WIP: start implementing LLaVA
This commit is contained in:
parent
095231dfd3
commit
59aa1acfe9
9 changed files with 10531 additions and 13 deletions
|
@ -28,6 +28,7 @@ else()
|
||||||
add_subdirectory(speculative)
|
add_subdirectory(speculative)
|
||||||
add_subdirectory(parallel)
|
add_subdirectory(parallel)
|
||||||
add_subdirectory(embd-input)
|
add_subdirectory(embd-input)
|
||||||
|
add_subdirectory(llava)
|
||||||
add_subdirectory(llama-bench)
|
add_subdirectory(llama-bench)
|
||||||
add_subdirectory(beam-search)
|
add_subdirectory(beam-search)
|
||||||
if (LLAMA_METAL)
|
if (LLAMA_METAL)
|
||||||
|
|
17
examples/llava/CMakeLists.txt
Normal file
17
examples/llava/CMakeLists.txt
Normal file
|
@ -0,0 +1,17 @@
|
||||||
|
set(TARGET clip)
|
||||||
|
add_library(${TARGET} clip.cpp clip.h)
|
||||||
|
install(TARGETS ${TARGET} LIBRARY)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
if(TARGET BUILD_INFO)
|
||||||
|
add_dependencies(${TARGET} BUILD_INFO)
|
||||||
|
endif()
|
||||||
|
|
||||||
|
set(TARGET clip-test)
|
||||||
|
add_executable(${TARGET} clip-test.cpp)
|
||||||
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama clip ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
if(TARGET BUILD_INFO)
|
||||||
|
add_dependencies(${TARGET} BUILD_INFO)
|
||||||
|
endif()
|
18
examples/llava/clip-test.cpp
Normal file
18
examples/llava/clip-test.cpp
Normal file
|
@ -0,0 +1,18 @@
|
||||||
|
#include "clip.h"
|
||||||
|
#include <stdio.h>
|
||||||
|
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
const char * model_path = argv[1];
|
||||||
|
const char * img_path = argv[2];
|
||||||
|
const char * text = argv[3];
|
||||||
|
|
||||||
|
auto ctx_clip = clip_model_load(model_path, 1);
|
||||||
|
clip_image_u8 img;
|
||||||
|
clip_image_load_from_file(img_path, &img);
|
||||||
|
float score;
|
||||||
|
clip_compare_text_and_image(ctx_clip, 4, text, &img, &score);
|
||||||
|
printf("score: %f\n", score);
|
||||||
|
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
1675
examples/llava/clip.cpp
Normal file
1675
examples/llava/clip.cpp
Normal file
File diff suppressed because it is too large
Load diff
106
examples/llava/clip.h
Normal file
106
examples/llava/clip.h
Normal file
|
@ -0,0 +1,106 @@
|
||||||
|
#ifndef CLIP_H
|
||||||
|
#define CLIP_H
|
||||||
|
|
||||||
|
#include "ggml.h"
|
||||||
|
|
||||||
|
struct clip_ctx;
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
extern "C" {
|
||||||
|
#endif
|
||||||
|
|
||||||
|
struct clip_text_hparams {
|
||||||
|
int32_t n_vocab;
|
||||||
|
int32_t num_positions;
|
||||||
|
int32_t hidden_size;
|
||||||
|
int32_t n_intermediate;
|
||||||
|
int32_t projection_dim;
|
||||||
|
int32_t n_head;
|
||||||
|
int32_t n_layer;
|
||||||
|
float eps;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct clip_vision_hparams {
|
||||||
|
int32_t image_size;
|
||||||
|
int32_t patch_size;
|
||||||
|
int32_t hidden_size;
|
||||||
|
int32_t n_intermediate;
|
||||||
|
int32_t projection_dim;
|
||||||
|
int32_t n_head;
|
||||||
|
int32_t n_layer;
|
||||||
|
float eps;
|
||||||
|
};
|
||||||
|
|
||||||
|
typedef int32_t clip_vocab_id;
|
||||||
|
struct clip_tokens {
|
||||||
|
clip_vocab_id * data;
|
||||||
|
size_t size;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct clip_ctx * clip_model_load(const char * fname, const int verbosity);
|
||||||
|
|
||||||
|
void clip_free(struct clip_ctx * ctx);
|
||||||
|
|
||||||
|
struct clip_text_hparams * clip_get_text_hparams(struct clip_ctx * ctx);
|
||||||
|
struct clip_vision_hparams * clip_get_vision_hparams(struct clip_ctx * ctx);
|
||||||
|
|
||||||
|
// RGB uint8 image
|
||||||
|
struct clip_image_u8 {
|
||||||
|
int nx;
|
||||||
|
int ny;
|
||||||
|
uint8_t * data;
|
||||||
|
size_t size;
|
||||||
|
};
|
||||||
|
|
||||||
|
// RGB float32 image (NHWC)
|
||||||
|
// Memory layout: RGBRGBRGB...
|
||||||
|
struct clip_image_f32 {
|
||||||
|
int nx;
|
||||||
|
int ny;
|
||||||
|
float * data;
|
||||||
|
size_t size;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct clip_image_u8_batch {
|
||||||
|
struct clip_image_u8 * data;
|
||||||
|
size_t size;
|
||||||
|
};
|
||||||
|
|
||||||
|
struct clip_image_f32_batch {
|
||||||
|
struct clip_image_f32 * data;
|
||||||
|
size_t size;
|
||||||
|
};
|
||||||
|
|
||||||
|
bool clip_tokenize(const struct clip_ctx * ctx, const char * text, struct clip_tokens * tokens);
|
||||||
|
|
||||||
|
struct clip_image_u8 * make_clip_image_u8();
|
||||||
|
struct clip_image_f32 * make_clip_image_f32();
|
||||||
|
bool clip_image_load_from_file(const char * fname, struct clip_image_u8 * img);
|
||||||
|
bool clip_image_preprocess(const struct clip_ctx * ctx, const struct clip_image_u8 * img, struct clip_image_f32 * res);
|
||||||
|
|
||||||
|
bool clip_text_encode(const struct clip_ctx * ctx, const int n_threads, const struct clip_tokens * tokens, float * vec,
|
||||||
|
const bool normalize);
|
||||||
|
bool clip_image_encode(const struct clip_ctx * ctx, const int n_threads, struct clip_image_f32 * img, float * vec,
|
||||||
|
const bool normalize);
|
||||||
|
|
||||||
|
void clip_image_batch_preprocess(const struct clip_ctx * ctx, const int n_threads,
|
||||||
|
const struct clip_image_u8_batch * img_inputs, struct clip_image_f32_batch * imgs_resized);
|
||||||
|
bool clip_image_batch_encode(const struct clip_ctx * ctx, const int n_threads, const struct clip_image_f32_batch * imgs,
|
||||||
|
float * vec, const bool normalize);
|
||||||
|
|
||||||
|
// bool image_normalize(const clip_image_u8 *img, clip_image_f32 *res);
|
||||||
|
|
||||||
|
bool clip_compare_text_and_image(const struct clip_ctx * ctx, const int n_threads, const char * text,
|
||||||
|
const struct clip_image_u8 * image, float * score);
|
||||||
|
float clip_similarity_score(const float * vec1, const float * vec2, const int vec_dim);
|
||||||
|
bool softmax_with_sorting(float * arr, const int length, float * sorted_scores, int * indices);
|
||||||
|
bool clip_zero_shot_label_image(struct clip_ctx * ctx, const int n_threads, const struct clip_image_u8 * input_img,
|
||||||
|
const char ** labels, const size_t n_labels, float * scores, int * indices);
|
||||||
|
|
||||||
|
bool clip_model_quantize(const char * fname_inp, const char * fname_out, const int itype);
|
||||||
|
|
||||||
|
#ifdef __cplusplus
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#endif // CLIP_H
|
240
examples/llava/convert_hf_to_gguf.py
Normal file
240
examples/llava/convert_hf_to_gguf.py
Normal file
|
@ -0,0 +1,240 @@
|
||||||
|
import argparse
|
||||||
|
import os
|
||||||
|
import json
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
from gguf import *
|
||||||
|
from transformers import CLIPModel, CLIPProcessor
|
||||||
|
|
||||||
|
TEXT = "clip.text"
|
||||||
|
VISION = "clip.vision"
|
||||||
|
|
||||||
|
def k(raw_key: str, arch: str) -> str:
|
||||||
|
return raw_key.format(arch=arch)
|
||||||
|
|
||||||
|
def should_skip_tensor(name: str, has_text: bool, has_vision: bool, has_llava: bool) -> bool:
|
||||||
|
if name in (
|
||||||
|
"logit_scale",
|
||||||
|
"text_model.embeddings.position_ids",
|
||||||
|
"vision_model.embeddings.position_ids",
|
||||||
|
):
|
||||||
|
return True
|
||||||
|
|
||||||
|
if name == "visual_projection.weight" and has_llava:
|
||||||
|
return True
|
||||||
|
|
||||||
|
if name.startswith("v") and not has_vision:
|
||||||
|
return True
|
||||||
|
|
||||||
|
if name.startswith("t") and not has_text:
|
||||||
|
return True
|
||||||
|
|
||||||
|
return False
|
||||||
|
|
||||||
|
def get_tensor_name(name: str) -> str:
|
||||||
|
if "projection" in name:
|
||||||
|
return name
|
||||||
|
|
||||||
|
return name.replace("text_model", "t").replace("vision_model", "v").replace("encoder.layers", "blk").replace("embeddings.", "").replace("_proj", "").replace("self_attn.", "attn_").replace("layer_norm", "ln").replace("layernorm", "ln").replace("mlp.fc1", "ffn_down").replace("mlp.fc2", "ffn_up").replace("embedding", "embd").replace("final", "post").replace("layrnorm", "ln")
|
||||||
|
|
||||||
|
|
||||||
|
def bytes_to_unicode():
|
||||||
|
"""
|
||||||
|
Returns list of utf-8 byte and a corresponding list of unicode strings.
|
||||||
|
The reversible bpe codes work on unicode strings.
|
||||||
|
This means you need a large # of unicode characters in your vocab if you want to avoid UNKs.
|
||||||
|
When you're at something like a 10B token dataset you end up needing around 5K for decent coverage.
|
||||||
|
This is a signficant percentage of your normal, say, 32K bpe vocab.
|
||||||
|
To avoid that, we want lookup tables between utf-8 bytes and unicode strings.
|
||||||
|
And avoids mapping to whitespace/control characters the bpe code barfs on.
|
||||||
|
"""
|
||||||
|
bs = (
|
||||||
|
list(range(ord("!"), ord("~") + 1))
|
||||||
|
+ list(range(ord("¡"), ord("¬") + 1))
|
||||||
|
+ list(range(ord("®"), ord("ÿ") + 1))
|
||||||
|
)
|
||||||
|
cs = bs[:]
|
||||||
|
n = 0
|
||||||
|
for b in range(2**8):
|
||||||
|
if b not in bs:
|
||||||
|
bs.append(b)
|
||||||
|
cs.append(2**8 + n)
|
||||||
|
n += 1
|
||||||
|
cs = [chr(n) for n in cs]
|
||||||
|
return dict(zip(bs, cs))
|
||||||
|
|
||||||
|
ap = argparse.ArgumentParser(prog="convert_hf_to_gguf.py")
|
||||||
|
ap.add_argument("-m", "--model-dir", help="Path to model directory cloned from HF Hub", required=True)
|
||||||
|
ap.add_argument("--use-f32", action="store_true", default=False, help="Use f32 instead of f16")
|
||||||
|
ap.add_argument("--text-only", action="store_true", required=False, help="Save a text-only model. It can't be used to encode images")
|
||||||
|
ap.add_argument("--vision-only", action="store_true", required=False, help="Save a vision-only model. It can't be used to encode texts")
|
||||||
|
ap.add_argument("--llava-projector", help="Path to projector.pt file. If specified, save an image encoder for LLaVA models.")
|
||||||
|
ap.add_argument("--image-mean", nargs=3, type=float, required=False, help="Override image mean values")
|
||||||
|
ap.add_argument("--image-std", nargs=3, type=float, required=False, help="Override image std values")
|
||||||
|
ap.add_argument("-o", "--output-dir", help="Directory to save GGUF files. Default is the original model directory", default=None)
|
||||||
|
|
||||||
|
args = ap.parse_args()
|
||||||
|
|
||||||
|
|
||||||
|
if args.text_only and args.vision_only:
|
||||||
|
print("--text-only and --image-only arguments cannot be specified at the same time.")
|
||||||
|
exit(1)
|
||||||
|
|
||||||
|
if args.use_f32:
|
||||||
|
print("WARNING: Weights for the convolution op is always saved in f16, as the convolution op in GGML does not support 32-bit kernel weights yet.")
|
||||||
|
|
||||||
|
# output in the same directory as the model if output_dir is None
|
||||||
|
dir_model = args.model_dir
|
||||||
|
|
||||||
|
|
||||||
|
with open(dir_model + "/vocab.json", "r", encoding="utf-8") as f:
|
||||||
|
vocab = json.load(f)
|
||||||
|
tokens = [key for key in vocab]
|
||||||
|
|
||||||
|
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
||||||
|
config = json.load(f)
|
||||||
|
v_hparams = config["vision_config"]
|
||||||
|
t_hparams = config["text_config"]
|
||||||
|
|
||||||
|
# possible data types
|
||||||
|
# ftype == 0 -> float32
|
||||||
|
# ftype == 1 -> float16
|
||||||
|
#
|
||||||
|
# map from ftype to string
|
||||||
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
|
ftype = 1
|
||||||
|
if args.use_f32:
|
||||||
|
ftype = 0
|
||||||
|
|
||||||
|
|
||||||
|
model = CLIPModel.from_pretrained(dir_model)
|
||||||
|
processor = CLIPProcessor.from_pretrained(dir_model)
|
||||||
|
|
||||||
|
fname_middle = None
|
||||||
|
has_text_encoder = True
|
||||||
|
has_vision_encoder = True
|
||||||
|
has_llava_projector = False
|
||||||
|
if args.text_only:
|
||||||
|
fname_middle = "text-"
|
||||||
|
has_vision_encoder = False
|
||||||
|
elif args.vision_only:
|
||||||
|
fname_middle = "vision-"
|
||||||
|
has_text_encoder = False
|
||||||
|
elif args.llava_projector is not None:
|
||||||
|
fname_middle = "mmproj-"
|
||||||
|
has_text_encoder = False
|
||||||
|
has_llava_projector = True
|
||||||
|
else:
|
||||||
|
fname_middle = ""
|
||||||
|
|
||||||
|
output_dir = args.output_dir if args.output_dir is not None else dir_model
|
||||||
|
os.makedirs(output_dir, exist_ok=True)
|
||||||
|
output_prefix = os.path.basename(output_dir).replace("ggml_", "")
|
||||||
|
fname_out = os.path.join(output_dir, f"{output_prefix}_ggml-{fname_middle}model-{ftype_str[ftype]}.gguf")
|
||||||
|
fout = GGUFWriter(path=fname_out, arch="clip")
|
||||||
|
|
||||||
|
fout.add_bool("clip.has_text_encoder", has_text_encoder)
|
||||||
|
fout.add_bool("clip.has_vision_encoder", has_vision_encoder)
|
||||||
|
fout.add_bool("clip.has_llava_projector", has_llava_projector)
|
||||||
|
fout.add_file_type(ftype)
|
||||||
|
model_name = config["_name_or_path"] if "_name_or_path" in config else os.path.basename(dir_model)
|
||||||
|
fout.add_name(model_name)
|
||||||
|
if args.text_only:
|
||||||
|
fout.add_description("text-only CLIP model")
|
||||||
|
elif args.vision_only and not has_llava_projector:
|
||||||
|
fout.add_description("vision-only CLIP model")
|
||||||
|
elif has_llava_projector:
|
||||||
|
fout.add_description("image encoder for LLaVA")
|
||||||
|
else:
|
||||||
|
fout.add_description("two-tower CLIP model")
|
||||||
|
|
||||||
|
if has_text_encoder:
|
||||||
|
# text_model hparams
|
||||||
|
fout.add_uint32(k(KEY_CONTEXT_LENGTH, TEXT), t_hparams["max_position_embeddings"])
|
||||||
|
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, TEXT), t_hparams["hidden_size"])
|
||||||
|
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, TEXT), t_hparams["intermediate_size"])
|
||||||
|
fout.add_uint32("clip.text.projection_dim", t_hparams.get("projection_dim", config["projection_dim"]))
|
||||||
|
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, TEXT), t_hparams["num_attention_heads"])
|
||||||
|
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, TEXT), t_hparams["layer_norm_eps"])
|
||||||
|
fout.add_uint32(k(KEY_BLOCK_COUNT, TEXT), t_hparams["num_hidden_layers"])
|
||||||
|
fout.add_token_list(tokens)
|
||||||
|
|
||||||
|
if has_vision_encoder:
|
||||||
|
# vision_model hparams
|
||||||
|
fout.add_uint32("clip.vision.image_size", v_hparams["image_size"])
|
||||||
|
fout.add_uint32("clip.vision.patch_size", v_hparams["patch_size"])
|
||||||
|
fout.add_uint32(k(KEY_EMBEDDING_LENGTH, VISION), v_hparams["hidden_size"])
|
||||||
|
fout.add_uint32(k(KEY_FEED_FORWARD_LENGTH, VISION), v_hparams["intermediate_size"])
|
||||||
|
fout.add_uint32("clip.vision.projection_dim", v_hparams.get("projection_dim", config["projection_dim"]))
|
||||||
|
fout.add_uint32(k(KEY_ATTENTION_HEAD_COUNT, VISION), v_hparams["num_attention_heads"])
|
||||||
|
fout.add_float32(k(KEY_ATTENTION_LAYERNORM_EPS, VISION), v_hparams["layer_norm_eps"])
|
||||||
|
block_count = v_hparams["num_hidden_layers"] - 1 if has_llava_projector else v_hparams["num_hidden_layers"]
|
||||||
|
fout.add_uint32(k(KEY_BLOCK_COUNT, VISION), block_count)
|
||||||
|
|
||||||
|
image_mean = processor.image_processor.image_mean if args.image_mean is None else args.image_mean
|
||||||
|
image_std = processor.image_processor.image_std if args.image_std is None else args.image_std
|
||||||
|
fout.add_array("clip.vision.image_mean", image_mean)
|
||||||
|
fout.add_array("clip.vision.image_std", image_std)
|
||||||
|
|
||||||
|
use_gelu = v_hparams["hidden_act"] == "gelu"
|
||||||
|
fout.add_bool("clip.use_gelu", use_gelu)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if has_llava_projector:
|
||||||
|
model.vision_model.encoder.layers.pop(-1)
|
||||||
|
projector = torch.load(args.llava_projector)
|
||||||
|
weight = projector["model.mm_projector.weight"].cpu().squeeze().float().numpy().astype(np.float16)
|
||||||
|
bias = projector['model.mm_projector.bias'].cpu().squeeze().float().numpy().astype(np.float32)
|
||||||
|
fout.add_tensor("llava_projector.weight", weight)
|
||||||
|
fout.add_tensor("llava_projector.bias", bias)
|
||||||
|
print("Projector tensors added\n")
|
||||||
|
|
||||||
|
|
||||||
|
list_vars = model.state_dict()
|
||||||
|
for name, data in list_vars.items():
|
||||||
|
if should_skip_tensor(name, has_text_encoder, has_vision_encoder, has_llava_projector):
|
||||||
|
# we don't need this
|
||||||
|
print(f"skipping parameter: {name}")
|
||||||
|
continue
|
||||||
|
|
||||||
|
name = get_tensor_name(name)
|
||||||
|
data = data.squeeze().numpy()
|
||||||
|
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
|
||||||
|
# ftype == 0 -> float32, ftype == 1 -> float16
|
||||||
|
ftype_cur = 0
|
||||||
|
if n_dims == 4:
|
||||||
|
print(f"tensor {name} is always saved in f16")
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
ftype_cur = 1
|
||||||
|
elif ftype == 1:
|
||||||
|
if name[-7:] == ".weight" and n_dims == 2:
|
||||||
|
print(" Converting to float16")
|
||||||
|
data = data.astype(np.float16)
|
||||||
|
ftype_cur = 1
|
||||||
|
else:
|
||||||
|
print(" Converting to float32")
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
else:
|
||||||
|
if data.dtype != np.float32:
|
||||||
|
print(" Converting to float32")
|
||||||
|
data = data.astype(np.float32)
|
||||||
|
ftype_cur = 0
|
||||||
|
|
||||||
|
print(f"{name} - {ftype_str[ftype_cur]} - shape = {data.shape}")
|
||||||
|
fout.add_tensor(name, data)
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
fout.write_header_to_file()
|
||||||
|
fout.write_kv_data_to_file()
|
||||||
|
fout.write_tensors_to_file()
|
||||||
|
fout.close()
|
||||||
|
|
||||||
|
print("Done. Output file: " + fname_out)
|
63
examples/llava/llava_surgery.py
Normal file
63
examples/llava/llava_surgery.py
Normal file
|
@ -0,0 +1,63 @@
|
||||||
|
import argparse
|
||||||
|
from llava.model import LlavaLlamaForCausalLM
|
||||||
|
from transformers import AutoTokenizer
|
||||||
|
from peft import PeftModel
|
||||||
|
import torch
|
||||||
|
|
||||||
|
dtype = torch.bfloat16
|
||||||
|
|
||||||
|
ap = argparse.ArgumentParser()
|
||||||
|
ap.add_argument("-m", "--model", help="Path to LLaVA RLHF model")
|
||||||
|
ap.add_argument("-o", "--output", help="Output directory to save the merged file")
|
||||||
|
args = ap.parse_args()
|
||||||
|
|
||||||
|
model_path = f"{args.model}/sft_model"
|
||||||
|
lora_path = f"{args.model}/rlhf_lora_adapter_model"
|
||||||
|
save_path = args.output
|
||||||
|
|
||||||
|
model = LlavaLlamaForCausalLM.from_pretrained(
|
||||||
|
model_path,
|
||||||
|
device_map={"": "cuda:0"},
|
||||||
|
torch_dtype=dtype,
|
||||||
|
)
|
||||||
|
model = PeftModel.from_pretrained(
|
||||||
|
model,
|
||||||
|
lora_path,
|
||||||
|
)
|
||||||
|
|
||||||
|
|
||||||
|
model = model.merge_and_unload()
|
||||||
|
|
||||||
|
model.save_pretrained(save_path)
|
||||||
|
|
||||||
|
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
||||||
|
tokenizer.save_pretrained(save_path)
|
||||||
|
|
||||||
|
del model
|
||||||
|
del tokenizer
|
||||||
|
|
||||||
|
|
||||||
|
# Load the checkpoint
|
||||||
|
checkpoint = torch.load(f"{save_path}/pytorch_model-00002-of-00002.bin")
|
||||||
|
|
||||||
|
# Extract the tensors we want
|
||||||
|
mm_projector_weight = checkpoint['model.mm_projector.weight']
|
||||||
|
mm_projector_bias = checkpoint['model.mm_projector.bias']
|
||||||
|
|
||||||
|
# Remove the tensors from the checkpoint
|
||||||
|
del checkpoint['model.mm_projector.weight']
|
||||||
|
del checkpoint['model.mm_projector.bias']
|
||||||
|
|
||||||
|
# Create a dictionary with the original names as keys
|
||||||
|
mm_projector = {
|
||||||
|
'model.mm_projector.weight': mm_projector_weight,
|
||||||
|
'model.mm_projector.bias': mm_projector_bias
|
||||||
|
}
|
||||||
|
|
||||||
|
# Save the combined dictionary using torch.save
|
||||||
|
torch.save(mm_projector, "projector.pt")
|
||||||
|
|
||||||
|
# Save the rest of the model with the same original name
|
||||||
|
torch.save(checkpoint, "./llava-7b-rlhf-merged/pytorch_model-00002-of-00002.bin")
|
||||||
|
|
||||||
|
Print("Operation complete!")
|
8396
examples/llava/stb_image.h
Normal file
8396
examples/llava/stb_image.h
Normal file
File diff suppressed because it is too large
Load diff
8
ggml.c
8
ggml.c
|
@ -14077,7 +14077,7 @@ static void ggml_compute_forward_conv_2d_f16_f32(
|
||||||
int64_t t0 = ggml_perf_time_us();
|
int64_t t0 = ggml_perf_time_us();
|
||||||
UNUSED(t0);
|
UNUSED(t0);
|
||||||
|
|
||||||
GGML_TENSOR_BINARY_OP_LOCALS
|
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||||
|
|
||||||
const int ith = params->ith;
|
const int ith = params->ith;
|
||||||
const int nth = params->nth;
|
const int nth = params->nth;
|
||||||
|
@ -14105,9 +14105,10 @@ static void ggml_compute_forward_conv_2d_f16_f32(
|
||||||
{
|
{
|
||||||
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
ggml_fp16_t * const wdata = (ggml_fp16_t *) params->wdata + 0;
|
||||||
|
|
||||||
|
for (int i13 = 0; i13 < ne13; i13++) {
|
||||||
for (int i12 = 0; i12 < ne12; i12++) {
|
for (int i12 = 0; i12 < ne12; i12++) {
|
||||||
const float * const src = (float *)((char *) src1->data + i12*nb12);
|
const float * const src = (float *)((char *) src1->data + i13*nb13 + i12*nb12);
|
||||||
ggml_fp16_t * dst_data = wdata;
|
ggml_fp16_t * dst_data = wdata + i13*(ne1*ne0*ew0);
|
||||||
|
|
||||||
for (int i1 = 0; i1 < ne1; i1++) {
|
for (int i1 = 0; i1 < ne1; i1++) {
|
||||||
for (int i0 = 0; i0 < ne0; i0++) {
|
for (int i0 = 0; i0 < ne0; i0++) {
|
||||||
|
@ -14126,6 +14127,7 @@ static void ggml_compute_forward_conv_2d_f16_f32(
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
}
|
||||||
|
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue