acc1[1] + 1.f/256.f * acc2[1]) * (sc[1] & 0xF) * 1.f/ 4.f +
(acc1[2] + 1.f/256.f * acc2[2]) * (sc[2] & 0xF) * 1.f/16.f +
(acc1[3] + 1.f/256.f * acc2[3]) * (sc[3] & 0xF) * 1.f/64.f) -
dmin * (sumy[0] * (sc[0] >> 4) + sumy[1] * (sc[1] >> 4) + sumy[2] * (sc[2] >> 4) + sumy[3] * (sc[3] >> 4));
qs += step/2;
sc += step;
dh += step/2;
}
y4 += 16 * QK_K;
}
#endif
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
@ -3526,7 +3474,6 @@ kernel void kernel_mul_mv_q2_K_f32(
kernel_mul_mv_q2_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
}
#if QK_K == 256
void kernel_mul_mv_q3_K_f32_impl(
device const void * src0,
device const float * src1,
@ -3685,84 +3632,6 @@ void kernel_mul_mv_q3_K_f32_impl(
}
}
}
#else
void kernel_mul_mv_q3_K_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne10,
constant int64_t & ne12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
threadgroup int8_t * shared_values [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int nb = ne00/QK_K;
const int64_t r0 = tgpig.x;
const int64_t r1 = tgpig.y;
const int64_t im = tgpig.z;
const int row = 2 * r0 + sgitg;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q3_K * x = (device const block_q3_K *) src0 + row*nb + offset0;
device const float * yy = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
const int ix = tiisg/4;
const int il = 4 * (tiisg%4);// 0, 4, 8, 12
const int iq = il/8; // 0, 0, 1, 1
const int in = il%8; // 0, 4, 0, 4
float2 sum = {0.f, 0.f};
for (int i = ix; i < nb; i += 8) {
const float d_all = (float)(x[i].d);
device const uint16_t * q = (device const uint16_t *)(x[i].qs + il);
device const uint16_t * h = (device const uint16_t *)(x[i].hmask + in);
device const uint16_t * s = (device const uint16_t *)(x[i].scales);
device const float * y = yy + i * QK_K + il;
const float d1 = d_all * ((int32_t)(s[0] & 0x000F) - 8);
const float d2 = d_all * ((int32_t)(s[0] & 0x00F0) - 128) * 1.f/64.f;
const float d3 = d_all * ((int32_t)(s[0] & 0x0F00) - 2048) * 1.f/4096.f;
const float d4 = d_all * ((int32_t)(s[0] & 0xF000) - 32768) * 1.f/262144.f;
for (int l = 0; l < 4; l += 2) {
const uint16_t hm = h[l/2] >> iq;
sum[0] += y[l+ 0] * d1 * ((int32_t)(q[l/2] & 0x0003) - ((hm & 0x0001) ? 0 : 4))
+ y[l+16] * d2 * ((int32_t)(q[l/2] & 0x000c) - ((hm & 0x0004) ? 0 : 16))
+ y[l+32] * d3 * ((int32_t)(q[l/2] & 0x0030) - ((hm & 0x0010) ? 0 : 64))
+ y[l+48] * d4 * ((int32_t)(q[l/2] & 0x00c0) - ((hm & 0x0040) ? 0 : 256));
sum[1] += y[l+ 1] * d1 * ((int32_t)(q[l/2] & 0x0300) - ((hm & 0x0100) ? 0 : 1024))
+ y[l+17] * d2 * ((int32_t)(q[l/2] & 0x0c00) - ((hm & 0x0400) ? 0 : 4096))
+ y[l+33] * d3 * ((int32_t)(q[l/2] & 0x3000) - ((hm & 0x1000) ? 0 : 16384))
+ y[l+49] * d4 * ((int32_t)(q[l/2] & 0xc000) - ((hm & 0x4000) ? 0 : 65536));
}
}
const float sumf = sum[0] + sum[1] * 1.f/256.f;
const float tot = simd_sum(sumf);
if (tiisg == 0) {
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
}
}
#endif
[[host_name("kernel_mul_mv_q3_K_f32")]]
kernel void kernel_mul_mv_q3_K_f32(
@ -3792,7 +3661,6 @@ kernel void kernel_mul_mv_q3_K_f32(
kernel_mul_mv_q3_K_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, nullptr, tgpig, tiisg, sgitg);
}
#if QK_K == 256
void kernel_mul_mv_q4_K_f32_impl(
device const void * src0,
device const float * src1,
@ -3906,103 +3774,6 @@ void kernel_mul_mv_q4_K_f32_impl(
}
}
}
#else
void kernel_mul_mv_q4_K_f32_impl(
device const void * src0,
device const float * src1,
device float * dst,
constant int64_t & ne00,
constant int64_t & ne01,
constant int64_t & ne02,
constant int64_t & ne10,
constant int64_t & ne12,
constant int64_t & ne0,
constant int64_t & ne1,
constant uint & r2,
constant uint & r3,
threadgroup int8_t * shared_values [[threadgroup(0)]],
uint3 tgpig[[threadgroup_position_in_grid]],
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
const int ix = tiisg/4; // 0...7
const int it = tiisg%4; // 0...3
const int nb = ne00/QK_K;
const int r0 = tgpig.x;
const int r1 = tgpig.y;
const int im = tgpig.z;
const int first_row = r0 * N_DST;
const int ib_row = first_row * nb;
const uint i12 = im%ne12;
const uint i13 = im/ne12;
const uint offset0 = (i12/r2)*(nb*ne01) + (i13/r3)*(nb*ne01*ne02);
device const block_q4_K * x = (device const block_q4_K *) src0 + ib_row + offset0;
device const float * y = (device const float *) src1 + r1*ne10 + im*ne00*ne1;
float yl[8];
float yh[8];
float sumf[N_DST]={0.f}, all_sum;
const int step = sizeof(block_q4_K) * nb / 2;
device const float * y4 = y + ix * QK_K + 8 * it;
uint16_t sc16[4];
for (int ib = ix; ib < nb; ib += 8) {
float2 sumy = {0.f, 0.f};
for (int i = 0; i < 8; ++i) {
yl[i] = y4[i+ 0]; sumy[0] += yl[i];
yh[i] = y4[i+32]; sumy[1] += yh[i];
}
device const uint16_t * sc = (device const uint16_t *)x[ib].scales;
device const uint16_t * qs = (device const uint16_t *)x[ib].qs + 4 * it;
device const half * dh = x[ib].d;
for (int row = 0; row < N_DST; row++) {
sc16[0] = sc[0] & 0x000f;
sc16[1] = sc[0] & 0x0f00;
sc16[2] = sc[0] & 0x00f0;
sc16[3] = sc[0] & 0xf000;
float2 acc1 = {0.f, 0.f};
float2 acc2 = {0.f, 0.f};
for (int i = 0; i < 8; i += 2) {
acc1[0] += yl[i+0] * (qs[i/2] & 0x000F);
acc1[1] += yl[i+1] * (qs[i/2] & 0x0F00);
acc2[0] += yh[i+0] * (qs[i/2] & 0x00F0);
acc2[1] += yh[i+1] * (qs[i/2] & 0xF000);
}
float dall = dh[0];
float dmin = dh[1];
sumf[row] += dall * ((acc1[0] + 1.f/256.f * acc1[1]) * sc16[0] +
(acc2[0] + 1.f/256.f * acc2[1]) * sc16[1] * 1.f/4096.f) -
dmin * 1.f/16.f * (sumy[0] * sc16[2] + sumy[1] * sc16[3] * 1.f/256.f);
qs += step;
sc += step;
dh += step;
}
y4 += 8 * QK_K;
}
for (int row = 0; row < N_DST; ++row) {
all_sum = simd_sum(sumf[row]);
if (tiisg == 0) {
dst[r1*ne0 + im*ne0*ne1 + first_row + row] = all_sum;
}
}
}
#endif
[[host_name("kernel_mul_mv_q4_K_f32")]]
kernel void kernel_mul_mv_q4_K_f32(
@ -4070,8 +3841,6 @@ void kernel_mul_mv_q5_K_f32_impl(
const int step = sizeof(block_q5_K) * nb;
#if QK_K == 256
#
float yl[16], yh[16];
const uint16_t kmask1 = 0x3f3f;
@ -4154,54 +3923,6 @@ void kernel_mul_mv_q5_K_f32_impl(
y1 += 4 * QK_K;
}
#else
float yl[8], yh[8];
const int il = 4 * (tiisg/8); // 0, 4, 8, 12
const int ix = tiisg%8;
const int iq = il/8; // 0, 0, 1, 1
const int in = il%8; // 0, 4, 0, 4
device const float * y = yy + ix*QK_K + il;
for (int i = ix; i < nb; i += 8) {
for (int l = 0; l < 4; ++l) {
yl[l+0] = y[l+ 0];
yl[l+4] = y[l+16];
yh[l+0] = y[l+32];
yh[l+4] = y[l+48];
}
device const half * dh = &x[i].d;
device const uint8_t * q = x[i].qs + il;
device const uint8_t * h = x[i].qh + in;
device const int8_t * s = x[i].scales;
for (int row = 0; row < 2; ++row) {
const float d = dh[0];
float2 acc = {0.f, 0.f};
for (int l = 0; l < 4; ++l) {
const uint8_t hl = h[l] >> iq;
acc[0] += yl[l+0] * s[0] * ((int16_t)(q[l+ 0] & 0x0F) - (hl & 0x01 ? 0 : 16))
+ yl[l+4] * s[1] * ((int16_t)(q[l+16] & 0x0F) - (hl & 0x04 ? 0 : 16));
acc[1] += yh[l+0] * s[2] * ((int16_t)(q[l+ 0] & 0xF0) - (hl & 0x10 ? 0 : 256))
+ yh[l+4] * s[3] * ((int16_t)(q[l+16] & 0xF0) - (hl & 0x40 ? 0 : 256));
}
sumf[row] += d * (acc[0] + 1.f/16.f * acc[1]);
q += step;
h += step;
s += step;
dh += step/2;
}
y += 8 * QK_K;
}
#endif
for (int row = 0; row < 2; ++row) {
const float tot = simd_sum(sumf[row]);
@ -4280,7 +4001,6 @@ void kernel_mul_mv_q6_K_f32_impl(
float sumf = 0;
#if QK_K == 256
const int tid = tiisg/2;
const int ix = tiisg%2;
const int ip = tid/8; // 0 or 1
@ -4316,30 +4036,6 @@ void kernel_mul_mv_q6_K_f32_impl(
}
#else
const int ix = tiisg/4;
const int il = 4*(tiisg%4);
for (int i = ix; i < nb; i += 8) {
device const float * y = yy + i * QK_K + il;
device const uint8_t * ql = x[i].ql + il;
device const uint8_t * qh = x[i].qh + il;
device const int8_t * s = x[i].scales;
const float d = x[i].d;
float4 sums = {0.f, 0.f, 0.f, 0.f};
for (int l = 0; l < 4; ++l) {
sums[0] += y[l+ 0] * ((int8_t)((ql[l+ 0] & 0xF) | ((qh[l] & kmask1) << 4)) - 32);
sums[1] += y[l+16] * ((int8_t)((ql[l+16] & 0xF) | ((qh[l] & kmask2) << 2)) - 32);
sums[2] += y[l+32] * ((int8_t)((ql[l+ 0] >> 4) | ((qh[l] & kmask3) >> 0)) - 32);
sums[3] += y[l+48] * ((int8_t)((ql[l+16] >> 4) | ((qh[l] & kmask4) >> 2)) - 32);
}
sumf += d * (sums[0] * s[0] + sums[1] * s[1] + sums[2] * s[2] + sums[3] * s[3]);
}
#endif
const float tot = simd_sum(sumf);
if (tiisg == 0) {
dst[r1*ne0 + im*ne0*ne1 + row] = tot;
@ -5173,9 +4869,7 @@ void kernel_mul_mv_iq1_m_f32_impl(
device const float * y4 = y + 32 * ix;
#if QK_K != 64
iq1m_scale_t scale;
#endif
for (int ib32 = ix; ib32 < nb32; ib32 += 32) {
@ -5196,10 +4890,7 @@ void kernel_mul_mv_iq1_m_f32_impl(
device const uint16_t * sc = (device const uint16_t *)xr->scales;
for (int row = 0; row < N_DST; row++) {
#if QK_K != 64
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
#endif
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
constant uint8_t * grid2 = (constant uint8_t *)(iq1s_grid_gpu + (qs[1] | ((qh[0] << 4) & 0x700)));
@ -5215,14 +4906,9 @@ void kernel_mul_mv_iq1_m_f32_impl(
}
const float delta1 = sumy[0] * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[1] * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
const float delta2 = sumy[2] * (qh[1] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA) + sumy[3] * (qh[1] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
#if QK_K == 64
const float d = (float) *((device const half *)(sc - 1));
sumf[row] += d * ((sum[0] + delta1) * (2*((sc[0] >> (8*(ib%2)+0)) & 0xf) + 1) +
(sum[1] + delta2) * (2*((sc[0] >> (8*(ib%2)+4)) & 0xf) + 1));
#else
sumf[row] += (float)scale.f16 * ((sum[0] + delta1) * (2*((sc[ib/2] >> (6*(ib%2)+0)) & 7) + 1) +
(sum[1] + delta2) * (2*((sc[ib/2] >> (6*(ib%2)+3)) & 7) + 1));
#endif
sc += nb*sizeof(block_iq1_m)/2;
qs += nb*sizeof(block_iq1_m);
@ -5334,7 +5020,6 @@ void kernel_mul_mv_iq4_nl_f32_impl(
}
}
#if QK_K != 64
void kernel_mul_mv_iq4_xs_f32_impl(
device const void * src0,
device const float * src1,
@ -5429,7 +5114,6 @@ void kernel_mul_mv_iq4_xs_f32_impl(
}
}
}
#endif
[[host_name("kernel_mul_mv_iq1_s_f32")]]
kernel void kernel_mul_mv_iq1_s_f32(
@ -5542,11 +5226,7 @@ kernel void kernel_mul_mv_iq4_xs_f32(
uint tiisg[[thread_index_in_simdgroup]],
uint sgitg[[simdgroup_index_in_threadgroup]]) {
#if QK_K == 64
kernel_mul_mv_iq4_nl_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
#else
kernel_mul_mv_iq4_xs_f32_impl(src0, src1, dst, ne00, ne01, ne02, ne10, ne12, ne0, ne1, r2, r3, shared_values, tgpig, tiisg, sgitg);
#endif
}
//============================= templates and their specializations =============================
@ -5672,10 +5352,9 @@ void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg
float dl, ml;
uint8_t sc = xb->scales[il];
#if QK_K == 256
q = q + 32*(il/8) + 16*(il&1);
il = (il/2)%4;
#endif
half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
uchar mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
dl = d * (sc & 0xF) * coef, ml = min * (sc >> 4);
@ -5691,7 +5370,6 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
device const uint8_t * h = (device const uint8_t *)xb->hmask;
device const int8_t * scales = (device const int8_t *)xb->scales;
#if QK_K == 256
q = q + 32 * (il/8) + 16 * (il&1);
h = h + 16 * (il&1);
uint8_t m = 1 << (il/2);
@ -5712,17 +5390,6 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
}
#else
float kcoef = il&1 ? 1.f/16.f : 1.f;
uint16_t kmask = il&1 ? 0xF0 : 0x0F;
float dl = d_all * ((scales[il/2] & kmask) * kcoef - 8);
float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
uint8_t m = 1<<(il*2);
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i%8] & (m * (1 + i/8))) ? 0 : 4.f/coef));
}
#endif
}
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
@ -5734,7 +5401,6 @@ template <typename type4x4>
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
device const uchar * q = xb->qs;
#if QK_K == 256
short is = (il/4) * 2;
q = q + (il/4) * 32 + 16 * (il&1);
il = il & 3;
@ -5743,16 +5409,7 @@ void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg
const float min = xb->dmin;
const float dl = d * sc[0];
const float ml = min * sc[1];
#else
(void) get_scale_min_k4_just2;
q = q + 16 * (il&1);
device const uint8_t * s = xb->scales;
device const half2 * dh = (device const half2 *)xb->d;
const float2 d = (float2)dh[0];
const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
#endif
const ushort mask = il<2 ? 0x0F : 0xF0;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
@ -5764,7 +5421,6 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
device const uint8_t * q = xb->qs;
device const uint8_t * qh = xb->qh;
#if QK_K == 256
short is = (il/4) * 2;
q = q + 32 * (il/4) + 16 * (il&1);
qh = qh + 16 * (il&1);
@ -5781,17 +5437,6 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
}
#else
q = q + 16 * (il&1);
device const int8_t * s = xb->scales;
const float dl = xb->d * s[il];
uint8_t m = 1<<(il*2);
const float coef = il<2 ? 1.f : 1.f/16.f;
const ushort mask = il<2 ? 0x0F : 0xF0;
for (int i = 0; i < 16; ++i) {
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - (qh[i%8] & (m*(1+i/8)) ? 0.f : 16.f/coef));
}
#endif
}
template <typename type4x4>
@ -5801,15 +5446,11 @@ void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg
device const uint8_t * qh = (device const uint8_t *)xb->qh;
device const int8_t * scales = (device const int8_t *)xb->scales;
#if QK_K == 256
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
qh = qh + 32*(il/8) + 16*(il&1);
float sc = scales[(il%2) + 2 * ((il/2))];
il = (il/2) & 3;
#else
ql = ql + 16 * (il&1);
float sc = scales[il];
#endif
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
const float coef = il>1 ? 1.f/16.f : 1.f;
@ -5966,20 +5607,15 @@ void dequantize_iq1_m(device const block_iq1_m * xb, short il, thread type4x4 &
const int ib32 = il/2;
il = il%2;
device const uint16_t * sc = (device const uint16_t *)xb->scales;
#if QK_K == 64
const float d = xb->d;
#else
iq1m_scale_t scale;
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
const float d = scale.f16;
#endif
device const uint8_t * qs = xb->qs + 4*ib32 + 2*il;
device const uint8_t * qh = xb->qh + 2*ib32 + il;
#if QK_K == 64
const float dl = d * (2*((sc[ib32/2] >> (8*(ib32%2)+4*il)) & 0xf) + 1);
#else
const float dl = d * (2*((sc[ib32/2] >> (6*(ib32%2)+3*il)) & 7) + 1);
#endif
const float ml1 = dl * (qh[0] & 0x08 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
const float ml2 = dl * (qh[0] & 0x80 ? -1 - IQ1M_DELTA : -1 + IQ1M_DELTA);
constant uint8_t * grid1 = (constant uint8_t *)(iq1s_grid_gpu + (qs[0] | ((qh[0] << 8) & 0x700)));
@ -6009,9 +5645,6 @@ void dequantize_iq4_nl(device const block_iq4_nl * xb, short il, thread type4x4
template <typename type4x4>
void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4 & reg) {
#if QK_K == 64
dequantize_iq4_nl(xb, il, reg);
#else
// il is 0...15 for QK_K = 256 => index of block of 32 is il/2
const int ib32 = il/2;
il = il%2;
@ -6028,7 +5661,6 @@ void dequantize_iq4_xs(device const block_iq4_xs * xb, short il, thread type4x4
reg[i][2] = d * kvalues_iq4nl_f[q8[2]];
reg[i][3] = d * kvalues_iq4nl_f[q8[3]];
}
#endif
}
template<typename block_q, short nl, void (*dequantize_func)(device const block_q *, short, thread float4x4 &)>
@ -6533,11 +6165,7 @@ kernel void kernel_mul_mm_id(
sgitg);
}
#if QK_K == 256
#define QK_NL 16
#else
#define QK_NL 4
#endif
//
// get rows
@ -6577,11 +6205,7 @@ template [[host_name("kernel_get_rows_iq2_s")]] kernel get_rows_t kernel_get_r
template [[host_name("kernel_get_rows_iq1_s")]] kernel get_rows_t kernel_get_rows<block_iq1_s, QK_NL, dequantize_iq1_s>;
template [[host_name("kernel_get_rows_iq1_m")]] kernel get_rows_t kernel_get_rows<block_iq1_m, QK_NL, dequantize_iq1_m>;
template [[host_name("kernel_get_rows_iq4_nl")]] kernel get_rows_t kernel_get_rows<block_iq4_nl, 2, dequantize_iq4_nl>;
#if QK_K == 64
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, 2, dequantize_iq4_xs>;
#else
template [[host_name("kernel_get_rows_iq4_xs")]] kernel get_rows_t kernel_get_rows<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
#endif
//
// matrix-matrix multiplication
@ -6609,11 +6233,7 @@ template [[host_name("kernel_mul_mm_iq2_s_f32")]] kernel mat_mm_t kernel_mul_m
template [[host_name("kernel_mul_mm_iq1_s_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_s, QK_NL, dequantize_iq1_s>;
template [[host_name("kernel_mul_mm_iq1_m_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq1_m, QK_NL, dequantize_iq1_m>;
template [[host_name("kernel_mul_mm_iq4_nl_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_nl>;
#if QK_K == 64
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_nl, 2, dequantize_iq4_xs>;
#else
template [[host_name("kernel_mul_mm_iq4_xs_f32")]] kernel mat_mm_t kernel_mul_mm<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
#endif
//
// indirect matrix-matrix multiplication
@ -6641,11 +6261,7 @@ template [[host_name("kernel_mul_mm_id_iq2_s_f32")]] kernel mat_mm_id_t kernel
template [[host_name("kernel_mul_mm_id_iq1_s_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_s, QK_NL, dequantize_iq1_s>;
template [[host_name("kernel_mul_mm_id_iq1_m_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq1_m, QK_NL, dequantize_iq1_m>;
template [[host_name("kernel_mul_mm_id_iq4_nl_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_nl, 2, dequantize_iq4_nl>;
#if QK_K == 64
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, 2, dequantize_iq4_xs>;
#else
template [[host_name("kernel_mul_mm_id_iq4_xs_f32")]] kernel mat_mm_id_t kernel_mul_mm_id<block_iq4_xs, QK_NL, dequantize_iq4_xs>;
#endif
//
// matrix-vector multiplication
@ -6854,7 +6470,5 @@ template [[host_name("kernel_mul_mv_id_iq3_xxs_f32")]] kernel kernel_mul_mv_id_t
template [[host_name("kernel_mul_mv_id_iq3_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq3_s_f32_impl>>;
template [[host_name("kernel_mul_mv_id_iq2_s_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq2_s_f32_impl>>;
template [[host_name("kernel_mul_mv_id_iq4_nl_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_nl_f32_impl>>;
#if QK_K != 64
template [[host_name("kernel_mul_mv_id_iq4_xs_f32")]] kernel kernel_mul_mv_id_t kernel_mul_mv_id<mmv_fn<kernel_mul_mv_iq4_xs_f32_impl>>;
#endif

View file

@ -1,4 +1,4 @@
#include "ggml.h"
#include "ggml.h"
#include "ggml-opencl.h"
#include "ggml-backend-impl.h"

File diff suppressed because it is too large Load diff

View file

@ -4197,7 +4197,6 @@ static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restri
const block_q2_K * x = (const block_q2_K *) vx;
const int tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int n = tid/32;
const int l = tid - 32*n;
const int is = 8*n + l/16;
@ -4211,18 +4210,6 @@ static void dequantize_block_q2_K(const void * __restrict__ vx, dst_t * __restri
y[l+32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 2) & 3) - dmin * (x[i].scales[is+2] >> 4);
y[l+64] = dall * (x[i].scales[is+4] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+4] >> 4);
y[l+96] = dall * (x[i].scales[is+6] & 0xF) * ((q >> 6) & 3) - dmin * (x[i].scales[is+6] >> 4);
#else
const int is = tid/16; // 0 or 1
const int il = tid%16; // 0...15
const uint8_t q = x[i].qs[il] >> (2*is);
dst_t * y = yy + i*QK_K + 16*is + il;
float dall = x[i].dm[0];
float dmin = x[i].dm[1];
y[ 0] = dall * (x[i].scales[is+0] & 0xF) * ((q >> 0) & 3) - dmin * (x[i].scales[is+0] >> 4);
y[32] = dall * (x[i].scales[is+2] & 0xF) * ((q >> 4) & 3) - dmin * (x[i].scales[is+2] >> 4);
#endif
}
template<typename dst_t>
@ -4232,7 +4219,6 @@ static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restri
const int i = item_ct1.get_group(2);
const block_q3_K * x = (const block_q3_K *) vx;
#if QK_K == 256
const int r = item_ct1.get_local_id(2) / 4;
const int tid = r/2;
const int is0 = r%2;
@ -4256,31 +4242,8 @@ static void dequantize_block_q3_K(const void * __restrict__ vx, dst_t * __restri
const uint8_t * hm = x[i].hmask;
for (int l = l0; l < l0+4; ++l) y[l] = dl * ((int8_t)((q[l] >> shift) & 3) - ((hm[l] & m) ? 0 : 4));
#else
const int tid = item_ct1.get_local_id(2);
const int is = tid/16; // 0 or 1
const int il = tid%16; // 0...15
const int im = il/8; // 0...1
const int in = il%8; // 0...7
dst_t * y = yy + i*QK_K + 16*is + il;
const uint8_t q = x[i].qs[il] >> (2*is);
const uint8_t h = x[i].hmask[in] >> (2*is + im);
const float d = (float)x[i].d;
if (is == 0) {
y[ 0] = d * ((x[i].scales[0] & 0xF) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
y[32] = d * ((x[i].scales[1] & 0xF) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
} else {
y[ 0] = d * ((x[i].scales[0] >> 4) - 8) * ((int8_t)((q >> 0) & 3) - ((h >> 0) & 1 ? 0 : 4));
y[32] = d * ((x[i].scales[1] >> 4) - 8) * ((int8_t)((q >> 4) & 3) - ((h >> 4) & 1 ? 0 : 4));
}
#endif
}
#if QK_K == 256
static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8_t & m) {
if (j < 4) {
d = q[j] & 63; m = q[j + 4] & 63;
@ -4289,7 +4252,6 @@ static inline void get_scale_min_k4(int j, const uint8_t * q, uint8_t & d, uint8
m = (q[j+4] >> 4) | ((q[j-0] >> 6) << 4);
}
}
#endif
template<typename dst_t>
static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restrict__ yy,
@ -4298,7 +4260,6 @@ static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restri
const int i = item_ct1.get_group(2);
#if QK_K == 256
// assume 32 threads
const int tid = item_ct1.get_local_id(2);
const int il = tid/8;
@ -4322,15 +4283,6 @@ static void dequantize_block_q4_K(const void * __restrict__ vx, dst_t * __restri
y[l + 0] = d1 * (q[l] & 0xF) - m1;
y[l +32] = d2 * (q[l] >> 4) - m2;
}
#else
const int tid = item_ct1.get_local_id(2);
const uint8_t * q = x[i].qs;
dst_t * y = yy + i*QK_K;
const float d = (float)x[i].dm[0];
const float m = (float)x[i].dm[1];
y[tid+ 0] = d * (x[i].scales[0] & 0xF) * (q[tid] & 0xF) - m * (x[i].scales[0] >> 4);
y[tid+32] = d * (x[i].scales[1] & 0xF) * (q[tid] >> 4) - m * (x[i].scales[1] >> 4);
#endif
}
template<typename dst_t>
@ -4340,7 +4292,6 @@ static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restri
const int i = item_ct1.get_group(2);
#if QK_K == 256
// assume 64 threads - this is very slightly better than the one below
const int tid = item_ct1.get_local_id(2);
const int il = tid/16; // il is in 0...3
@ -4367,18 +4318,6 @@ static void dequantize_block_q5_K(const void * __restrict__ vx, dst_t * __restri
hm <<= 1;
y[32] = d2 * ((ql[ 0] >> 4) + (qh[ 0] & hm ? 16 : 0)) - m2;
y[33] = d2 * ((ql[ 1] >> 4) + (qh[ 1] & hm ? 16 : 0)) - m2;
#else
const int tid = item_ct1.get_local_id(2);
const uint8_t q = x[i].qs[tid];
const int im = tid/8; // 0...3
const int in = tid%8; // 0...7
const int is = tid/16; // 0 or 1
const uint8_t h = x[i].qh[in] >> im;
const float d = x[i].d;
dst_t * y = yy + i*QK_K + tid;
y[ 0] = d * x[i].scales[is+0] * ((q & 0xF) - ((h >> 0) & 1 ? 0 : 16));
y[32] = d * x[i].scales[is+2] * ((q >> 4) - ((h >> 4) & 1 ? 0 : 16));
#endif
}
template<typename dst_t>
@ -4387,7 +4326,6 @@ static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restri
const block_q6_K * x = (const block_q6_K *) vx;
const int i = item_ct1.get_group(2);
#if QK_K == 256
// assume 64 threads - this is very slightly better than the one below
const int tid = item_ct1.get_local_id(2);
@ -4407,24 +4345,6 @@ static void dequantize_block_q6_K(const void * __restrict__ vx, dst_t * __restri
y[32] = d * sc[2] * ((int8_t)((ql[32] & 0xF) | (((qh >> 2) & 3) << 4)) - 32);
y[64] = d * sc[4] * ((int8_t)((ql[ 0] >> 4) | (((qh >> 4) & 3) << 4)) - 32);
y[96] = d * sc[6] * ((int8_t)((ql[32] >> 4) | (((qh >> 6) & 3) << 4)) - 32);
#else
// assume 32 threads
const int tid = item_ct1.get_local_id(2);
const int ip = tid/16; // 0 or 1
const int il = tid - 16*ip; // 0...15
dst_t * y = yy + i*QK_K + 16*ip + il;
const float d = x[i].d;
const uint8_t ql = x[i].ql[16*ip + il];
const uint8_t qh = x[i].qh[il] >> (2*ip);
const int8_t * sc = x[i].scales;
y[ 0] = d * sc[ip+0] * ((int8_t)((ql & 0xF) | (((qh >> 0) & 3) << 4)) - 32);
y[32] = d * sc[ip+2] * ((int8_t)((ql >> 4) | (((qh >> 4) & 3) << 4)) - 32);
#endif
}
template<typename dst_t>
@ -4438,7 +4358,6 @@ static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __res
const block_iq2_xxs * x = (const block_iq2_xxs *) vx;
const int tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -4449,10 +4368,6 @@ static void dequantize_block_iq2_xxs(const void * __restrict__ vx, dst_t * __res
const float d = (float)x[i].d * (0.5f + (aux32 >> 28)) * 0.25f;
const uint8_t signs = ksigns_iq2xs_ptr[(aux32 >> 7*il) & 127];
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs_ptr[j] ? -1.f : 1.f);
#else
assert(false);
#endif
}
template<typename dst_t>
@ -4466,7 +4381,6 @@ static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __rest
const block_iq2_xs * x = (const block_iq2_xs *) vx;
const int tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -4475,10 +4389,6 @@ static void dequantize_block_iq2_xs(const void * __restrict__ vx, dst_t * __rest
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
const uint8_t signs = ksigns_iq2xs[q2[il] >> 9];
for (int j = 0; j < 8; ++j) y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
#else
assert(false);
#endif
}
template <typename dst_t>
@ -4490,7 +4400,6 @@ dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
const block_iq2_s * x = (const block_iq2_s *) vx;
const int tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -4498,13 +4407,9 @@ dequantize_block_iq2_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
const float d = (float)x[i].d * (0.5f + ((x[i].scales[ib] >> 4*(il/2)) & 0xf)) * 0.25f;
const uint8_t signs = x[i].qs[QK_K/8+4*ib+il];
#pragma unroll
for (int j = 0; j < 8; ++j)
for (int j = 0; j < 8; ++j) {
y[j] = d * grid[j] * (signs & kmask_iq2xs[j] ? -1.f : 1.f);
#else
assert(false);
#endif
}
}
template<typename dst_t>
@ -4518,7 +4423,6 @@ static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __res
const block_iq3_xxs * x = (const block_iq3_xxs *) vx;
const int tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -4533,10 +4437,6 @@ static void dequantize_block_iq3_xxs(const void * __restrict__ vx, dst_t * __res
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
#else
assert(false);
#endif
}
template <typename dst_t>
@ -4549,7 +4449,6 @@ dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
const block_iq3_s * x = (const block_iq3_s *) vx;
const int tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -4563,10 +4462,6 @@ dequantize_block_iq3_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
y[j+0] = d * grid1[j] * (signs & kmask_iq2xs[j+0] ? -1.f : 1.f);
y[j+4] = d * grid2[j] * (signs & kmask_iq2xs[j+4] ? -1.f : 1.f);
}
#else
assert(false);
#endif
}
template <typename dst_t>
@ -4579,7 +4474,6 @@ dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
const block_iq1_s * x = (const block_iq1_s *) vx;
const int tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -4593,10 +4487,6 @@ dequantize_block_iq1_s(const void *__restrict__ vx, dst_t *__restrict__ yy,
for (int j = 0; j < 8; ++j) {
y[j] = d * (q[j] + delta);
}
#else
assert(false);
#endif
}
template <typename dst_t>
@ -4609,7 +4499,6 @@ dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy,
const block_iq1_m * x = (const block_iq1_m *) vx;
const int tid = item_ct1.get_local_id(2);
#if QK_K == 256
const int il = tid/8; // 0...3
const int ib = tid%8; // 0...7
dst_t * y = yy + i*QK_K + 32*ib + 8*il;
@ -4627,10 +4516,6 @@ dequantize_block_iq1_m(const void *__restrict__ vx, dst_t *__restrict__ yy,
for (int j = 0; j < 8; ++j) {
y[j] = d * (q[j] + delta);
}
#else
assert(false);
#endif
}
template <typename dst_t>
@ -4704,7 +4589,6 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
float tmp = 0; // partial sum for thread in warp
#if QK_K == 256
const int tid =
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...15
const int ix =
@ -4755,42 +4639,6 @@ static void dequantize_mul_mat_vec_q2_k(const void *__restrict__ vx,
tmp += dall * sum1 - dmin * sum2;
}
#else
const int tid = item_ct1.get_local_id(2) /
(2 * K_QUANTS_PER_ITERATION); // 0...15 or 0...7
const int ix = item_ct1.get_local_id(2) %
(2 * K_QUANTS_PER_ITERATION); // 0....1 or 0...3
const int offset = tid * K_QUANTS_PER_ITERATION;
uint32_t uaux[2];
const uint8_t * d = (const uint8_t *)uaux;
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + offset;
const uint8_t * q = x[i].qs + offset;
const uint32_t * s = (const uint32_t *)x[i].scales;
uaux[0] = s[0] & 0x0f0f0f0f;
uaux[1] = (s[0] >> 4) & 0x0f0f0f0f;
const sycl::float2 dall =
x[i].dm.convert<float, sycl::rounding_mode::automatic>();
float sum1 = 0, sum2 = 0;
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
const uint8_t ql = q[l];
sum1 += y[l+ 0] * d[0] * ((ql >> 0) & 3)
+ y[l+16] * d[1] * ((ql >> 2) & 3)
+ y[l+32] * d[2] * ((ql >> 4) & 3)
+ y[l+48] * d[3] * ((ql >> 6) & 3);
sum2 += y[l+0] * d[4] + y[l+16] * d[5] + y[l+32] * d[6] + y[l+48] * d[7];
}
tmp += dall.x() * sum1 - dall.y() * sum2;
}
#endif
// sum up partial sums and write back result
#pragma unroll
@ -4828,8 +4676,6 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
float tmp = 0; // partial sum for thread in warp
#if QK_K == 256
const uint16_t kmask1 = 0x0303;
const uint16_t kmask2 = 0x0f0f;
@ -4882,34 +4728,6 @@ static void dequantize_mul_mat_vec_q3_k(const void *__restrict__ vx,
tmp += d * sum;
}
#else
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15 or 0...7
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); // 0....1 or 0...3
const int offset = tid * K_QUANTS_PER_ITERATION; // 0...15 or 0...14
const int in = offset/8; // 0 or 1
const int im = offset%8; // 0...7
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + offset;
const uint8_t * q = x[i].qs + offset;
const uint8_t * s = x[i].scales;
const float dall = (float)x[i].d;
float sum = 0;
for (int l = 0; l < K_QUANTS_PER_ITERATION; ++l) {
const uint8_t hl = x[i].hmask[im+l] >> in;
const uint8_t ql = q[l];
sum += y[l+ 0] * dall * ((s[0] & 0xF) - 8) * ((int8_t)((ql >> 0) & 3) - ((hl >> 0) & 1 ? 0 : 4))
+ y[l+16] * dall * ((s[0] >> 4) - 8) * ((int8_t)((ql >> 2) & 3) - ((hl >> 2) & 1 ? 0 : 4))
+ y[l+32] * dall * ((s[1] & 0xF) - 8) * ((int8_t)((ql >> 4) & 3) - ((hl >> 4) & 1 ? 0 : 4))
+ y[l+48] * dall * ((s[1] >> 4) - 8) * ((int8_t)((ql >> 6) & 3) - ((hl >> 6) & 1 ? 0 : 4));
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
#pragma unroll
@ -4944,7 +4762,6 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
const block_q4_K * x = (const block_q4_K *)vx + ib0;
#if QK_K == 256
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
@ -5033,36 +4850,6 @@ static void dequantize_mul_mat_vec_q4_k(const void *__restrict__ vx,
#endif
}
#else
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);
const int step = tid * K_QUANTS_PER_ITERATION;
uint16_t aux16[2];
const uint8_t * s = (const uint8_t *)aux16;
float tmp = 0;
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const uint8_t * q = x[i].qs + step;
const float * y = yy + i*QK_K + step;
const uint16_t * a = (const uint16_t *)x[i].scales;
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
const float d = (float)x[i].dm[0];
const float m = (float)x[i].dm[1];
float sum = 0.f;
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
sum += y[j+ 0] * (d * s[0] * (q[j+ 0] & 0xF) - m * s[2])
+ y[j+16] * (d * s[0] * (q[j+16] & 0xF) - m * s[2])
+ y[j+32] * (d * s[1] * (q[j+ 0] >> 4) - m * s[3])
+ y[j+48] * (d * s[1] * (q[j+16] >> 4) - m * s[3]);
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
#pragma unroll
@ -5097,7 +4884,6 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
float tmp = 0; // partial sum for thread in warp
#if QK_K == 256
const uint16_t kmask1 = 0x3f3f;
const uint16_t kmask2 = 0x0f0f;
const uint16_t kmask3 = 0xc0c0;
@ -5174,30 +4960,6 @@ static void dequantize_mul_mat_vec_q5_k(const void *__restrict__ vx,
dmin * smin;
}
#else
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...15
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION);
const int step = tid * K_QUANTS_PER_ITERATION;
const int im = step/8;
const int in = step%8;
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const uint8_t * q = x[i].qs + step;
const int8_t * s = x[i].scales;
const float * y = yy + i*QK_K + step;
const float d = x[i].d;
float sum = 0.f;
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
const uint8_t h = x[i].qh[in+j] >> im;
sum += y[j+ 0] * d * s[0] * ((q[j+ 0] & 0xF) - ((h >> 0) & 1 ? 0 : 16))
+ y[j+16] * d * s[1] * ((q[j+16] & 0xF) - ((h >> 2) & 1 ? 0 : 16))
+ y[j+32] * d * s[2] * ((q[j+ 0] >> 4) - ((h >> 4) & 1 ? 0 : 16))
+ y[j+48] * d * s[3] * ((q[j+16] >> 4) - ((h >> 6) & 1 ? 0 : 16));
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
@ -5224,8 +4986,6 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa
const block_q6_K * x = (const block_q6_K *)vx + ib0;
#if QK_K == 256
const int tid =
item_ct1.get_local_id(2) / K_QUANTS_PER_ITERATION; // 0...31 or 0...16
const int ix =
@ -5282,37 +5042,6 @@ static void dequantize_mul_mat_vec_q6_k(const void * __restrict__ vx, const floa
}
#else
const int tid = item_ct1.get_local_id(2)/(2*K_QUANTS_PER_ITERATION); // 0...7
const int ix = item_ct1.get_local_id(2)%(2*K_QUANTS_PER_ITERATION); // 0...3
const int step = tid * K_QUANTS_PER_ITERATION;
float tmp = 0; // partial sum for thread in warp
for (int i = ix; i < num_blocks_per_row; i += 2*K_QUANTS_PER_ITERATION) {
const float * y = yy + i * QK_K + step;
const uint8_t * ql = x[i].ql + step;
const uint8_t * qh = x[i].qh + step;
const int8_t * s = x[i].scales;
const float d = x[i+0].d;
float sum = 0;
for (int j = 0; j < K_QUANTS_PER_ITERATION; ++j) {
sum += y[j+ 0] * s[0] * d * ((int8_t)((ql[j+ 0] & 0xF) | ((qh[j] & 0x03) << 4)) - 32)
+ y[j+16] * s[1] * d * ((int8_t)((ql[j+16] & 0xF) | ((qh[j] & 0x0c) << 2)) - 32)
+ y[j+32] * s[2] * d * ((int8_t)((ql[j+ 0] >> 4) | ((qh[j] & 0x30) >> 0)) - 32)
+ y[j+48] * s[3] * d * ((int8_t)((ql[j+16] >> 4) | ((qh[j] & 0xc0) >> 2)) - 32);
}
tmp += sum;
}
#endif
// sum up partial sums and write back result
#pragma unroll
for (int mask = 16; mask > 0; mask >>= 1) {
@ -6857,7 +6586,6 @@ static __dpct_inline__ float
vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
#ifndef GGML_QKK_64
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
int v[2];
@ -6899,52 +6627,6 @@ vec_dot_q4_K_q8_1(const void *__restrict__ vbq,
}
return vec_dot_q4_K_q8_1_impl_vmmq(v, u, sc, m, bq4_K->dm, d8);
#else
#if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
const block_q4_K * bq4_K = (const block_q4_K *) vbq;
float sumf_d = 0.0f;
float sumf_m = 0.0f;
uint16_t aux16[2];
const uint8_t * s = (const uint8_t *)aux16;
const uint16_t * a = (const uint16_t *)bq4_K->scales;
aux16[0] = a[0] & 0x0f0f;
aux16[1] = (a[0] >> 4) & 0x0f0f;
const float dall = bq4_K->dm[0];
const float dmin = bq4_K->dm[1];
const float d8_1 = bq8_1[0].ds[0];
const float d8_2 = bq8_1[1].ds[1];
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
const int * q4 = (const int *)bq4_K->qs + (iqs/2);
const int v1 = q4[0];
const int v2 = q4[4];
const int dot1 = dpct::dp4a(ui2, v2 & 0x0f0f0f0f, dpct::dp4a(ui1, v1 & 0x0f0f0f0f, 0));
const int dot2 = dpct::dp4a(ui4, (v2 >> 4) & 0x0f0f0f0f, dpct::dp4a(ui3, (v1 >> 4) & 0x0f0f0f0f, 0));
const int dot3 = dpct::dp4a(0x01010101, ui2, dpct::dp4a(0x01010101, ui1, 0));
const int dot4 = dpct::dp4a(0x01010101, ui4, dpct::dp4a(0x01010101, ui3, 0));
sumf_d += d8_1 * (dot1 * s[0]) + d8_2 * (dot2 * s[1]);
sumf_m += d8_1 * (dot3 * s[2]) + d8_2 * (dot4 * s[3]);
return dall * sumf_d - dmin * sumf_m;
#else
bad_arch();
#endif // __SYCL_ARCH__ >= VER_4VEC
#endif
}
template <int mmq_y>
@ -7003,11 +6685,7 @@ load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql,
const block_q4_K * bxi = bx0 + i*blocks_per_row + kbxd;
#if QK_K == 256
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = bxi->dm;
#else
x_dm[i * (WARP_SIZE/QI4_K) + i / QI4_K + kbxd] = {bxi->dm[0], bxi->dm[1]};
#endif
}
#pragma unroll
@ -7050,7 +6728,6 @@ static __dpct_inline__ float
vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
#ifndef GGML_QKK_64
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
int vl[2];
@ -7092,48 +6769,6 @@ vec_dot_q5_K_q8_1(const void *__restrict__ vbq,
}
return vec_dot_q5_K_q8_1_impl_vmmq(vl, vh, u, sc, m, bq5_K->dm, d8);
#else
#if __SYCL_ARCH__ >= VER_4VEC // lowest compute capability for integer intrinsics
const block_q5_K * bq5_K = (const block_q5_K *) vbq;
const int8_t * s = bq5_K->scales;
const float d = bq5_K->d;
const float d8_1 = bq8_1[0].ds[0];
const float d8_2 = bq8_1[1].ds[1];
const int ui1 = *((const int *)bq8_1[0].qs + (iqs/2));
const int ui2 = *((const int *)bq8_1[0].qs + (iqs/2) + 4);
const int ui3 = *((const int *)bq8_1[1].qs + (iqs/2));
const int ui4 = *((const int *)bq8_1[1].qs + (iqs/2) + 4);
const int * ql = (const int *)bq5_K->qs + (iqs/2);
const int vl1 = ql[0];
const int vl2 = ql[4];
const int step = 4 * (iqs/2); // 0, 4, 8, 12
const int im = step/8; // = 0 for iqs = 0, 2, = 1 for iqs = 4, 6
const int in = step%8; // 0, 4, 0, 4
const int vh = (*((const int *)(bq5_K->qh + in))) >> im;
const int v1 = (((vh << 4) & 0x10101010) ^ 0x10101010) | ((vl1 >> 0) & 0x0f0f0f0f);
const int v2 = (((vh << 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 0) & 0x0f0f0f0f);
const int v3 = (((vh >> 0) & 0x10101010) ^ 0x10101010) | ((vl1 >> 4) & 0x0f0f0f0f);
const int v4 = (((vh >> 2) & 0x10101010) ^ 0x10101010) | ((vl2 >> 4) & 0x0f0f0f0f);
const float sumf_d = d8_1 * (dpct::dp4a(ui1, v1, 0) * s[0] + dpct::dp4a(ui2, v2, 0) * s[1])
+ d8_2 * (dpct::dp4a(ui3, v3, 0) * s[2] + dpct::dp4a(ui4, v4, 0) * s[3]);
return d * sumf_d;
#else
bad_arch();
#endif // __SYCL_ARCH__ >= VER_4VEC
#endif
}
template <int mmq_y>
@ -7205,9 +6840,7 @@ load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql,
const block_q5_K * bxi = bx0 + i*blocks_per_row + kbxd;
#if QK_K == 256
x_dm[i * (WARP_SIZE/QI5_K) + i / QI5_K + kbxd] = bxi->dm;
#endif
}
#pragma unroll
@ -7387,7 +7020,6 @@ vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq,
const block_q8_1 *__restrict__ bq8_1, const int &iqs,
const uint64_t *iq2xxs_grid, const uint8_t *ksigns_iq2xs,
const uint8_t *kmask_iq2xs) {
#if QK_K == 256
const block_iq2_xxs * bq2 = (const block_iq2_xxs *) vbq;
#if QR2_XXS == 8
@ -7428,10 +7060,6 @@ vec_dot_iq2_xxs_q8_1(const void *__restrict__ vbq,
}
return d * (sumi1 + sumi2);
#endif
#else
assert(false);
return 0.f;
#endif
}
static __dpct_inline__ float
@ -7440,7 +7068,6 @@ vec_dot_iq2_xs_q8_1(const void *__restrict__ vbq,
const uint64_t *iq2xs_grid, const uint64_t *ksigns64) {
#if DPCT_COMPATIBILITY_TEMP >= \
MIN_CC_DP4A // lowest compute capability for integer intrinsics
#if QK_K == 256
const block_iq2_xs * bq2 = (const block_iq2_xs *) vbq;
const int ib32 = iqs;
@ -7478,16 +7105,11 @@ vec_dot_iq2_xs_q8_1(const void *__restrict__ vbq,
assert(false);
return 0.f;
#endif
#else
assert(false);
return 0.f;
#endif
}
static __dpct_inline__ float
vec_dot_iq2_s_q8_1(const void *__restrict__ vbq,
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
#if QK_K == 256
const block_iq2_s * bq2 = (const block_iq2_s *) vbq;
const int ib32 = iqs;
@ -7531,9 +7153,6 @@ vec_dot_iq2_s_q8_1(const void *__restrict__ vbq,
}
const float d = (float)bq2->d * bq8_1[ib32].ds[0] * 0.25f;
return d * ((0.5f + ls1) * sumi1 + (0.5f + ls2) * sumi2);
#else
assert(false);
#endif
}
static __dpct_inline__ float
@ -7542,7 +7161,6 @@ vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq,
const uint32_t *iq3xxs_grid, const uint64_t *ksigns64) {
#if DPCT_COMPATIBILITY_TEMP >= \
MIN_CC_DP4A // lowest compute capability for integer intrinsics
#if QK_K == 256
const block_iq3_xxs * bq2 = (const block_iq3_xxs *) vbq;
const int ib32 = iqs;
@ -7570,17 +7188,12 @@ vec_dot_iq3_xxs_q8_1(const void *__restrict__ vbq,
assert(false);
return 0.f;
#endif
#else
assert(false);
return 0.f;
#endif
}
static __dpct_inline__ float
vec_dot_iq3_s_q8_1(const void *__restrict__ vbq,
const block_q8_1 *__restrict__ bq8_1, const int &iqs,
const uint32_t *iq3s_grid) {
#if QK_K == 256
const block_iq3_s * bq2 = (const block_iq3_s *) vbq;
const int ib32 = iqs;
@ -7609,16 +7222,12 @@ vec_dot_iq3_s_q8_1(const void *__restrict__ vbq,
(1 + 2 * ((bq2->scales[ib32 / 2] >> 4 * (ib32 % 2)) & 0xf)) *
bq8_1[ib32].ds[0];
return d * sumi;
#else
assert(false);
#endif
}
static __dpct_inline__ float
vec_dot_iq1_s_q8_1(const void *__restrict__ vbq,
const block_q8_1 *__restrict__ bq8_1, const int &iqs,
const uint32_t *iq1s_grid_gpu) {
#if QK_K == 256
const block_iq1_s * bq1 = (const block_iq1_s *) vbq;
const int ib32 = iqs;
@ -7637,15 +7246,11 @@ vec_dot_iq1_s_q8_1(const void *__restrict__ vbq,
const float d = d1q * bq8_1[ib32].ds[0];
const float m = d1q * bq8_1[ib32].ds[1];
return d * sumi + m * delta;
#else
assert(false);
#endif
}
static __dpct_inline__ float
vec_dot_iq1_m_q8_1(const void *__restrict__ vbq,
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
#if QK_K == 256
const block_iq1_m * bq1 = (const block_iq1_m *) vbq;
const int ib32 = iqs;
@ -7670,9 +7275,6 @@ vec_dot_iq1_m_q8_1(const void *__restrict__ vbq,
scale.u16 = (sc[0] >> 12) | ((sc[1] >> 8) & 0x00f0) | ((sc[2] >> 4) & 0x0f00) | (sc[3] & 0xf000);
const float d = (float)scale.f16 * bq8_1[ib32].ds[0];
return d * ((sumi[0] + sumf[0]) * (2*((sc[ib32/2] >> 6*(ib32%2)) & 0x7) + 1) + (sumi[1] + sumf[1]) * (2*((sc[ib32/2] >> (6*(ib32%2)+3)) & 0x7) + 1));
#else
assert(false);
#endif
}
static __dpct_inline__ void get_int_from_table_16(const uint32_t &q4,
@ -7720,7 +7322,6 @@ static __dpct_inline__ float
vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq,
const block_q8_1 *__restrict__ bq8_1, const int &iqs) {
#if QK_K == 256
const block_iq4_xs * bq4 = (const block_iq4_xs *) vbq;
const uint8_t * values = (const uint8_t *)kvalues_iq4nl;
@ -7738,9 +7339,6 @@ vec_dot_iq4_xs_q8_1(const void *__restrict__ vbq,
sumi2 = dpct::dp4a(v2, q8[j + 4], sumi2);
}
return d * (sumi1 + sumi2);
#else
assert(false);
#endif
}
template <int qk, int qr, int qi, bool need_sum, typename block_q_t, int mmq_x,
@ -10203,7 +9801,6 @@ template <typename dst_t>
static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
#if QK_K == 256
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -10215,27 +9812,12 @@ static void dequantize_row_q2_K_sycl(const void *vx, dst_t *y, const int k,
dequantize_block_q2_K(vx, y, item_ct1);
});
}
#else
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
sycl::range<3>(1, 1, 32),
sycl::range<3>(1, 1, 32)),
[=](sycl::nd_item<3> item_ct1) {
dequantize_block_q2_K(vx, y, item_ct1);
});
}
#endif
}
template <typename dst_t>
static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
#if QK_K == 256
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -10247,19 +9829,6 @@ static void dequantize_row_q3_K_sycl(const void *vx, dst_t *y, const int k,
dequantize_block_q3_K(vx, y, item_ct1);
});
}
#else
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
sycl::range<3>(1, 1, 32),
sycl::range<3>(1, 1, 32)),
[=](sycl::nd_item<3> item_ct1) {
dequantize_block_q3_K(vx, y, item_ct1);
});
}
#endif
}
template <typename dst_t>
@ -10320,7 +9889,6 @@ template <typename dst_t>
static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
#if QK_K == 256
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -10332,27 +9900,12 @@ static void dequantize_row_q5_K_sycl(const void *vx, dst_t *y, const int k,
dequantize_block_q5_K(vx, y, item_ct1);
});
}
#else
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
sycl::range<3>(1, 1, 32),
sycl::range<3>(1, 1, 32)),
[=](sycl::nd_item<3> item_ct1) {
dequantize_block_q5_K(vx, y, item_ct1);
});
}
#endif
}
template <typename dst_t>
static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
dpct::queue_ptr stream) {
const int nb = k / QK_K;
#if QK_K == 256
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -10364,20 +9917,6 @@ static void dequantize_row_q6_K_sycl(const void *vx, dst_t *y, const int k,
dequantize_block_q6_K(vx, y, item_ct1);
});
}
#else
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
stream->parallel_for(sycl::nd_range<3>(sycl::range<3>(1, 1, nb) *
sycl::range<3>(1, 1, 32),
sycl::range<3>(1, 1, 32)),
[=](sycl::nd_item<3> item_ct1) {
dequantize_block_q6_K(vx, y, item_ct1);
});
}
#endif
}
template <typename dst_t>
@ -10529,9 +10068,6 @@ template <typename dst_t>
static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
dpct::queue_ptr stream) {
const int nb = (k + QK_K - 1) / QK_K;
#if QK_K == 64
dequantize_row_iq4_nl_sycl(vx, y, k, stream);
#else
{
dpct::has_capability_or_fail(stream->get_device(),
{sycl::aspect::fp16});
@ -10546,7 +10082,6 @@ static void dequantize_row_iq4_xs_sycl(const void *vx, dst_t *y, const int k,
});
});
}
#endif
}
@ -12051,8 +11586,6 @@ static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
const int nrows_y, const int nrows_dst,
dpct::queue_ptr stream) try {
#if QK_K == 256
int id;
SYCL_CHECK(
CHECK_TRY_ERROR(id = get_current_device_id()));
@ -12167,7 +11700,6 @@ static void ggml_mul_mat_q3_K_q8_1_sycl(const void *vx, const void *vy,
});
}
}
#endif
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__

File diff suppressed because it is too large Load diff

View file

@ -290,6 +290,7 @@ struct vk_op_rope_neox_push_constants {
float corr_dims[4];
float theta_scale;
float inv_ndims;
uint32_t has_freq_facs;
};
struct vk_op_soft_max_push_constants {
@ -1522,8 +1523,8 @@ static void ggml_vk_load_shaders(ggml_backend_vk_context * ctx) {
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f32, "rope_f32", rope_f32_len, rope_f32_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_f16, "rope_f16", rope_f16_len, rope_f16_data, "main", 3, sizeof(vk_op_rope_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 3, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f32, "rope_neox_f32", rope_neox_f32_len, rope_neox_f32_data, "main", 4, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_rope_neox_f16, "rope_neox_f16", rope_neox_f16_len, rope_neox_f16_data, "main", 4, sizeof(vk_op_rope_neox_push_constants), {1, 512, 1}, {}, 1);
ggml_vk_create_pipeline(ctx, ctx->device->pipeline_argsort_f32, "argsort_f32", argsort_f32_len, argsort_f32_data, "main", 2, sizeof(vk_op_argsort_push_constants), {1024, 1, 1}, {}, 1);
}
@ -3732,7 +3733,7 @@ static void ggml_vk_op_repeat(ggml_backend_vk_context * ctx, vk_context * subctx
}
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op) {
static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op) {
switch (op) {
case GGML_OP_ADD:
if (src0->type == GGML_TYPE_F32 && src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32) {
@ -3853,6 +3854,8 @@ static vk_pipeline ggml_vk_op_get_pipeline(ggml_backend_vk_context * ctx, const
default:
return nullptr;
}
GGML_UNUSED(src2);
}
static ggml_vk_func_t ggml_vk_op_get_func(ggml_op op) {
@ -3880,12 +3883,15 @@ static bool ggml_vk_op_supports_incontiguous(ggml_op op) {
}
template<typename PC>
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, ggml_op op, const PC&& pc) {
static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst, ggml_op op, const PC&& pc) {
#ifdef GGML_VULKAN_DEBUG
std::cerr << "ggml_vk_op_f32((" << src0 << ", name=" << src0->name << ", type=" << src0->type << ", ne0=" << src0->ne[0] << ", ne1=" << src0->ne[1] << ", ne2=" << src0->ne[2] << ", ne3=" << src0->ne[3] << ", nb0=" << src0->nb[0] << ", nb1=" << src0->nb[1] << ", nb2=" << src0->nb[2] << ", nb3=" << src0->nb[3];
if (src1 != nullptr) {
std::cerr << "), (" << src1 << ", name=" << src1->name << ", type=" << src1->type << ", ne0=" << src1->ne[0] << ", ne1=" << src1->ne[1] << ", ne2=" << src1->ne[2] << ", ne3=" << src1->ne[3] << ", nb0=" << src1->nb[0] << ", nb1=" << src1->nb[1] << ", nb2=" << src1->nb[2] << ", nb3=" << src1->nb[3];
}
if (src2 != nullptr) {
std::cerr << "), (" << src2 << ", name=" << src2->name << ", type=" << src2->type << ", ne0=" << src2->ne[0] << ", ne1=" << src2->ne[1] << ", ne2=" << src2->ne[2] << ", ne3=" << src2->ne[3] << ", nb0=" << src2->nb[0] << ", nb1=" << src2->nb[1] << ", nb2=" << src2->nb[2] << ", nb3=" << src2->nb[3];
}
std::cerr << "), (" << dst << ", name=" << dst->name << ", type=" << dst->type << ", ne0=" << dst->ne[0] << ", ne1=" << dst->ne[1] << ", ne2=" << dst->ne[2] << ", ne3=" << dst->ne[3] << ", nb0=" << dst->nb[0] << ", nb1=" << dst->nb[1] << ", nb2=" << dst->nb[2] << ", nb3=" << dst->nb[3] << "), " << ggml_op_name(op) << ")" << std::endl;
#endif
GGML_ASSERT(op == GGML_OP_GET_ROWS || (!ggml_is_quantized(src0->type) && (src1 == nullptr || !ggml_is_quantized(src1->type)))); // NOLINT
@ -3896,6 +3902,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
const uint64_t ne02 = src0->ne[2];
const uint64_t ne03 = src0->ne[3];
const uint64_t ne0 = ne00 * ne01;
const bool use_src1 = src1 != nullptr;
const uint64_t ne10 = use_src1 ? src1->ne[0] : 0;
const uint64_t ne11 = use_src1 ? src1->ne[1] : 0;
@ -3904,7 +3911,14 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
const uint64_t ne1 = ne10 * ne11;
// const uint64_t nb10 = use_src1 ? src1->nb[0] : 0;
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, dst, op);
const bool use_src2 = src2 != nullptr;
const uint64_t ne20 = use_src2 ? src2->ne[0] : 0;
const uint64_t ne21 = use_src2 ? src2->ne[1] : 0;
const uint64_t ne22 = use_src2 ? src2->ne[2] : 0;
const uint64_t ne23 = use_src2 ? src2->ne[3] : 0;
const uint64_t ne2 = ne20 * ne21;
vk_pipeline pipeline = ggml_vk_op_get_pipeline(ctx, src0, src1, src2, dst, op);
ggml_vk_func_t op_func;
if (pipeline == nullptr) {
@ -3927,15 +3941,18 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) dst->extra;
ggml_tensor_extra_gpu * extra_src0 = (ggml_tensor_extra_gpu *) src0->extra;
ggml_tensor_extra_gpu * extra_src1 = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
ggml_tensor_extra_gpu * extra_src2 = use_src2 ? (ggml_tensor_extra_gpu *) src2->extra : nullptr;
vk_buffer d_X = nullptr;
size_t x_buf_offset = 0;
vk_buffer d_Y = nullptr;
size_t y_buf_offset = 0;
vk_buffer d_Z = nullptr;
size_t z_buf_offset = 0;
bool src0_uma = false;
bool src1_uma = false;
bool src2_uma = false;
if (ctx->device->uma) {
ggml_vk_host_get(ctx, src0->data, d_X, x_buf_offset);
@ -3944,10 +3961,15 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
ggml_vk_host_get(ctx, src1->data, d_Y, y_buf_offset);
src1_uma = d_Y != nullptr;
}
if (use_src2) {
ggml_vk_host_get(ctx, src2->data, d_Z, z_buf_offset);
src2_uma = d_Z != nullptr;
}
}
uint64_t x_sz = ggml_vk_align_size(ggml_type_size(src0->type)/ggml_blck_size(src0->type) * ne0, ctx->device->properties.limits.minStorageBufferOffsetAlignment);
uint64_t y_sz = use_src1 ? ggml_vk_align_size(ggml_type_size(src1->type) * ne1, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
uint64_t z_sz = use_src2 ? ggml_vk_align_size(ggml_type_size(src2->type) * ne2, ctx->device->properties.limits.minStorageBufferOffsetAlignment) : 0;
uint64_t d_sz = ggml_type_size(dst->type) * ne0;
vk_buffer d_D = extra->buffer_gpu.lock();
@ -3970,10 +3992,16 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
y_buf_offset = extra_src1->offset;
GGML_ASSERT(d_Y != nullptr);
}
if (use_src2 && !src2_uma) {
d_Z = extra_src2->buffer_gpu.lock();
z_buf_offset = extra_src2->offset;
GGML_ASSERT(d_Z != nullptr);
}
if (op_supports_incontiguous) {
x_sz = ggml_nbytes(src0);
y_sz = use_src1 ? ggml_nbytes(src1) : 0;
z_sz = use_src2 ? ggml_nbytes(src2) : 0;
d_sz = ggml_nbytes(dst);
if (x_buf_offset + x_sz >= d_X->size) {
@ -3982,6 +4010,9 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
if (use_src1 && y_buf_offset + y_sz >= d_Y->size) {
y_sz = VK_WHOLE_SIZE;
}
if (use_src2 && z_buf_offset + z_sz >= d_Z->size) {
z_sz = VK_WHOLE_SIZE;
}
if (d_buf_offset + d_sz >= d_D->size) {
d_sz = VK_WHOLE_SIZE;
}
@ -4021,13 +4052,16 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
if (use_src1 && y_sz != VK_WHOLE_SIZE) {
y_sz *= ne12 * ne13;
}
if (use_src2 && z_sz != VK_WHOLE_SIZE) {
z_sz *= ne22 * ne23;
}
if (d_sz != VK_WHOLE_SIZE) {
d_sz *= ne02 * ne03;
}
}
if (op == GGML_OP_SOFT_MAX) {
// Empty src1 is possible on soft_max, but the shader needs a buffer
// Empty src1 is possible in soft_max, but the shader needs a buffer
vk_subbuffer subbuf_y;
if (use_src1) {
subbuf_y = { d_Y, y_buf_offset, y_sz };
@ -4037,6 +4071,28 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, subbuf_y, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else if (op == GGML_OP_ROPE) {
const int mode = ((int32_t *) dst->op_params)[2];
const bool is_neox = mode & 2;
if (is_neox) {
// Empty src2 is possible in rope, but the shader needs a buffer
vk_subbuffer subbuf_z;
if (use_src2) {
subbuf_z = { d_Z, z_buf_offset, z_sz };
} else {
subbuf_z = { d_X, 0, d_X->size };
}
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, subbuf_z, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
}
} else if (use_src2) {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_Z, z_buf_offset, z_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
} else if (use_src1) {
ggml_vk_sync_buffers(subctx);
ggml_vk_dispatch_pipeline(ctx, subctx, pipeline, { { d_X, x_buf_offset, x_sz }, { d_Y, y_buf_offset, y_sz }, { d_D, d_buf_offset, d_sz } }, sizeof(PC), &pc, elements);
@ -4047,6 +4103,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
} else {
GGML_ASSERT(op != GGML_OP_SOFT_MAX);
GGML_ASSERT(op != GGML_OP_ARGSORT);
GGML_ASSERT(!use_src2);
ggml_pipeline_allocate_descriptor_sets(ctx, pipeline, ne02 * ne03);
@ -4088,7 +4145,7 @@ static void ggml_vk_op_f32(ggml_backend_vk_context * ctx, vk_context * subctx, c
}
static void ggml_vk_repeat(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_REPEAT, { (uint32_t)ggml_nelements(src0), (uint32_t)ggml_nelements(src1), 0.0f, 0.0f });
}
static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -4096,7 +4153,7 @@ static void ggml_vk_get_rows(ggml_backend_vk_context * ctx, vk_context * subctx,
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_GET_ROWS, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_GET_ROWS, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -4111,7 +4168,7 @@ static void ggml_vk_add(ggml_backend_vk_context * ctx, vk_context * subctx, cons
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ADD, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_ADD, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -4126,7 +4183,7 @@ static void ggml_vk_mul(ggml_backend_vk_context * ctx, vk_context * subctx, cons
const uint32_t src1_type_size = ggml_type_size(src1->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_MUL, {
ggml_vk_op_f32<vk_op_binary_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_MUL, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2],(uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t)src1->ne[0], (uint32_t)src1->ne[1], (uint32_t)src1->ne[2],(uint32_t)src1->ne[3], (uint32_t)src1->nb[0] / src1_type_size, (uint32_t)src1->nb[1] / src1_type_size, (uint32_t)src1->nb[2] / src1_type_size, (uint32_t)src1->nb[3] / src1_type_size,
@ -4141,7 +4198,7 @@ static void ggml_vk_scale(ggml_backend_vk_context * ctx, vk_context * subctx, co
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SCALE, {
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SCALE, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
@ -4154,7 +4211,7 @@ static void ggml_vk_sqr(ggml_backend_vk_context * ctx, vk_context * subctx, cons
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_SQR, {
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_SQR, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
@ -4168,7 +4225,7 @@ static void ggml_vk_clamp(ggml_backend_vk_context * ctx, vk_context * subctx, co
const uint32_t src0_type_size = ggml_type_size(src0->type);
const uint32_t dst_type_size = ggml_type_size(dst->type);
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CLAMP, {
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CLAMP, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
@ -4183,7 +4240,7 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons
const uint32_t dst_type_size = ggml_type_size(dst->type);
const uint32_t d_offset = (extra->offset % ctx->device->properties.limits.minStorageBufferOffsetAlignment) / dst_type_size;
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_CPY, {
ggml_vk_op_f32<vk_op_unary_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_CPY, {
(uint32_t)ggml_nelements(src0),
(uint32_t)src0->ne[0], (uint32_t)src0->ne[1], (uint32_t)src0->ne[2], (uint32_t)src0->ne[3], (uint32_t)src0->nb[0] / src0_type_size, (uint32_t)src0->nb[1] / src0_type_size, (uint32_t)src0->nb[2] / src0_type_size, (uint32_t)src0->nb[3] / src0_type_size,
(uint32_t) dst->ne[0], (uint32_t) dst->ne[1], (uint32_t) dst->ne[2], (uint32_t) dst->ne[3], (uint32_t) dst->nb[0] / dst_type_size, (uint32_t) dst->nb[1] / dst_type_size, (uint32_t) dst->nb[2] / dst_type_size, (uint32_t) dst->nb[3] / dst_type_size,
@ -4195,21 +4252,21 @@ static void ggml_vk_cpy(ggml_backend_vk_context * ctx, vk_context * subctx, cons
static void ggml_vk_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
}
static void ggml_vk_rms_norm(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
float * op_params = (float *)dst->op_params;
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_RMS_NORM, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0], 0.0f });
}
static void ggml_vk_unary(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
ggml_vk_op_f32<vk_op_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_UNARY, { (uint32_t)ggml_nelements(src0), 0, 0.0f, 0.0f });
}
static void ggml_vk_diag_mask_inf(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, ggml_tensor * dst) {
int32_t * op_params = (int32_t *)dst->op_params;
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
ggml_vk_op_f32<vk_op_diag_mask_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_DIAG_MASK_INF, { (uint32_t)src0->ne[0], (uint32_t)src0->ne[1], op_params[0] });
}
static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -4228,7 +4285,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx,
const float m0 = powf(2.0f, -(max_bias ) / n_head_log2);
const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2);
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_SOFT_MAX, {
ggml_vk_op_f32<vk_op_soft_max_push_constants>(ctx, subctx, src0, src1, nullptr, dst, GGML_OP_SOFT_MAX, {
ncols,
src1 != nullptr ? nrows_y : (uint32_t)0,
scale, max_bias,
@ -4237,11 +4294,7 @@ static void ggml_vk_soft_max(ggml_backend_vk_context * ctx, vk_context * subctx,
});
}
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
#pragma message("TODO: implement phi3 frequency factors support")
#pragma message(" https://github.com/ggerganov/llama.cpp/pull/7225")
GGML_ASSERT(dst->src[2] == nullptr && "phi3 frequency factors not implemented yet");
static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, const ggml_tensor * src0, const ggml_tensor * src1, const ggml_tensor * src2, ggml_tensor * dst) {
const int n_dims = ((int32_t *) dst->op_params)[1];
const int mode = ((int32_t *) dst->op_params)[2];
// const int n_ctx = ((int32_t *) dst->op_params)[3];
@ -4264,12 +4317,13 @@ static void ggml_vk_rope(ggml_backend_vk_context * ctx, vk_context * subctx, con
if (is_neox) {
const float theta_scale = powf(freq_base, -2.0f/n_dims);
const float inv_ndims = -1.0f / n_dims;
ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, {
ggml_vk_op_f32<vk_op_rope_neox_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, {
(uint32_t)src0->ne[0], (uint32_t)n_dims, freq_scale, (uint32_t)src0->ne[1],
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}, theta_scale, inv_ndims,
src2 != nullptr,
});
} else {
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, dst, GGML_OP_ROPE, {
ggml_vk_op_f32<vk_op_rope_push_constants>(ctx, subctx, src0, src1, src2, dst, GGML_OP_ROPE, {
(uint32_t)src0->ne[0], freq_scale, (uint32_t)src0->ne[1],
freq_base, ext_factor, attn_factor, {corr_dims[0], corr_dims[1], 0.0f, 0.0f}
});
@ -4292,7 +4346,7 @@ static void ggml_vk_argsort(ggml_backend_vk_context * ctx, vk_context * subctx,
std::cerr << ((ggml_sort_order) op_params[0]) << " " << GGML_SORT_ORDER_ASC << std::endl;
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, dst, GGML_OP_ARGSORT, {
ggml_vk_op_f32<vk_op_argsort_push_constants>(ctx, subctx, src0, nullptr, nullptr, dst, GGML_OP_ARGSORT, {
ncols,
ncols_pad,
op_params[0],
@ -5408,6 +5462,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
const ggml_tensor * src0 = node->src[0];
const ggml_tensor * src1 = node->src[1];
const ggml_tensor * src2 = node->src[2];
switch (node->op) {
case GGML_OP_UNARY:
@ -5524,7 +5579,7 @@ static void ggml_vk_build_graph(ggml_backend_vk_context * ctx, ggml_tensor * nod
break;
case GGML_OP_ROPE:
ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, node);
ggml_vk_rope(ctx, ctx->compute_ctx, src0, src1, src2, node);
break;
case GGML_OP_ARGSORT:
@ -6500,7 +6555,7 @@ static void ggml_vk_print_graph_origin(const ggml_tensor * tensor, std::vector<c
for (int j = 0; j < level; j++) {
std::cerr << " ";
}
std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << " backend=" << tensor->backend << std::endl;
std::cerr << ggml_op_name(tensor->op) << " gpu=" << (tensor->extra != nullptr) << std::endl;
done.push_back(tensor);
@ -6550,7 +6605,7 @@ static void ggml_vk_print_tensor_area(const ggml_tensor * tensor, const void * d
static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tensor * tensor, const char * name) {
void * tensor_data = tensor->data;
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
const size_t tensor_size = ggml_nbytes(tensor);
tensor_data = malloc(tensor_size);
@ -6561,12 +6616,12 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
}
std::cerr << "TENSOR CHECK " << name << " (" << tensor->name << "): " << ggml_op_name(tensor->op) << std::endl;
std::cerr << "tensor=" << tensor << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
std::cerr << "tensor=" << tensor << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
if (tensor->src[0] != nullptr) {
std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " backend=" << tensor->src[0]->backend << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
std::cerr << "tensor->src[0]=" << tensor->src[0] << " name=" << tensor->src[0]->name << " op=" << ggml_op_name(tensor->src[0]->op) << " type=" << ggml_type_name(tensor->src[0]->type) << " ne0=" << tensor->src[0]->ne[0] << " nb0=" << tensor->src[0]->nb[0] << " ne1=" << tensor->src[0]->ne[1] << " nb1=" << tensor->src[0]->nb[1] << " ne2=" << tensor->src[0]->ne[2] << " nb2=" << tensor->src[0]->nb[2] << " ne3=" << tensor->src[0]->ne[3] << " nb3=" << tensor->src[0]->nb[3] << std::endl;
}
if (tensor->src[1] != nullptr) {
std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " backend=" << tensor->src[1]->backend << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
std::cerr << "tensor->src[1]=" << tensor->src[1] << " name=" << tensor->src[1]->name << " op=" << ggml_op_name(tensor->src[1]->op) << " type=" << ggml_type_name(tensor->src[1]->type) << " ne0=" << tensor->src[1]->ne[0] << " nb0=" << tensor->src[1]->nb[0] << " ne1=" << tensor->src[1]->ne[1] << " nb1=" << tensor->src[1]->nb[1] << " ne2=" << tensor->src[1]->ne[2] << " nb2=" << tensor->src[1]->nb[2] << " ne3=" << tensor->src[1]->ne[3] << " nb3=" << tensor->src[1]->nb[3] << std::endl;
}
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(tensor, tensor_data, 5, 5, 0, 0);
@ -6577,43 +6632,11 @@ static void ggml_vk_print_tensor(ggml_backend_vk_context * ctx, const ggml_tenso
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done);
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
free(tensor_data);
}
}
static void ggml_vk_check_tensor(const std::string& name, const ggml_tensor * tensor) {
return;
GGML_ASSERT(tensor->backend == GGML_BACKEND_TYPE_CPU);
if (tensor->type != GGML_TYPE_F32 && tensor->type != GGML_TYPE_F16) {
return;
}
for (int i3 = 0; i3 < tensor->ne[3]; i3++) {
for (int i2 = 0; i2 < tensor->ne[2]; i2++) {
for (int i1 = 0; i1 < tensor->ne[1]; i1++) {
for (int i0 = 0; i0 < tensor->ne[0]; i0++) {
float val = 0.0f;
if (tensor->type == GGML_TYPE_F32) {
val = *(float *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]);
} else if (tensor->type == GGML_TYPE_F16) {
val = ggml_fp16_to_fp32(*(ggml_fp16_t *) ((char *) tensor->data + i3*tensor->nb[3] + i2*tensor->nb[2] + i1*tensor->nb[1] + i0*tensor->nb[0]));
}
if (std::isnan(val)) {
std::cerr << "ERROR: TENSOR CHECK " << name << ": Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " val=" << val << std::endl;
std::cerr << "tensor=" << tensor << " tensor->type=" << ggml_type_name(tensor->type) << " tensor->backend: " << tensor->backend << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << std::endl;
std::cerr << std::endl;
ggml_vk_print_tensor_area(tensor, tensor->data, i0, i1, i2, i3);
std::cerr << std::endl;
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(tensor, done);
GGML_ASSERT(false);
}
}
}
}
}
}
void * comp_result;
size_t comp_size;
size_t comp_nb[GGML_MAX_DIMS];
@ -6637,6 +6660,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
ggml_tensor * src0 = tensor->src[0];
ggml_tensor * src1 = tensor->src[1];
ggml_tensor * src2 = tensor->src[2];
struct ggml_init_params iparams = {
/*.mem_size =*/ 1024*1024*1024,
@ -6666,10 +6690,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
src0_buffer = malloc(src0_size);
src0_clone->data = src0_buffer;
if (src0->backend == GGML_BACKEND_TYPE_CPU) {
if (ggml_backend_buffer_is_host(src0->buffer)) {
memcpy(src0_clone->data, src0->data, src0_size);
memcpy(src0_clone->nb, src0->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (src0->backend == GGML_BACKEND_TYPE_GPU) {
} else if (ggml_backend_buffer_is_vk(src0->buffer)) {
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src0->extra;
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
uint64_t offset = extra->offset;
@ -6700,8 +6724,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
ggml_vk_print_tensor(ctx, src0, "src0");
}
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src0", src0_clone);
}
if (src1 != nullptr) {
src1_clone = ggml_dup_tensor(ggml_ctx, src1);
@ -6710,10 +6732,10 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
src1_buffer = malloc(src1_size);
src1_clone->data = src1_buffer;
if (src1->backend == GGML_BACKEND_TYPE_CPU) {
if (ggml_backend_buffer_is_host(src1->buffer)) {
memcpy(src1_clone->data, src1->data, src1_size);
memcpy(src1_clone->nb, src1->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (src1->backend == GGML_BACKEND_TYPE_GPU) {
} else if (ggml_backend_buffer_is_vk(src1->buffer)) {
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src1->extra;
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
uint64_t offset = extra->offset;
@ -6744,12 +6766,12 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
ggml_vk_print_tensor(ctx, src1, "src1");
std::cerr << "TENSOR CHECK: " << ggml_op_name(src1_clone->op) << " (check " << check_counter << ")" << std::endl;
std::cerr << "src1_clone=" << tensor << " src1_clone->backend: " << src1_clone->backend << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl;
std::cerr << "src1_clone=" << tensor << " src1_clone->type: " << ggml_type_name(src1_clone->type) << " ne0=" << src1_clone->ne[0] << " nb0=" << src1_clone->nb[0] << " ne1=" << src1_clone->ne[1] << " nb1=" << src1_clone->nb[1] << " ne2=" << src1_clone->ne[2] << " nb2=" << src1_clone->nb[2] << " ne3=" << src1_clone->ne[3] << " nb3=" << src1_clone->nb[3] << std::endl;
if (src1->src[0] != nullptr) {
std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " backend=" << src1->src[0]->backend << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl;
std::cerr << "src1->src[0]=" << src1->src[0] << " op=" << ggml_op_name(src1->src[0]->op) << " type=" << ggml_type_name(src1->src[0]->type) << " ne0=" << src1->src[0]->ne[0] << " nb0=" << src1->src[0]->nb[0] << " ne1=" << src1->src[0]->ne[1] << " nb1=" << src1->src[0]->nb[1] << " ne2=" << src1->src[0]->ne[2] << " nb2=" << src1->src[0]->nb[2] << " ne3=" << src1->src[0]->ne[3] << " nb3=" << src1->src[0]->nb[3] << std::endl;
}
if (src1->src[1] != nullptr) {
std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " backend=" << src1->src[1]->backend << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl;
std::cerr << "src1->src[1]=" << src1->src[1] << " op=" << ggml_op_name(src1->src[1]->op) << " type=" << ggml_type_name(src1->src[1]->type) << " ne0=" << src1->src[1]->ne[0] << " nb0=" << src1->src[1]->nb[0] << " ne1=" << src1->src[1]->ne[1] << " nb1=" << src1->src[1]->nb[1] << " ne2=" << src1->src[1]->ne[2] << " nb2=" << src1->src[1]->nb[2] << " ne3=" << src1->src[1]->ne[3] << " nb3=" << src1->src[1]->nb[3] << std::endl;
}
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(src1_clone, src1_clone->data, 5, 5, 0, 0);
@ -6760,8 +6782,64 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(src1_clone, done);
}
}
if (src2 != nullptr) {
src2_clone = ggml_dup_tensor(ggml_ctx, src2);
ggml_vk_check_tensor(std::string(ggml_op_name(tensor->op)) + "->src1", src1_clone);
src2_size = ggml_nbytes(src2);
src2_buffer = malloc(src2_size);
src2_clone->data = src2_buffer;
if (ggml_backend_buffer_is_host(src2->buffer)) {
memcpy(src2_clone->data, src2->data, src2_size);
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
} else if (ggml_backend_buffer_is_vk(src2->buffer)) {
ggml_tensor_extra_gpu * extra = (ggml_tensor_extra_gpu *) src2->extra;
vk_buffer buffer_gpu = extra->buffer_gpu.lock();
uint64_t offset = extra->offset;
if (!ggml_is_contiguous(src2) && ggml_vk_dim01_contiguous(src2)) {
for (int i3 = 0; i3 < src2->ne[3]; i3++) {
for (int i2 = 0; i2 < src2->ne[2]; i2++) {
const int idx = i3*src2->ne[2] + i2;
ggml_vk_buffer_read(ctx, buffer_gpu, offset + idx * src2->nb[2], ((char *)src2_clone->data + idx * src2_clone->nb[2]), src2->ne[1] * src2->nb[1]);
}
}
src2_clone->nb[0] = src2->nb[0];
src2_clone->nb[1] = src2->nb[1];
for (int i = 2; i < GGML_MAX_DIMS; i++) {
src2_clone->nb[i] = src2_clone->nb[i - 1]*src2_clone->ne[i - 1];
}
} else {
if (offset + src2_size >= buffer_gpu->size) {
src2_size = buffer_gpu->size - offset;
}
ggml_vk_buffer_read(ctx, buffer_gpu, offset, src2_clone->data, src2_size);
memcpy(src2_clone->nb, src2->nb, sizeof(size_t) * GGML_MAX_DIMS);
}
} else {
GGML_ASSERT(false);
}
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
ggml_vk_print_tensor(ctx, src2, "src2");
std::cerr << "TENSOR CHECK: " << ggml_op_name(src2_clone->op) << " (check " << check_counter << ")" << std::endl;
std::cerr << "src2_clone=" << tensor << " src2_clone->type: " << ggml_type_name(src2_clone->type) << " ne0=" << src2_clone->ne[0] << " nb0=" << src2_clone->nb[0] << " ne1=" << src2_clone->ne[1] << " nb1=" << src2_clone->nb[1] << " ne2=" << src2_clone->ne[2] << " nb2=" << src2_clone->nb[2] << " ne3=" << src2_clone->ne[3] << " nb3=" << src2_clone->nb[3] << std::endl;
if (src2->src[0] != nullptr) {
std::cerr << "src2->src[0]=" << src2->src[0] << " op=" << ggml_op_name(src2->src[0]->op) << " type=" << ggml_type_name(src2->src[0]->type) << " ne0=" << src2->src[0]->ne[0] << " nb0=" << src2->src[0]->nb[0] << " ne1=" << src2->src[0]->ne[1] << " nb1=" << src2->src[0]->nb[1] << " ne2=" << src2->src[0]->ne[2] << " nb2=" << src2->src[0]->nb[2] << " ne3=" << src2->src[0]->ne[3] << " nb3=" << src2->src[0]->nb[3] << std::endl;
}
if (src2->src[1] != nullptr) {
std::cerr << "src2->src[1]=" << src2->src[1] << " op=" << ggml_op_name(src2->src[1]->op) << " type=" << ggml_type_name(src2->src[1]->type) << " ne0=" << src2->src[1]->ne[0] << " nb0=" << src2->src[1]->nb[0] << " ne1=" << src2->src[1]->ne[1] << " nb1=" << src2->src[1]->nb[1] << " ne2=" << src2->src[1]->ne[2] << " nb2=" << src2->src[1]->nb[2] << " ne3=" << src2->src[1]->ne[3] << " nb3=" << src2->src[1]->nb[3] << std::endl;
}
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 0, 0);
std::cerr << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
ggml_vk_print_tensor_area(src2_clone, src2_clone->data, 5, 5, 1, 0);
std::cerr << std::endl;
std::vector<const ggml_tensor *> done;
ggml_vk_print_graph_origin(src2_clone, done);
}
}
if (tensor->op == GGML_OP_MUL_MAT) {
@ -6799,7 +6877,7 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
float attn_factor = ((float *) tensor->op_params)[8];
float beta_fast = ((float *) tensor->op_params)[9];
float beta_slow = ((float *) tensor->op_params)[10];
tensor_clone = ggml_rope_custom(ggml_ctx, src0_clone, src1_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
tensor_clone = ggml_rope_ext(ggml_ctx, src0_clone, src1_clone, src2_clone, n_dims, mode, n_ggml_ctx, n_orig_ggml_ctx, freq_base, freq_scale, ext_factor, attn_factor, beta_fast, beta_slow);
} else if (tensor->op == GGML_OP_UNARY) {
switch (ggml_get_unary_op(tensor)) {
case GGML_UNARY_OP_SILU:
@ -6847,7 +6925,6 @@ static void ggml_vk_check_results_0(ggml_backend_vk_context * ctx, ggml_compute_
ggml_graph_compute_with_ctx(ggml_ctx, cgraph, 8);
ggml_vk_check_tensor(ggml_op_name(tensor->op), tensor_clone);
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
ggml_vk_print_tensor(ctx, tensor_clone, "tensor_clone");
}
@ -6888,7 +6965,7 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
void * tensor_data = tensor->data;
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
size_t tensor_size = ggml_nbytes(tensor);
tensor_data = malloc(tensor_size);
@ -6936,12 +7013,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
if ((std::isnan(correct) != std::isnan(result)) || (std::isinf(correct) != std::isinf(result)) || !buffer_size_fit) {
std::cerr << "ERROR: Invalid value in " << ggml_op_name(tensor->op) << " i3=" << i3 << " i2=" << i2 << " i1=" << i1 << " i0=" << i0 << " result=" << result << " correct=" << correct << " avg_err=" << (avg_err / counter) << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
if (src0 != nullptr) {
std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
std::cerr << "src0=" << src0 << " src0->name=" << src0->name << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
}
if (src1 != nullptr) {
std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
std::cerr << "src1=" << src1 << " src1->name=" << src1->name << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
@ -6977,12 +7054,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
if (vk_output_tensor > 0 && vk_output_tensor == check_counter) {
std::cerr << "TENSOR CHECK: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
if (src0 != nullptr) {
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
}
if (src1 != nullptr) {
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
@ -7001,12 +7078,12 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
if (avg_err > 0.05 || std::isnan(avg_err)) {
std::cerr << "ERROR: avg_err=" << avg_err << " in " << ggml_op_name(tensor->op) << " (check " << check_counter << ")" << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->backend: " << tensor->backend << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
std::cerr << "tensor=" << tensor << " tensor->name=" << tensor->name << " tensor->type: " << ggml_type_name(tensor->type) << " ne0=" << tensor->ne[0] << " nb0=" << tensor->nb[0] << " ne1=" << tensor->ne[1] << " nb1=" << tensor->nb[1] << " ne2=" << tensor->ne[2] << " nb2=" << tensor->nb[2] << " ne3=" << tensor->ne[3] << " nb3=" << tensor->nb[3] << " offset=" << tensor->view_offs << std::endl;
if (src0 != nullptr) {
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " backend=" << src0->backend << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
std::cerr << "src0=" << src0 << " op=" << ggml_op_name(src0->op) << " type=" << ggml_type_name(src0->type) << " ne0=" << src0->ne[0] << " nb0=" << src0->nb[0] << " ne1=" << src0->ne[1] << " nb1=" << src0->nb[1] << " ne2=" << src0->ne[2] << " nb2=" << src0->nb[2] << " ne3=" << src0->ne[3] << " nb3=" << src0->nb[3] << " offset=" << src0->view_offs << std::endl;
}
if (src1 != nullptr) {
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " backend=" << src1->backend << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
std::cerr << "src1=" << src1 << " op=" << ggml_op_name(src1->op) << " type=" << ggml_type_name(src1->type) << " ne0=" << src1->ne[0] << " nb0=" << src1->nb[0] << " ne1=" << src1->ne[1] << " nb1=" << src1->nb[1] << " ne2=" << src1->ne[2] << " nb2=" << src1->nb[2] << " ne3=" << src1->ne[3] << " nb3=" << src1->nb[3] << " offset=" << src1->view_offs << std::endl;
}
std::cerr << "First error: result=" << first_error_result << " correct=" << first_error_correct << " i3=" << first_error[3] << " i2=" << first_error[2] << " i1=" << first_error[1] << " i0=" << first_error[0] << std::endl;
std::cerr << std::endl << "Result:" << std::endl;
@ -7018,14 +7095,14 @@ static void ggml_vk_check_results_1(ggml_backend_vk_context * ctx, ggml_compute_
ggml_vk_print_graph_origin(tensor, done);
GGML_ASSERT(false);
} else {
std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " backend=" << tensor->backend << " avg_err=" << avg_err << std::endl;
std::cerr << check_counter << " " << tensor->name << " op=" << ggml_op_name(tensor->op) << " avg_err=" << avg_err << std::endl;
}
free(comp_result);
comp_result = nullptr;
comp_size = 0;
if (tensor->backend == GGML_BACKEND_TYPE_GPU) {
if (ggml_backend_buffer_is_vk(tensor->buffer)) {
free(tensor_data);
}
}

688
ggml.c
View file

@ -871,22 +871,14 @@ static const ggml_type_traits_t type_traits[GGML_TYPE_COUNT] = {
},
[GGML_TYPE_IQ4_XS] = {
.type_name = "iq4_xs",
#if QK_K == 64
.blck_size = QK4_NL,
#else
.blck_size = QK_K,
#endif
.type_size = sizeof(block_iq4_xs),
.is_quantized = true,
.to_float = (ggml_to_float_t) dequantize_row_iq4_xs,
.from_float = quantize_row_iq4_xs,
.from_float_reference = (ggml_from_float_t)quantize_row_iq4_xs_reference,
.vec_dot = ggml_vec_dot_iq4_xs_q8_K,
#if QK_K == 64
.vec_dot_type = GGML_TYPE_Q8_0,
#else
.vec_dot_type = GGML_TYPE_Q8_K,
#endif
.nrows = 1,
},
[GGML_TYPE_Q8_K] = {
@ -2678,9 +2670,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"ARGSORT",
"LEAKY_RELU",
"FLASH_ATTN",
"FLASH_ATTN_EXT",
"FLASH_FF",
"FLASH_ATTN_BACK",
"SSM_CONV",
"SSM_SCAN",
@ -2706,7 +2696,7 @@ static const char * GGML_OP_NAME[GGML_OP_COUNT] = {
"CROSS_ENTROPY_LOSS_BACK",
};
static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"none",
@ -2768,9 +2758,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"argsort(x)",
"leaky_relu(x)",
"flash_attn(x)",
"flash_attn_ext(x)",
"flash_ff(x)",
"flash_attn_back(x)",
"ssm_conv(x)",
"ssm_scan(x)",
@ -2796,7 +2784,7 @@ static const char * GGML_OP_SYMBOL[GGML_OP_COUNT] = {
"cross_entropy_loss_back(x,y)",
};
static_assert(GGML_OP_COUNT == 76, "GGML_OP_COUNT != 76");
static_assert(GGML_OP_COUNT == 74, "GGML_OP_COUNT != 74");
static_assert(GGML_OP_POOL_COUNT == 2, "GGML_OP_POOL_COUNT != 2");
@ -6956,38 +6944,6 @@ struct ggml_tensor * ggml_top_k(
return result;
}
// ggml_flash_attn
struct ggml_tensor * ggml_flash_attn(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
bool masked) {
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
bool is_node = false;
if (q->grad || k->grad || v->grad) {
is_node = true;
}
//struct ggml_tensor * result = ggml_dup_tensor(ctx, q);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, q->ne);
int32_t t = masked ? 1 : 0;
ggml_set_op_params(result, &t, sizeof(t));
result->op = GGML_OP_FLASH_ATTN;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = q;
result->src[1] = k;
result->src[2] = v;
return result;
}
// ggml_flash_attn_ext
struct ggml_tensor * ggml_flash_attn_ext(
@ -7047,38 +7003,6 @@ void ggml_flash_attn_ext_set_prec(
ggml_set_op_params_i32(a, 2, prec_i32); // scale is on first pos, max_bias on second
}
// ggml_flash_ff
struct ggml_tensor * ggml_flash_ff(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b0,
struct ggml_tensor * b1,
struct ggml_tensor * c0,
struct ggml_tensor * c1) {
GGML_ASSERT(ggml_can_mul_mat(b0, a));
// TODO: more checks
bool is_node = false;
if (a->grad || b0->grad || b1->grad || c0->grad || c1->grad) {
is_node = true;
}
//struct ggml_tensor * result = ggml_dup_tensor(ctx, a);
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, GGML_MAX_DIMS, a->ne);
result->op = GGML_OP_FLASH_FF;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a;
result->src[1] = b0;
result->src[2] = b1;
result->src[3] = c0;
result->src[4] = c1;
return result;
}
// ggml_flash_attn_back
struct ggml_tensor * ggml_flash_attn_back(
@ -7088,6 +7012,8 @@ struct ggml_tensor * ggml_flash_attn_back(
struct ggml_tensor * v,
struct ggml_tensor * d,
bool masked) {
GGML_ASSERT(false && "TODO: adapt to ggml_flash_attn_ext() changes");
GGML_ASSERT(ggml_can_mul_mat(k, q));
// TODO: check if vT can be multiplied by (k*qT)
@ -15717,400 +15643,6 @@ static void ggml_compute_forward_argsort(
}
}
// ggml_compute_forward_flash_attn
static void ggml_compute_forward_flash_attn_f32(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
const struct ggml_tensor * k = dst->src[1];
const struct ggml_tensor * v = dst->src[2];
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(float));
GGML_ASSERT(nbk0 == sizeof(float));
GGML_ASSERT(nbv0 == sizeof(float));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
float * S = (float *) params->wdata + ith*(Mup + CACHE_LINE_SIZE_F32);
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
const int64_t masked_begin = masked ? (P + iq1 + 1) : M;
for (int64_t ic = 0; ic < masked_begin; ++ic) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2 % nek2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f32(neq0,
S + i1, 0,
(float *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
(float *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
}
// scale
ggml_vec_scale_f32(masked_begin, S, scale);
for (int64_t i = masked_begin; i < M; i++) {
S[i] = -INFINITY;
}
// softmax
// exclude known -INF S[..] values from max and loop
// dont forget to set their SW values to zero
{
float max = -INFINITY;
ggml_vec_max_f32(masked_begin, &max, S);
ggml_float sum = 0.0;
{
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(S, 1, &max, S, 1, Mup);
vvexpf(S, S, &Mup);
ggml_vec_sum_f32(Mup, &sum, S);
#else
sum = ggml_vec_soft_max_f32(Mup, S, S, max);
#endif
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(masked_begin, S, sum);
#ifndef NDEBUG
for (int i = 0; i < masked_begin; ++i) {
assert(!isnan(S[i]));
assert(!isinf(S[i]));
}
#endif
}
for (int64_t ic = 0; ic < nev1; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// v indices
const int iv2 = iq2 % nev2;
const int iv3 = iq3;
ggml_vec_dot_f32(masked_begin,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
(float *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
S, 0, 1);
}
}
}
static void ggml_compute_forward_flash_attn_f16(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
const struct ggml_tensor * k = dst->src[1];
const struct ggml_tensor * v = dst->src[2];
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, neq, q, ne)
GGML_TENSOR_LOCALS(size_t, nbq, q, nb)
GGML_TENSOR_LOCALS(int64_t, nek, k, ne)
GGML_TENSOR_LOCALS(size_t, nbk, k, nb)
GGML_TENSOR_LOCALS(int64_t, nev, v, ne)
GGML_TENSOR_LOCALS(size_t, nbv, v, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = neq0;
const int64_t N = neq1;
const int64_t P = nek1 - N;
const int64_t M = P + N;
const int Mup = ggml_up(M, GGML_SOFT_MAX_UNROLL);
GGML_ASSERT(ne0 == D);
GGML_ASSERT(ne1 == N);
GGML_ASSERT(P >= 0);
GGML_ASSERT(nbq0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbk0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbv0 == sizeof(ggml_fp16_t));
GGML_ASSERT(neq0 == D);
GGML_ASSERT(nek0 == D);
GGML_ASSERT(nev1 == D);
GGML_ASSERT(neq1 == N);
GGML_ASSERT(nek1 == N + P);
GGML_ASSERT(nev1 == D);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by q rows using ggml_vec_dot_f32
// total rows in q
const int nr = neq1*neq2*neq3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
const float scale = 1.0f/sqrtf(D);
//printf("P=%d N=%d D=%d ir0=%d ir1=%d scale = %f\n", P, N, D, ir0, ir1, scale);
for (int ir = ir0; ir < ir1; ++ir) {
// q indices
const int iq3 = ir/(neq2*neq1);
const int iq2 = (ir - iq3*neq2*neq1)/neq1;
const int iq1 = (ir - iq3*neq2*neq1 - iq2*neq1);
float * S = (float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32);
for (int i = M; i < Mup; ++i) {
S[i] = -INFINITY;
}
if (GGML_VEC_DOT_UNROLL > 2 || nek1 % GGML_VEC_DOT_UNROLL != 0) {
for (int64_t ic = 0; ic < nek1; ++ic) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2 % nek2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f16(neq0,
S + i1, 0,
(ggml_fp16_t *) ((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)), 0,
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)), 0, 1);
}
} else {
for (int64_t ic = 0; ic < nek1; ic += GGML_VEC_DOT_UNROLL) {
// k indices
const int ik3 = iq3;
const int ik2 = iq2 % nek2;
const int ik1 = ic;
// S indices
const int i1 = ik1;
ggml_vec_dot_f16_unroll(neq0, nbk1,
S + i1,
((char *) k->data + (ik1*nbk1 + ik2*nbk2 + ik3*nbk3)),
(ggml_fp16_t *) ((char *) q->data + (iq1*nbq1 + iq2*nbq2 + iq3*nbq3)));
}
}
// scale
ggml_vec_scale_f32(nek1, S, scale);
if (masked) {
for (int64_t i = P; i < M; i++) {
if (i > P + iq1) {
S[i] = -INFINITY;
}
}
}
// softmax
// todo: exclude known -INF S[..] values from max and loop, assuming their results to be zero.
// dont forget to set their S values to zero
{
float max = -INFINITY;
ggml_vec_max_f32(M, &max, S);
ggml_float sum = 0.0;
{
#ifdef GGML_SOFT_MAX_ACCELERATE
max = -max;
vDSP_vsadd(S, 1, &max, S, 1, Mup);
vvexpf(S, S, &Mup);
ggml_vec_sum_f32(Mup, &sum, S);
#else
sum = ggml_vec_soft_max_f32(Mup, S, S, max);
#endif
}
assert(sum > 0.0);
sum = 1.0/sum;
ggml_vec_scale_f32(M, S, sum);
#ifndef NDEBUG
for (int i = 0; i < M; ++i) {
assert(!isnan(S[i]));
assert(!isinf(S[i]));
}
#endif
}
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*Mup + CACHE_LINE_SIZE_F32) + Mup);
for (int64_t i = 0; i < M; i++) {
S16[i] = GGML_FP32_TO_FP16(S[i]);
}
// todo: exclude known zero S[..] values from dot (reducing nev0 and increasing begin of v and S16).
if (GGML_VEC_DOT_UNROLL == 1 || (nev1 % GGML_VEC_DOT_UNROLL != 0)) {
for (int64_t ic = 0; ic < nev1; ++ic) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// v indices
const int iv2 = iq2 % nev2;
const int iv3 = iq3;
ggml_vec_dot_f16(nev0,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
(ggml_fp16_t *) ((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)), 0,
S16, 0, 1);
}
} else {
for (int64_t ic = 0; ic < nev1; ic += GGML_VEC_DOT_UNROLL) {
// dst indices
const int i1 = iq1;
const int i2 = iq2;
const int i3 = iq3;
// v indices
const int iv2 = iq2 % nev2;
const int iv3 = iq3;
ggml_vec_dot_f16_unroll(nev0, nbv1,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)),
((char *) v->data + ( ic*nbv1 + iv2*nbv2 + iv3*nbv3)),
S16);
}
}
}
}
static void ggml_compute_forward_flash_attn(
const struct ggml_compute_params * params,
const bool masked,
struct ggml_tensor * dst) {
const struct ggml_tensor * q = dst->src[0];
switch (q->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_flash_attn_f16(params, masked, dst);
} break;
case GGML_TYPE_F32:
{
ggml_compute_forward_flash_attn_f32(params, masked, dst);
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_attn_ext
static void ggml_compute_forward_flash_attn_ext_f16(
@ -16344,165 +15876,6 @@ static void ggml_compute_forward_flash_attn_ext(
}
}
// ggml_compute_forward_flash_ff
static void ggml_compute_forward_flash_ff_f16(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * a = dst->src[0]; // F16
const struct ggml_tensor * b0 = dst->src[1]; // F16 fc_w
const struct ggml_tensor * b1 = dst->src[2]; // F32 fc_b
const struct ggml_tensor * c0 = dst->src[3]; // F16 proj_w
const struct ggml_tensor * c1 = dst->src[4]; // F32 proj_b
int64_t t0 = ggml_perf_time_us();
UNUSED(t0);
GGML_TENSOR_LOCALS(int64_t, nea, a, ne)
GGML_TENSOR_LOCALS(size_t, nba, a, nb)
GGML_TENSOR_LOCALS(int64_t, neb0, b0, ne)
GGML_TENSOR_LOCALS(size_t, nbb0, b0, nb)
GGML_TENSOR_LOCALS(int64_t, neb1, b1, ne)
GGML_TENSOR_LOCALS(size_t, nbb1, b1, nb)
GGML_TENSOR_LOCALS(int64_t, nec0, c0, ne)
GGML_TENSOR_LOCALS(size_t, nbc0, c0, nb)
GGML_TENSOR_LOCALS(int64_t, nec1, c1, ne)
GGML_TENSOR_LOCALS(size_t, nbc1, c1, nb)
GGML_TENSOR_LOCALS(int64_t, ne, dst, ne)
GGML_TENSOR_LOCALS(size_t, nb, dst, nb)
const int ith = params->ith;
const int nth = params->nth;
const int64_t D = nea0;
//const int64_t N = nea1;
const int64_t M = neb01;
GGML_ASSERT(ne0 == nea0);
GGML_ASSERT(ne1 == nea1);
GGML_ASSERT(ne2 == nea2);
GGML_ASSERT(nba0 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbb00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbb10 == sizeof(float));
GGML_ASSERT(nbc00 == sizeof(ggml_fp16_t));
GGML_ASSERT(nbc10 == sizeof(float));
GGML_ASSERT(neb00 == D);
GGML_ASSERT(neb01 == M);
GGML_ASSERT(neb10 == M);
GGML_ASSERT(neb11 == 1);
GGML_ASSERT(nec00 == M);
GGML_ASSERT(nec01 == D);
GGML_ASSERT(nec10 == D);
GGML_ASSERT(nec11 == 1);
// dst cannot be transposed or permuted
GGML_ASSERT(nb0 == sizeof(float));
GGML_ASSERT(nb0 <= nb1);
GGML_ASSERT(nb1 <= nb2);
GGML_ASSERT(nb2 <= nb3);
if (params->type == GGML_TASK_TYPE_INIT) {
return;
}
if (params->type == GGML_TASK_TYPE_FINALIZE) {
return;
}
// parallelize by a rows using ggml_vec_dot_f32
// total rows in a
const int nr = nea1*nea2*nea3;
// rows per thread
const int dr = (nr + nth - 1)/nth;
// row range for this thread
const int ir0 = dr*ith;
const int ir1 = MIN(ir0 + dr, nr);
for (int ir = ir0; ir < ir1; ++ir) {
// a indices
const int ia3 = ir/(nea2*nea1);
const int ia2 = (ir - ia3*nea2*nea1)/nea1;
const int ia1 = (ir - ia3*nea2*nea1 - ia2*nea1);
float * S = (float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32);
for (int64_t ic = 0; ic < neb01; ++ic) {
// b0 indices
const int ib03 = ia3;
const int ib02 = ia2;
const int ib01 = ic;
// S indices
const int i1 = ib01;
ggml_vec_dot_f16(nea0,
S + i1, 0,
(ggml_fp16_t *) ((char *) b0->data + (ib01*nbb01 + ib02*nbb02 + ib03*nbb03)), 0,
(ggml_fp16_t *) ((char *) a->data + ( ia1*nba1 + ia2*nba2 + ia3*nba3)), 0, 1);
}
ggml_vec_add_f32(neb01, S, S, (float *) b1->data);
//ggml_vec_gelu_f32(neb01, S, S);
ggml_fp16_t * S16 = (ggml_fp16_t *) ((float *) params->wdata + ith*(2*M + CACHE_LINE_SIZE_F32) + M);
for (int64_t i = 0; i < M; i++) {
S16[i] = GGML_FP32_TO_FP16(S[i]);
}
ggml_vec_gelu_f16(neb01, S16, S16);
{
// dst indices
const int i1 = ia1;
const int i2 = ia2;
const int i3 = ia3;
for (int64_t ic = 0; ic < nec01; ++ic) {
ggml_vec_dot_f16(neb01,
(float *) ((char *) dst->data + (ic*nb0 + i1*nb1 + i2*nb2 + i3*nb3)), 0,
(ggml_fp16_t *) ((char *) c0->data + ( ic*nbc01 + i2*nbc02 + i3*nbc03)), 0,
S16, 0, 1);
}
ggml_vec_add_f32(nec01,
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
(float *) ((char *) dst->data + (i1*nb1 + i2*nb2 + i3*nb3)),
(float *) c1->data);
}
}
}
static void ggml_compute_forward_flash_ff(
const struct ggml_compute_params * params,
struct ggml_tensor * dst) {
const struct ggml_tensor * b0 = dst->src[1];
switch (b0->type) {
case GGML_TYPE_F16:
{
ggml_compute_forward_flash_ff_f16(params, dst);
} break;
case GGML_TYPE_F32:
{
GGML_ASSERT(false); // TODO
} break;
default:
{
GGML_ASSERT(false);
} break;
}
}
// ggml_compute_forward_flash_attn_back
static void ggml_compute_forward_flash_attn_back_f32(
@ -18073,21 +17446,10 @@ static void ggml_compute_forward(struct ggml_compute_params * params, struct ggm
{
ggml_compute_forward_leaky_relu(params, tensor);
} break;
case GGML_OP_FLASH_ATTN:
{
const int32_t t = ggml_get_op_params_i32(tensor, 0);
GGML_ASSERT(t == 0 || t == 1);
const bool masked = t != 0;
ggml_compute_forward_flash_attn(params, masked, tensor);
} break;
case GGML_OP_FLASH_ATTN_EXT:
{
ggml_compute_forward_flash_attn_ext(params, tensor->src[0], tensor->src[1], tensor->src[2], tensor->src[3], tensor);
} break;
case GGML_OP_FLASH_FF:
{
ggml_compute_forward_flash_ff(params, tensor);
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
int32_t t = ggml_get_op_params_i32(tensor, 0);
@ -19094,7 +18456,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
{
GGML_ASSERT(false); // TODO: not implemented
} break;
case GGML_OP_FLASH_ATTN:
case GGML_OP_FLASH_ATTN_EXT:
{
struct ggml_tensor * flash_grad = NULL;
@ -19148,10 +18509,6 @@ static void ggml_compute_backward(struct ggml_context * ctx, struct ggml_tensor
zero_table);
}
} break;
case GGML_OP_FLASH_FF:
{
GGML_ASSERT(false); // not supported
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
GGML_ASSERT(false); // not supported
@ -19838,15 +19195,10 @@ static int ggml_get_n_tasks(struct ggml_tensor * node, int n_threads, int n_cur_
{
n_tasks = n_threads;
} break;
case GGML_OP_FLASH_ATTN:
case GGML_OP_FLASH_ATTN_EXT:
{
n_tasks = n_threads;
} break;
case GGML_OP_FLASH_FF:
{
n_tasks = n_threads;
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
n_tasks = n_threads;
@ -20243,40 +19595,12 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
cur += sizeof(ggml_fp16_t)*ne00*ne01*ne02*ne03;
cur += sizeof(ggml_fp16_t)*ne10*ne11*ne12;
} break;
case GGML_OP_FLASH_ATTN:
{
const int64_t ne11 = ggml_up(node->src[1]->ne[1], GGML_SOFT_MAX_UNROLL);
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_BF16) {
cur = sizeof(float)*ne11*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*ne11*n_tasks; // this is overestimated by x2
}
} break;
case GGML_OP_FLASH_ATTN_EXT:
{
const int64_t ne00 = node->src[0]->ne[0]; // D
cur = 3*sizeof(float)*ne00*n_tasks; // 3x head size/thread
} break;
case GGML_OP_FLASH_FF:
{
if (node->src[1]->type == GGML_TYPE_F32) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_F16) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
} else if (node->src[1]->type == GGML_TYPE_BF16) {
cur = sizeof(float)*node->src[1]->ne[1]*n_tasks; // TODO: this can become (n_tasks-1)
cur += sizeof(float)*node->src[1]->ne[1]*n_tasks; // this is overestimated by x2
}
} break;
case GGML_OP_FLASH_ATTN_BACK:
{
const int64_t D = node->src[0]->ne[0];
@ -22117,11 +21441,7 @@ size_t ggml_quantize_chunk(
case GGML_TYPE_IQ1_S: result = quantize_iq1_s (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ1_M: result = quantize_iq1_m (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
case GGML_TYPE_IQ4_NL: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
#if QK_K == 64
case GGML_TYPE_IQ4_XS: result = quantize_iq4_nl (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
#else
case GGML_TYPE_IQ4_XS: result = quantize_iq4_xs (src + start, (char *) dst + start_row * row_size, nrows, n_per_row, imatrix); break;
#endif
case GGML_TYPE_F16:
{
size_t elemsize = sizeof(ggml_fp16_t);

18
ggml.h
View file

@ -481,9 +481,7 @@ extern "C" {
GGML_OP_ARGSORT,
GGML_OP_LEAKY_RELU,
GGML_OP_FLASH_ATTN,
GGML_OP_FLASH_ATTN_EXT,
GGML_OP_FLASH_FF,
GGML_OP_FLASH_ATTN_BACK,
GGML_OP_SSM_CONV,
GGML_OP_SSM_SCAN,
@ -1761,13 +1759,6 @@ extern "C" {
struct ggml_tensor * a,
int k);
GGML_API struct ggml_tensor * ggml_flash_attn(
struct ggml_context * ctx,
struct ggml_tensor * q,
struct ggml_tensor * k,
struct ggml_tensor * v,
bool masked);
#define GGML_KQ_MASK_PAD 32
// q: [n_embd, n_batch, n_head, 1]
@ -1788,6 +1779,7 @@ extern "C" {
struct ggml_tensor * a,
enum ggml_prec prec);
// TODO: needs to be adapted to ggml_flash_attn_ext
GGML_API struct ggml_tensor * ggml_flash_attn_back(
struct ggml_context * ctx,
struct ggml_tensor * q,
@ -1796,14 +1788,6 @@ extern "C" {
struct ggml_tensor * d,
bool masked);
GGML_API struct ggml_tensor * ggml_flash_ff(
struct ggml_context * ctx,
struct ggml_tensor * a,
struct ggml_tensor * b0,
struct ggml_tensor * b1,
struct ggml_tensor * c0,
struct ggml_tensor * c1);
GGML_API struct ggml_tensor * ggml_ssm_conv(
struct ggml_context * ctx,
struct ggml_tensor * s,

View file

@ -2609,7 +2609,8 @@ layout(local_size_x = 1, local_size_y = 256, local_size_z = 1) in;
layout (binding = 0) readonly buffer X {A_TYPE data_a[];};
layout (binding = 1) readonly buffer Y {int data_b[];};
layout (binding = 2) writeonly buffer D {D_TYPE data_d[];};
layout (binding = 2) readonly buffer Z {float data_freq_factors[];};
layout (binding = 3) writeonly buffer D {D_TYPE data_d[];};
layout (push_constant) uniform parameter {
uint ncols;
@ -2622,6 +2623,7 @@ layout (push_constant) uniform parameter {
float corr_dims[4];
float theta_scale;
float inv_ndims;
uint has_freq_facs;
} p;
float rope_yarn_ramp(const float low, const float high, const uint i0) {
@ -2671,7 +2673,8 @@ void main() {
const float cur_rot = p.inv_ndims * ic - ib;
const int pos = data_b[i2];
const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f);
const float freq_factor = p.has_freq_facs != 0 ? data_freq_factors[ic/2] : 1.0f;
const float theta_base = pos*p.freq_scale*pow(p.theta_scale, col/2.0f) / freq_factor;
float cos_theta, sin_theta;
rope_yarn(theta_base, uint(cur_rot), cos_theta, sin_theta);

View file

@ -139,6 +139,7 @@ class MODEL_ARCH(IntEnum):
COMMAND_R = auto()
DBRX = auto()
OLMO = auto()
ARCTIC = auto()
class MODEL_TENSOR(IntEnum):
@ -167,6 +168,7 @@ class MODEL_TENSOR(IntEnum):
FFN_DOWN = auto()
FFN_UP = auto()
FFN_ACT = auto()
FFN_NORM_EXP = auto()
FFN_GATE_EXP = auto()
FFN_DOWN_EXP = auto()
FFN_UP_EXP = auto()
@ -218,6 +220,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
MODEL_ARCH.COMMAND_R: "command-r",
MODEL_ARCH.DBRX: "dbrx",
MODEL_ARCH.OLMO: "olmo",
MODEL_ARCH.ARCTIC: "arctic",
}
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
@ -251,6 +254,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.FFN_DOWN_SHEXP: "blk.{bid}.ffn_down_shexp",
MODEL_TENSOR.FFN_UP_SHEXP: "blk.{bid}.ffn_up_shexp",
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
MODEL_TENSOR.FFN_NORM_EXP: "blk.{bid}.ffn_norm_exps",
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate_exps",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down_exps",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up_exps",
@ -732,6 +736,27 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
],
MODEL_ARCH.ARCTIC: [
MODEL_TENSOR.TOKEN_EMBD,
MODEL_TENSOR.OUTPUT_NORM,
MODEL_TENSOR.OUTPUT,
MODEL_TENSOR.ROPE_FREQS,
MODEL_TENSOR.ATTN_NORM,
MODEL_TENSOR.ATTN_Q,
MODEL_TENSOR.ATTN_K,
MODEL_TENSOR.ATTN_V,
MODEL_TENSOR.ATTN_OUT,
MODEL_TENSOR.ATTN_ROT_EMBD,
MODEL_TENSOR.FFN_GATE_INP,
MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_GATE,
MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_NORM_EXP,
MODEL_TENSOR.FFN_GATE_EXP,
MODEL_TENSOR.FFN_DOWN_EXP,
MODEL_TENSOR.FFN_UP_EXP,
],
# TODO
}
@ -905,9 +930,8 @@ class GGUFValueType(IntEnum):
raise ValueError(f"Unknown type: {type(val)}")
# Note: Does not support GGML_QKK_64
QK_K = 256
# Items here are (block size, type size)
QK_K = 256
GGML_QUANT_SIZES: dict[GGMLQuantizationType, tuple[int, int]] = {
GGMLQuantizationType.F32: (1, 4),
GGMLQuantizationType.F16: (1, 2),

View file

@ -12,6 +12,8 @@ from typing import Any, Literal, NamedTuple, TypeVar, Union
import numpy as np
import numpy.typing as npt
from .quants import quant_shape_to_byte_shape
if __name__ == "__main__":
import sys
from pathlib import Path
@ -251,6 +253,7 @@ class GGUFReader:
tensor_names.add(tensor_name)
ggml_type = GGMLQuantizationType(raw_dtype[0])
n_elems = int(np.prod(dims))
np_dims = tuple(reversed(dims.tolist()))
block_size, type_size = GGML_QUANT_SIZES[ggml_type]
n_bytes = n_elems * type_size // block_size
data_offs = int(start_offs + offset_tensor[0])
@ -279,6 +282,7 @@ class GGUFReader:
else:
item_count = n_bytes
item_type = np.uint8
np_dims = quant_shape_to_byte_shape(np_dims, ggml_type)
tensors.append(ReaderTensor(
name = tensor_name,
tensor_type = ggml_type,
@ -286,7 +290,7 @@ class GGUFReader:
n_elements = n_elems,
n_bytes = n_bytes,
data_offset = data_offs,
data = self._get(data_offs, item_type, item_count),
data = self._get(data_offs, item_type, item_count).reshape(np_dims),
field = field,
))
self.tensors = tensors

View file

@ -13,7 +13,6 @@ from string import ascii_letters, digits
import numpy as np
from .constants import (
GGML_QUANT_SIZES,
GGUF_DEFAULT_ALIGNMENT,
GGUF_MAGIC,
GGUF_VERSION,
@ -26,6 +25,8 @@ from .constants import (
TokenType,
)
from .quants import quant_shape_from_byte_shape
logger = logging.getLogger(__name__)
@ -229,10 +230,7 @@ class GGUFWriter:
else:
dtype = raw_dtype
if tensor_dtype == np.uint8:
block_size, type_size = GGML_QUANT_SIZES[raw_dtype]
if tensor_shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor row size ({tensor_shape[-1]}) is not a multiple of {dtype.name} type size ({type_size})")
tensor_shape = tuple(tensor_shape[:-1]) + (tensor_shape[-1] // type_size * block_size,)
tensor_shape = quant_shape_from_byte_shape(tensor_shape, raw_dtype)
n_dims = len(tensor_shape)
self.ti_data += self._pack("I", n_dims)
for i in range(n_dims):

View file

@ -1,5 +1,5 @@
from __future__ import annotations
from typing import Callable
from typing import Callable, Sequence
from numpy.typing import DTypeLike
@ -9,6 +9,20 @@ from .lazy import LazyNumpyTensor
import numpy as np
def quant_shape_to_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % block_size != 0:
raise ValueError(f"Quantized tensor row size ({shape[-1]}) is not a multiple of {quant_type.name} block size ({block_size})")
return (*shape[:-1], shape[-1] // block_size * type_size)
def quant_shape_from_byte_shape(shape: Sequence[int], quant_type: GGMLQuantizationType):
block_size, type_size = GGML_QUANT_SIZES[quant_type]
if shape[-1] % type_size != 0:
raise ValueError(f"Quantized tensor bytes per row ({shape[-1]}) is not a multiple of {quant_type.name} type size ({type_size})")
return (*shape[:-1], shape[-1] // type_size * block_size)
# same as ggml_compute_fp32_to_bf16 in ggml-impl.h
def __compute_fp32_to_bf16(n: np.ndarray) -> np.ndarray:
n = n.astype(np.float32, copy=False).view(np.int32)

View file

@ -244,6 +244,7 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc11", # nomic-bert
"model.layers.{bid}.mlp.c_fc", # starcoder2
"encoder.layer.{bid}.mlp.gated_layers_v", # jina-bert-v2
"model.layers.{bid}.residual_mlp.w3", # arctic
),
MODEL_TENSOR.FFN_UP_EXP: (
@ -272,6 +273,7 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc12", # nomic-bert
"encoder.layer.{bid}.mlp.gated_layers_w", # jina-bert-v2
"transformer.h.{bid}.mlp.linear_1", # refact
"model.layers.{bid}.residual_mlp.w1", # arctic
),
MODEL_TENSOR.FFN_GATE_EXP: (
@ -306,6 +308,7 @@ class TensorNameMap:
"encoder.layers.{bid}.mlp.fc2", # nomic-bert
"model.layers.{bid}.mlp.c_proj", # starcoder2
"encoder.layer.{bid}.mlp.wo", # jina-bert-v2
"model.layers.{bid}.residual_mlp.w2", # arctic
),
MODEL_TENSOR.FFN_DOWN_EXP: (
@ -382,6 +385,18 @@ class TensorNameMap:
),
}
# architecture-specific block mappings
arch_block_mappings_cfg: dict[MODEL_ARCH, dict[MODEL_TENSOR, tuple[str, ...]]] = {
MODEL_ARCH.ARCTIC: {
MODEL_TENSOR.FFN_NORM: (
"model.layers.{bid}.residual_layernorm",
),
MODEL_TENSOR.FFN_NORM_EXP: (
"model.layers.{bid}.post_attention_layernorm",
),
},
}
mapping: dict[str, tuple[MODEL_TENSOR, str]]
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
@ -393,12 +408,14 @@ class TensorNameMap:
self.mapping[tensor_name] = (tensor, tensor_name)
for key in keys:
self.mapping[key] = (tensor, tensor_name)
if arch in self.arch_block_mappings_cfg:
self.block_mappings_cfg.update(self.arch_block_mappings_cfg[arch])
for bid in range(n_blocks):
for tensor, keys in self.block_mappings_cfg.items():
if tensor not in MODEL_TENSORS[arch]:
continue
# TODO: make this configurable
n_experts = 60
n_experts = 128
for xid in range(n_experts):
tensor_name = TENSOR_NAMES[tensor].format(bid = bid, xid = xid)
self.mapping[tensor_name] = (tensor, tensor_name)

View file

@ -118,9 +118,7 @@ def copy_with_new_metadata(reader: gguf.GGUFReader, writer: gguf.GGUFWriter, new
for tensor in reader.tensors:
total_bytes += tensor.n_bytes
# Dimensions are written in reverse order, so flip them first
shape = np.flipud(tensor.shape).tolist()
writer.add_tensor_info(tensor.name, shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
writer.add_tensor_info(tensor.name, tensor.data.shape, tensor.data.dtype, tensor.data.nbytes, tensor.tensor_type)
bar = tqdm(desc="Writing", total=total_bytes, unit="byte", unit_scale=True)

754
llama.cpp

File diff suppressed because it is too large Load diff

View file

@ -759,6 +759,12 @@ extern "C" {
// n_threads_batch is the number of threads used for prompt and batch processing (multiple tokens)
LLAMA_API void llama_set_n_threads(struct llama_context * ctx, uint32_t n_threads, uint32_t n_threads_batch);
// Get the number of threads used for generation of a single token.
LLAMA_API uint32_t llama_n_threads(struct llama_context * ctx);
// Get the number of threads used for prompt and batch processing (multiple token).
LLAMA_API uint32_t llama_n_threads_batch(struct llama_context * ctx);
// Set whether to use causal attention or not
// If set to true, the model will only attend to the past tokens
LLAMA_API void llama_set_causal_attn(struct llama_context * ctx, bool causal_attn);

View file

@ -49,8 +49,14 @@ int main(void) {
"{{ bos_token }}{% if messages[0]['role'] == 'system' %}{% set loop_messages = messages[1:] %}{% set system_message = messages[0]['content'] %}{% elif false == true %}{% set loop_messages = messages %}{% set system_message = 'You are Command-R, a brilliant, sophisticated, AI-assistant trained to assist human users by providing thorough responses. You are trained by Cohere.' %}{% else %}{% set loop_messages = messages %}{% set system_message = false %}{% endif %}{% if system_message != false %}{{ '<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>' + system_message + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% for message in loop_messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% set content = message['content'] %}{% if message['role'] == 'user' %}{{ '<|START_OF_TURN_TOKEN|><|USER_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% elif message['role'] == 'assistant' %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' + content.strip() + '<|END_OF_TURN_TOKEN|>' }}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>' }}{% endif %}",
// Llama-3
"{% set loop_messages = messages %}{% for message in loop_messages %}{% set content = '<|start_header_id|>' + message['role'] + '<|end_header_id|>\n\n'+ message['content'] | trim + '<|eot_id|>' %}{% if loop.index0 == 0 %}{% set content = bos_token + content %}{% endif %}{{ content }}{% endfor %}{{ '<|start_header_id|>assistant<|end_header_id|>\n\n' }}",
// Phi-3
"{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + ' ' + message['content'] + '<|end|> ' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|> ' }}{% else %}{{ eos_token }}{% endif %}"
//Phi-3-mini
"{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
//Phi-3-small
"{{ bos_token }}{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
//Phi-3-medium
"{% for message in messages %}{% if (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif (message['role'] == 'assistant') %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
//Phi-3-vision
"{% for message in messages %}{{'<|' + message['role'] + '|>' + '\n' + message['content'] + '<|end|>\n' }}{% endfor %}{% if add_generation_prompt and messages[-1]['role'] != 'assistant' %}{{- '<|assistant|>\n' -}}{% endif %}"
};
std::vector<std::string> expected_output = {
// teknium/OpenHermes-2.5-Mistral-7B
@ -79,8 +85,14 @@ int main(void) {
"<|START_OF_TURN_TOKEN|><|SYSTEM_TOKEN|>You are a helpful assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Hello<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>Hi there<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Who are you<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>I am an assistant<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|USER_TOKEN|>Another question<|END_OF_TURN_TOKEN|><|START_OF_TURN_TOKEN|><|CHATBOT_TOKEN|>",
// Llama 3
"<|start_header_id|>system<|end_header_id|>\n\nYou are a helpful assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nHello<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nHi there<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nWho are you<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\nI am an assistant<|eot_id|><|start_header_id|>user<|end_header_id|>\n\nAnother question<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n",
// Phi 3
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\nI am an assistant<|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
//Phi-3-mini
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
//Phi-3-small
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
//Phi-3-medium
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
//Phi-3-vision
"<|system|>\nYou are a helpful assistant<|end|>\n<|user|>\nHello<|end|>\n<|assistant|>\nHi there<|end|>\n<|user|>\nWho are you<|end|>\n<|assistant|>\n I am an assistant <|end|>\n<|user|>\nAnother question<|end|>\n<|assistant|>\n",
};
std::vector<char> formatted_chat(1024);
int32_t res;

View file

@ -1515,90 +1515,50 @@ int main(int argc, const char ** argv) {
}
// flash_attn f32
{
srand(seed);
const int nargs = 3;
// TODO: adapt to ggml_flash_attn_ext() changes
//{
// srand(seed);
// const int nargs = 3;
int64_t ne2[4];
// int64_t ne2[4];
get_random_dims(ne2, 4);
int64_t D = ne2[0];
int64_t N = ne2[1];
int64_t M = ne2[2] + N;
int64_t B = ne2[3];
// get_random_dims(ne2, 4);
// int64_t D = ne2[0];
// int64_t N = ne2[1];
// int64_t M = ne2[2] + N;
// int64_t B = ne2[3];
for (int masked = 0; masked <= 1; ++masked) {
for (int ndims = 2; ndims <= 4; ++ndims) {
int max_nrep = (ndims >= 3) ? 2 : 1;
for (int nrep = 1; nrep < max_nrep; ++nrep) {
int64_t neq[4] = { D, N, B*nrep, ne[3] };
int64_t nek[4] = { D, M, B, ne[3] };
int64_t nev[4] = { M, D, B, ne[3] };
if (ndims == 2) {
neq[2] = 1; neq[3] = 1;
nek[2] = 1; nek[3] = 1;
nev[2] = 1; nev[3] = 1;
} else if (ndims == 3) {
neq[3] = 1;
nek[3] = 1;
nev[3] = 1;
}
x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]);
ggml_set_param(ctx0, x[2]);
// for (int masked = 0; masked <= 1; ++masked) {
// for (int ndims = 2; ndims <= 4; ++ndims) {
// int max_nrep = (ndims >= 3) ? 2 : 1;
// for (int nrep = 1; nrep < max_nrep; ++nrep) {
// int64_t neq[4] = { D, N, B*nrep, ne[3] };
// int64_t nek[4] = { D, M, B, ne[3] };
// int64_t nev[4] = { M, D, B, ne[3] };
// if (ndims == 2) {
// neq[2] = 1; neq[3] = 1;
// nek[2] = 1; nek[3] = 1;
// nev[2] = 1; nev[3] = 1;
// } else if (ndims == 3) {
// neq[3] = 1;
// nek[3] = 1;
// nev[3] = 1;
// }
// x[0] = get_random_tensor_f32(ctx0, ndims, neq, -0.1250f, 0.1250f);
// x[1] = get_random_tensor_f32(ctx0, ndims, nek, -0.1250f, 0.1250f);
// x[2] = get_random_tensor_f32(ctx0, ndims, nev, -0.1250f, 0.1250f);
// ggml_set_param(ctx0, x[0]);
// ggml_set_param(ctx0, x[1]);
// ggml_set_param(ctx0, x[2]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
// struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
}
}
}
}
// check_gradient("flash_attn f32", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
// }
// }
// }
//}
// flash_attn f16, not yet fully implemented
if(0)
{
srand(seed);
const int nargs = 3;
int64_t ne2[4];
get_random_dims(ne2, 4);
int64_t D = ne2[0];
int64_t N = ne2[1];
int64_t M = ne2[2] + N;
int64_t B = ne2[3];
for (int masked = 0; masked <= 1; ++masked) {
for (int ndims = 2; ndims <= 4; ++ndims) {
int64_t neq[4] = { D, N, B, ne[3] };
int64_t nek[4] = { D, M, B, ne[3] };
int64_t nev[4] = { M, D, B, ne[3] };
if (ndims == 2) {
neq[2] = 1; neq[3] = 1;
nek[2] = 1; nek[3] = 1;
nev[2] = 1; nev[3] = 1;
} else if (ndims == 3) {
neq[3] = 1;
nek[3] = 1;
nev[3] = 1;
}
x[0] = get_random_tensor_f16(ctx0, ndims, neq, -0.1250f, 0.1250f);
x[1] = get_random_tensor_f16(ctx0, ndims, nek, -0.1250f, 0.1250f);
x[2] = get_random_tensor_f16(ctx0, ndims, nev, -0.1250f, 0.1250f);
ggml_set_param(ctx0, x[0]);
ggml_set_param(ctx0, x[1]);
ggml_set_param(ctx0, x[2]);
struct ggml_tensor * f = ggml_sum(ctx0, ggml_flash_attn(ctx0, x[0], x[1], x[2], (masked == 0)));
check_gradient("flash_attn f16", ctx0, x, f, ndims, nargs, 1.5e-4f, 1e-3f, INFINITY);
}
}
}
ggml_free(ctx0);
}