Merge branch 'master' of github.com:ggerganov/llama.cpp into phillip-kravtsov/support-adept-persimmon-8b
This commit is contained in:
commit
5a0990c1c3
24 changed files with 1565 additions and 212 deletions
|
@ -1,6 +1,9 @@
|
||||||
*.o
|
*.o
|
||||||
*.a
|
*.a
|
||||||
.cache/
|
.cache/
|
||||||
|
.git/
|
||||||
|
.github/
|
||||||
|
.gitignore
|
||||||
.vs/
|
.vs/
|
||||||
.vscode/
|
.vscode/
|
||||||
.DS_Store
|
.DS_Store
|
||||||
|
|
1
.gitignore
vendored
1
.gitignore
vendored
|
@ -40,6 +40,7 @@ models-mnt
|
||||||
/embedding
|
/embedding
|
||||||
/gguf
|
/gguf
|
||||||
/gguf-llama-simple
|
/gguf-llama-simple
|
||||||
|
/infill
|
||||||
/libllama.so
|
/libllama.so
|
||||||
/llama-bench
|
/llama-bench
|
||||||
/main
|
/main
|
||||||
|
|
|
@ -1,4 +1,4 @@
|
||||||
cmake_minimum_required(VERSION 3.12) # Don't bump this version for no reason
|
cmake_minimum_required(VERSION 3.13) # for add_link_options
|
||||||
project("llama.cpp" C CXX)
|
project("llama.cpp" C CXX)
|
||||||
|
|
||||||
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
|
||||||
|
@ -343,8 +343,9 @@ if (LLAMA_MPI)
|
||||||
set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h)
|
set(GGML_SOURCES_MPI ggml-mpi.c ggml-mpi.h)
|
||||||
add_compile_definitions(GGML_USE_MPI)
|
add_compile_definitions(GGML_USE_MPI)
|
||||||
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
|
add_compile_definitions(${MPI_C_COMPILE_DEFINITIONS})
|
||||||
set(cxx_flags ${cxx_flags} -Wno-cast-qual)
|
if (NOT MSVC)
|
||||||
set(c_flags ${c_flags} -Wno-cast-qual)
|
add_compile_options(-Wno-cast-qual)
|
||||||
|
endif()
|
||||||
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
|
set(LLAMA_EXTRA_LIBS ${LLAMA_EXTRA_LIBS} ${MPI_C_LIBRARIES})
|
||||||
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
|
set(LLAMA_EXTRA_INCLUDES ${LLAMA_EXTRA_INCLUDES} ${MPI_C_INCLUDE_DIRS})
|
||||||
# Even if you're only using the C header, C++ programs may bring in MPI
|
# Even if you're only using the C header, C++ programs may bring in MPI
|
||||||
|
@ -418,10 +419,11 @@ if (LLAMA_ALL_WARNINGS)
|
||||||
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int
|
set(c_flags -Wshadow -Wstrict-prototypes -Wpointer-arith -Wmissing-prototypes -Werror=implicit-int
|
||||||
-Werror=implicit-function-declaration)
|
-Werror=implicit-function-declaration)
|
||||||
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
|
set(cxx_flags -Wmissing-declarations -Wmissing-noreturn)
|
||||||
|
set(host_cxx_flags "")
|
||||||
|
|
||||||
if (CMAKE_C_COMPILER_ID MATCHES "Clang")
|
if (CMAKE_C_COMPILER_ID MATCHES "Clang")
|
||||||
set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return)
|
set(warning_flags ${warning_flags} -Wunreachable-code-break -Wunreachable-code-return)
|
||||||
set(cxx_flags ${cxx_flags} -Wmissing-prototypes -Wextra-semi)
|
set(host_cxx_flags ${host_cxx_flags} -Wmissing-prototypes -Wextra-semi)
|
||||||
|
|
||||||
if (
|
if (
|
||||||
(CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR
|
(CMAKE_C_COMPILER_ID STREQUAL "Clang" AND CMAKE_C_COMPILER_VERSION VERSION_GREATER_EQUAL 3.8.0) OR
|
||||||
|
@ -431,27 +433,38 @@ if (LLAMA_ALL_WARNINGS)
|
||||||
endif()
|
endif()
|
||||||
elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU")
|
elseif (CMAKE_C_COMPILER_ID STREQUAL "GNU")
|
||||||
set(c_flags ${c_flags} -Wdouble-promotion)
|
set(c_flags ${c_flags} -Wdouble-promotion)
|
||||||
set(cxx_flags ${cxx_flags} -Wno-array-bounds)
|
set(host_cxx_flags ${host_cxx_flags} -Wno-array-bounds)
|
||||||
|
|
||||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0)
|
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 7.1.0)
|
||||||
set(cxx_flags ${cxx_flags} -Wno-format-truncation)
|
set(host_cxx_flags ${host_cxx_flags} -Wno-format-truncation)
|
||||||
endif()
|
endif()
|
||||||
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0)
|
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER_EQUAL 8.1.0)
|
||||||
set(cxx_flags ${cxx_flags} -Wextra-semi)
|
set(host_cxx_flags ${host_cxx_flags} -Wextra-semi)
|
||||||
endif()
|
endif()
|
||||||
endif()
|
endif()
|
||||||
else()
|
else()
|
||||||
# todo : msvc
|
# todo : msvc
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
add_compile_options(
|
set(c_flags ${c_flags} ${warning_flags})
|
||||||
${warning_flags}
|
set(cxx_flags ${cxx_flags} ${warning_flags})
|
||||||
"$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
add_compile_options("$<$<COMPILE_LANGUAGE:C>:${c_flags}>"
|
||||||
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags}>"
|
"$<$<COMPILE_LANGUAGE:CXX>:${cxx_flags} ${host_cxx_flags}>")
|
||||||
)
|
|
||||||
|
|
||||||
endif()
|
endif()
|
||||||
|
|
||||||
|
if (NOT MSVC)
|
||||||
|
set(cuda_flags -Wno-pedantic)
|
||||||
|
endif()
|
||||||
|
set(cuda_flags ${cxx_flags} -use_fast_math ${cuda_flags})
|
||||||
|
|
||||||
|
list(JOIN host_cxx_flags " " cuda_host_flags) # pass host compiler flags as a single argument
|
||||||
|
if (NOT cuda_host_flags STREQUAL "")
|
||||||
|
set(cuda_flags ${cuda_flags} -Xcompiler ${cuda_host_flags})
|
||||||
|
endif()
|
||||||
|
|
||||||
|
add_compile_options("$<$<COMPILE_LANGUAGE:CUDA>:${cuda_flags}>")
|
||||||
|
|
||||||
if (WIN32)
|
if (WIN32)
|
||||||
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
|
||||||
|
|
||||||
|
@ -705,6 +718,7 @@ set(LLAMA_BIN_INSTALL_DIR ${CMAKE_INSTALL_BINDIR}
|
||||||
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
set(LLAMA_BUILD_NUMBER ${BUILD_NUMBER})
|
||||||
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
set(LLAMA_BUILD_COMMIT ${BUILD_COMMIT})
|
||||||
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
set(LLAMA_INSTALL_VERSION 0.0.${BUILD_NUMBER})
|
||||||
|
get_directory_property(LLAMA_TRANSIENT_DEFINES COMPILE_DEFINITIONS)
|
||||||
|
|
||||||
configure_package_config_file(
|
configure_package_config_file(
|
||||||
${CMAKE_CURRENT_SOURCE_DIR}/scripts/LlamaConfig.cmake.in
|
${CMAKE_CURRENT_SOURCE_DIR}/scripts/LlamaConfig.cmake.in
|
||||||
|
|
5
Makefile
5
Makefile
|
@ -1,5 +1,5 @@
|
||||||
# Define the default target now so that it is always the first target
|
# Define the default target now so that it is always the first target
|
||||||
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative benchmark-matmult parallel finetune export-lora tests/test-c.o
|
BUILD_TARGETS = main quantize quantize-stats perplexity embedding vdot q8dot train-text-from-scratch convert-llama2c-to-ggml simple batched save-load-state server embd-input-test gguf llama-bench baby-llama beam-search speculative infill benchmark-matmult parallel finetune export-lora tests/test-c.o
|
||||||
|
|
||||||
# Binaries only useful for tests
|
# Binaries only useful for tests
|
||||||
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama
|
TEST_TARGETS = tests/test-llama-grammar tests/test-grammar-parser tests/test-double-float tests/test-grad0 tests/test-opt tests/test-quantize-fns tests/test-quantize-perf tests/test-sampling tests/test-tokenizer-0-llama tests/test-tokenizer-0-falcon tests/test-tokenizer-1-llama
|
||||||
|
@ -543,6 +543,9 @@ main: examples/main/main.cpp build-info.h ggml.
|
||||||
@echo '==== Run ./main -h for help. ===='
|
@echo '==== Run ./main -h for help. ===='
|
||||||
@echo
|
@echo
|
||||||
|
|
||||||
|
infill: examples/infill/infill.cpp build-info.h ggml.o llama.o common.o console.o grammar-parser.o $(OBJS)
|
||||||
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
simple: examples/simple/simple.cpp build-info.h ggml.o llama.o common.o $(OBJS)
|
||||||
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
$(CXX) $(CXXFLAGS) $(filter-out %.h,$^) -o $@ $(LDFLAGS)
|
||||||
|
|
||||||
|
|
|
@ -389,6 +389,8 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
||||||
params.interactive_first = true;
|
params.interactive_first = true;
|
||||||
} else if (arg == "-ins" || arg == "--instruct") {
|
} else if (arg == "-ins" || arg == "--instruct") {
|
||||||
params.instruct = true;
|
params.instruct = true;
|
||||||
|
} else if (arg == "--infill") {
|
||||||
|
params.infill = true;
|
||||||
} else if (arg == "--multiline-input") {
|
} else if (arg == "--multiline-input") {
|
||||||
params.multiline_input = true;
|
params.multiline_input = true;
|
||||||
} else if (arg == "--simple-io") {
|
} else if (arg == "--simple-io") {
|
||||||
|
|
|
@ -120,6 +120,7 @@ struct gpt_params {
|
||||||
bool use_mlock = false; // use mlock to keep model in memory
|
bool use_mlock = false; // use mlock to keep model in memory
|
||||||
bool numa = false; // attempt optimizations that help on some NUMA systems
|
bool numa = false; // attempt optimizations that help on some NUMA systems
|
||||||
bool verbose_prompt = false; // print prompt tokens before generation
|
bool verbose_prompt = false; // print prompt tokens before generation
|
||||||
|
bool infill = false; // use infill mode
|
||||||
};
|
};
|
||||||
|
|
||||||
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
bool gpt_params_parse(int argc, char ** argv, gpt_params & params);
|
||||||
|
|
135
convert-persimmon-st-to-gguf.py
Normal file
135
convert-persimmon-st-to-gguf.py
Normal file
|
@ -0,0 +1,135 @@
|
||||||
|
from convert import lazy_load_safetensors_file
|
||||||
|
import sys
|
||||||
|
import torch
|
||||||
|
from safetensors import safe_open
|
||||||
|
from pathlib import Path
|
||||||
|
from pprint import pprint
|
||||||
|
from sentencepiece import SentencePieceProcessor
|
||||||
|
import argparse
|
||||||
|
import gguf
|
||||||
|
import json
|
||||||
|
import struct
|
||||||
|
|
||||||
|
def file_is_safetensors(path: Path) -> bool:
|
||||||
|
fp = open(path, 'rb')
|
||||||
|
first8 = fp.read(8)
|
||||||
|
fp.seek(0)
|
||||||
|
if first8[:2] == b'PK':
|
||||||
|
# A zip file, i.e. PyTorch format
|
||||||
|
return False
|
||||||
|
return struct.unpack('<Q', first8)[0] < 16 * 1024 * 1024
|
||||||
|
|
||||||
|
def get_tokenizer_info(dir_model: Path):
|
||||||
|
tokenizer_path = dir_model / 'adept_vocab.model'
|
||||||
|
print('gguf: getting sentencepiece tokenizer from', tokenizer_path)
|
||||||
|
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||||
|
tokens: list[bytes] = []
|
||||||
|
scores: list[float] = []
|
||||||
|
toktypes: list[int] = []
|
||||||
|
|
||||||
|
for i in range(tokenizer.vocab_size()):
|
||||||
|
text: bytes
|
||||||
|
score: float
|
||||||
|
|
||||||
|
piece = tokenizer.id_to_piece(i)
|
||||||
|
text = piece.encode("utf-8")
|
||||||
|
score = tokenizer.get_score(i)
|
||||||
|
|
||||||
|
toktype = 1 # defualt to normal token type
|
||||||
|
if tokenizer.is_unknown(i):
|
||||||
|
toktype = 2
|
||||||
|
if tokenizer.is_control(i):
|
||||||
|
toktype = 3
|
||||||
|
|
||||||
|
# toktype = 4 is user-defined = tokens from added_tokens.json
|
||||||
|
|
||||||
|
if tokenizer.is_unused(i):
|
||||||
|
toktype = 5
|
||||||
|
if tokenizer.is_byte(i):
|
||||||
|
toktype = 6
|
||||||
|
|
||||||
|
tokens.append(text)
|
||||||
|
scores.append(score)
|
||||||
|
toktypes.append(toktype)
|
||||||
|
pass
|
||||||
|
return tokens, scores, toktypes
|
||||||
|
|
||||||
|
|
||||||
|
def get_args():
|
||||||
|
parser = argparse.ArgumentParser(description="Convert a Persimmon model from Adept (e.g. Persimmon 8b chat) to a GGML compatible file")
|
||||||
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||||
|
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.safetensors)")
|
||||||
|
args = parser.parse_args()
|
||||||
|
return args
|
||||||
|
|
||||||
|
|
||||||
|
def main() -> None:
|
||||||
|
args = get_args()
|
||||||
|
assert file_is_safetensors(args.model), 'Error: model file is not a SafeTensors file'
|
||||||
|
dir_model = args.model.parent
|
||||||
|
with open(dir_model / 'config.json', 'r') as f:
|
||||||
|
hparams = json.load(f)
|
||||||
|
arch = gguf.MODEL_ARCH.PERSIMMON
|
||||||
|
gguf_writer = gguf.GGUFWriter(args.outfile, gguf.MODEL_ARCH_NAMES[arch])
|
||||||
|
|
||||||
|
block_count = hparams['num_layers']
|
||||||
|
head_count = hparams['num_attention_heads']
|
||||||
|
head_count_kv = head_count
|
||||||
|
ctx_length = hparams['seq_length']
|
||||||
|
hidden_size = hparams['hidden_size']
|
||||||
|
|
||||||
|
gguf_writer.add_name('persimmon-8b-chat')
|
||||||
|
gguf_writer.add_context_length(ctx_length)
|
||||||
|
gguf_writer.add_embedding_length(hidden_size)
|
||||||
|
gguf_writer.add_block_count(block_count)
|
||||||
|
gguf_writer.add_feed_forward_length(hparams['ffn_hidden_size'])
|
||||||
|
gguf_writer.add_rope_dimension_count(hidden_size // head_count)
|
||||||
|
gguf_writer.add_head_count(head_count)
|
||||||
|
gguf_writer.add_head_count_kv(head_count_kv)
|
||||||
|
gguf_writer.add_rope_freq_base(hparams['rotary_emb_base'])
|
||||||
|
gguf_writer.add_layer_norm_eps(hparams['layernorm_epsilon'])
|
||||||
|
tokens, scores, toktypes = get_tokenizer_info(dir_model)
|
||||||
|
gguf_writer.add_tokenizer_model('llama')
|
||||||
|
gguf_writer.add_token_list(tokens)
|
||||||
|
gguf_writer.add_token_scores(scores)
|
||||||
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
gguf_writer.add_bos_token_id(71013)
|
||||||
|
gguf_writer.add_eos_token_id(71013)
|
||||||
|
|
||||||
|
tensor_map = gguf.get_tensor_name_map(arch, block_count)
|
||||||
|
print(tensor_map)
|
||||||
|
tensors = {}
|
||||||
|
with safe_open(args.model, framework="pt") as f:
|
||||||
|
for k in f.keys():
|
||||||
|
tensors[k] = f.get_tensor(k)
|
||||||
|
for name in tensors.keys():
|
||||||
|
data = tensors[name]
|
||||||
|
if name.endswith(".self_attention.rotary_emb.inv_freq"):
|
||||||
|
continue
|
||||||
|
old_dtype = data.dtype
|
||||||
|
# TODO: FP16 conversion produces garbage outputs. (Q8_0 does not, so..?)
|
||||||
|
data = data.to(torch.float32).squeeze().numpy()
|
||||||
|
new_name = tensor_map.get_name(name, try_suffixes = (".weight", ".bias"))
|
||||||
|
if new_name is None:
|
||||||
|
print("Can not map tensor '" + name + "'")
|
||||||
|
sys.exit()
|
||||||
|
n_dims = len(data.shape)
|
||||||
|
print(new_name + ", n_dims = " + str(n_dims) + ", " + str(old_dtype) + " --> " + str(data.dtype))
|
||||||
|
|
||||||
|
gguf_writer.add_tensor(new_name, data)
|
||||||
|
print("gguf: write header")
|
||||||
|
gguf_writer.write_header_to_file()
|
||||||
|
print("gguf: write metadata")
|
||||||
|
gguf_writer.write_kv_data_to_file()
|
||||||
|
print("gguf: write tensors")
|
||||||
|
gguf_writer.write_tensors_to_file()
|
||||||
|
|
||||||
|
gguf_writer.close()
|
||||||
|
|
||||||
|
print(f"gguf: model successfully exported to '{args.outfile}'")
|
||||||
|
print("")
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
|
@ -41,8 +41,7 @@ if hasattr(faulthandler, 'register') and hasattr(signal, 'SIGUSR1'):
|
||||||
|
|
||||||
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
NDArray: TypeAlias = 'np.ndarray[Any, Any]'
|
||||||
|
|
||||||
ARCH=gguf.MODEL_ARCH.LLAMA
|
ARCH = gguf.MODEL_ARCH.LLAMA
|
||||||
NAMES=gguf.MODEL_TENSOR_NAMES[ARCH]
|
|
||||||
|
|
||||||
DEFAULT_CONCURRENCY = 8
|
DEFAULT_CONCURRENCY = 8
|
||||||
#
|
#
|
||||||
|
@ -953,7 +952,7 @@ class OutputFile:
|
||||||
of.close()
|
of.close()
|
||||||
|
|
||||||
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
def pick_output_type(model: LazyModel, output_type_str: str | None) -> GGMLFileType:
|
||||||
wq_type = model[NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
|
wq_type = model[gguf.TENSOR_NAMES[gguf.MODEL_TENSOR.ATTN_Q].format(bid=0)+".weight"].data_type
|
||||||
|
|
||||||
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
if output_type_str == "f32" or (output_type_str is None and wq_type == DT_F32):
|
||||||
return GGMLFileType.AllF32
|
return GGMLFileType.AllF32
|
||||||
|
|
|
@ -313,7 +313,7 @@ class ModelParams:
|
||||||
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
||||||
|
|
||||||
def tensor_name(key, bid=None, suffix=".weight"):
|
def tensor_name(key, bid=None, suffix=".weight"):
|
||||||
return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + suffix
|
return gguf.TENSOR_NAMES[key].format(bid=bid) + suffix
|
||||||
|
|
||||||
class Layer:
|
class Layer:
|
||||||
def __init__(self, params, lora_params, bid):
|
def __init__(self, params, lora_params, bid):
|
||||||
|
|
|
@ -332,8 +332,8 @@ static void init_model(struct llama_model * input, struct my_llama_model * model
|
||||||
|
|
||||||
assert_shape_1d(layer.attention_norm, hparams.n_embd);
|
assert_shape_1d(layer.attention_norm, hparams.n_embd);
|
||||||
assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd);
|
assert_shape_2d(layer.wq, hparams.n_embd, hparams.n_embd);
|
||||||
assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd);
|
assert_shape_2d(layer.wk, hparams.n_embd, hparams.n_embd_gqa());
|
||||||
assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd);
|
assert_shape_2d(layer.wv, hparams.n_embd, hparams.n_embd_gqa());
|
||||||
assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd);
|
assert_shape_2d(layer.wo, hparams.n_embd, hparams.n_embd);
|
||||||
assert_shape_1d(layer.ffn_norm, hparams.n_embd);
|
assert_shape_1d(layer.ffn_norm, hparams.n_embd);
|
||||||
assert_shape_2d(layer.w1, hparams.n_embd, hparams.n_ff);
|
assert_shape_2d(layer.w1, hparams.n_embd, hparams.n_ff);
|
||||||
|
|
8
examples/infill/CMakeLists.txt
Normal file
8
examples/infill/CMakeLists.txt
Normal file
|
@ -0,0 +1,8 @@
|
||||||
|
set(TARGET infill)
|
||||||
|
add_executable(${TARGET} infill.cpp)
|
||||||
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
|
||||||
|
target_compile_features(${TARGET} PRIVATE cxx_std_11)
|
||||||
|
if(TARGET BUILD_INFO)
|
||||||
|
add_dependencies(${TARGET} BUILD_INFO)
|
||||||
|
endif()
|
41
examples/infill/README.md
Normal file
41
examples/infill/README.md
Normal file
|
@ -0,0 +1,41 @@
|
||||||
|
# llama.cpp/example/infill
|
||||||
|
|
||||||
|
This example shows how to use the infill mode with Code Llama models supporting infill mode.
|
||||||
|
Currently the 7B and 13B models support infill mode.
|
||||||
|
|
||||||
|
Infill supports most of the options available in the main example.
|
||||||
|
|
||||||
|
For further information have a look at the main README.md in llama.cpp/example/main/README.md
|
||||||
|
|
||||||
|
## Common Options
|
||||||
|
|
||||||
|
In this section, we cover the most commonly used options for running the `infill` program with the LLaMA models:
|
||||||
|
|
||||||
|
- `-m FNAME, --model FNAME`: Specify the path to the LLaMA model file (e.g., `models/7B/ggml-model.bin`).
|
||||||
|
- `-i, --interactive`: Run the program in interactive mode, allowing you to provide input directly and receive real-time responses.
|
||||||
|
- `-n N, --n-predict N`: Set the number of tokens to predict when generating text. Adjusting this value can influence the length of the generated text.
|
||||||
|
- `-c N, --ctx-size N`: Set the size of the prompt context. The default is 512, but LLaMA models were built with a context of 2048, which will provide better results for longer input/inference.
|
||||||
|
|
||||||
|
## Input Prompts
|
||||||
|
|
||||||
|
The `infill` program provides several ways to interact with the LLaMA models using input prompts:
|
||||||
|
|
||||||
|
- `--in-prefix PROMPT_BEFORE_CURSOR`: Provide the prefix directly as a command-line option.
|
||||||
|
- `--in-suffix PROMPT_AFTER_CURSOR`: Provide the suffix directly as a command-line option.
|
||||||
|
- `--interactive-first`: Run the program in interactive mode and wait for input right away. (More on this below.)
|
||||||
|
|
||||||
|
## Interaction
|
||||||
|
|
||||||
|
The `infill` program offers a seamless way to interact with LLaMA models, allowing users to receive real-time infill suggestions. The interactive mode can be triggered using `--interactive`, and `--interactive-first`
|
||||||
|
|
||||||
|
### Interaction Options
|
||||||
|
|
||||||
|
- `-i, --interactive`: Run the program in interactive mode, allowing users to get real time code suggestions from model.
|
||||||
|
- `--interactive-first`: Run the program in interactive mode and immediately wait for user input before starting the text generation.
|
||||||
|
- `--color`: Enable colorized output to differentiate visually distinguishing between prompts, user input, and generated text.
|
||||||
|
|
||||||
|
### Example
|
||||||
|
|
||||||
|
```bash
|
||||||
|
./infill -t 10 -ngl 0 -m models/codellama-13b.Q5_K_S.gguf -c 4096 --temp 0.7 --repeat_penalty 1.1 -n 20 --in-prefix "def helloworld():\n print(\"hell" --in-suffix "\n print(\"goodbye world\")\n "
|
||||||
|
```
|
769
examples/infill/infill.cpp
Normal file
769
examples/infill/infill.cpp
Normal file
|
@ -0,0 +1,769 @@
|
||||||
|
#include "common.h"
|
||||||
|
|
||||||
|
#include "console.h"
|
||||||
|
#include "llama.h"
|
||||||
|
#include "build-info.h"
|
||||||
|
#include "grammar-parser.h"
|
||||||
|
|
||||||
|
#include <cassert>
|
||||||
|
#include <cinttypes>
|
||||||
|
#include <cmath>
|
||||||
|
#include <cstdio>
|
||||||
|
#include <cstring>
|
||||||
|
#include <ctime>
|
||||||
|
#include <fstream>
|
||||||
|
#include <iostream>
|
||||||
|
#include <sstream>
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||||
|
#include <signal.h>
|
||||||
|
#include <unistd.h>
|
||||||
|
#elif defined (_WIN32)
|
||||||
|
#define WIN32_LEAN_AND_MEAN
|
||||||
|
#ifndef NOMINMAX
|
||||||
|
#define NOMINMAX
|
||||||
|
#endif
|
||||||
|
#include <windows.h>
|
||||||
|
#include <signal.h>
|
||||||
|
#endif
|
||||||
|
|
||||||
|
#if defined(_MSC_VER)
|
||||||
|
#pragma warning(disable: 4244 4267) // possible loss of data
|
||||||
|
#endif
|
||||||
|
|
||||||
|
static llama_context ** g_ctx;
|
||||||
|
static llama_model ** g_model;
|
||||||
|
static gpt_params * g_params;
|
||||||
|
static std::vector<llama_token> * g_input_tokens;
|
||||||
|
static std::ostringstream * g_output_ss;
|
||||||
|
static std::vector<llama_token> * g_output_tokens;
|
||||||
|
static bool is_interacting = false;
|
||||||
|
|
||||||
|
|
||||||
|
static void write_logfile(
|
||||||
|
const llama_context * ctx, const gpt_params & params, const llama_model * model,
|
||||||
|
const std::vector<llama_token> & input_tokens, const std::string & output,
|
||||||
|
const std::vector<llama_token> & output_tokens
|
||||||
|
) {
|
||||||
|
if (params.logdir.empty()) {
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string timestamp = get_sortable_timestamp();
|
||||||
|
|
||||||
|
const bool success = create_directory_with_parents(params.logdir);
|
||||||
|
if (!success) {
|
||||||
|
fprintf(stderr, "%s: warning: failed to create logdir %s, cannot write logfile\n",
|
||||||
|
__func__, params.logdir.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
const std::string logfile_path = params.logdir + timestamp + ".yml";
|
||||||
|
FILE * logfile = fopen(logfile_path.c_str(), "w");
|
||||||
|
|
||||||
|
if (logfile == NULL) {
|
||||||
|
fprintf(stderr, "%s: failed to open logfile %s\n", __func__, logfile_path.c_str());
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
|
||||||
|
fprintf(logfile, "binary: infill\n");
|
||||||
|
char model_desc[128];
|
||||||
|
llama_model_desc(model, model_desc, sizeof(model_desc));
|
||||||
|
dump_non_result_info_yaml(logfile, params, ctx, timestamp, input_tokens, model_desc);
|
||||||
|
|
||||||
|
fprintf(logfile, "\n");
|
||||||
|
fprintf(logfile, "######################\n");
|
||||||
|
fprintf(logfile, "# Generation Results #\n");
|
||||||
|
fprintf(logfile, "######################\n");
|
||||||
|
fprintf(logfile, "\n");
|
||||||
|
|
||||||
|
dump_string_yaml_multiline(logfile, "output", output.c_str());
|
||||||
|
dump_vector_int_yaml(logfile, "output_tokens", output_tokens);
|
||||||
|
|
||||||
|
llama_dump_timing_info_yaml(logfile, ctx);
|
||||||
|
fclose(logfile);
|
||||||
|
}
|
||||||
|
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||||
|
static void sigint_handler(int signo) {
|
||||||
|
if (signo == SIGINT) {
|
||||||
|
if (!is_interacting) {
|
||||||
|
is_interacting = true;
|
||||||
|
} else {
|
||||||
|
console::cleanup();
|
||||||
|
printf("\n");
|
||||||
|
llama_print_timings(*g_ctx);
|
||||||
|
write_logfile(*g_ctx, *g_params, *g_model, *g_input_tokens, g_output_ss->str(), *g_output_tokens);
|
||||||
|
_exit(130);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
#endif
|
||||||
|
|
||||||
|
int main(int argc, char ** argv) {
|
||||||
|
gpt_params params;
|
||||||
|
g_params = ¶ms;
|
||||||
|
|
||||||
|
if (!gpt_params_parse(argc, argv, params)) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
#ifndef LOG_DISABLE_LOGS
|
||||||
|
log_set_target(log_filename_generator("infill", "log"));
|
||||||
|
LOG_TEE("Log start\n");
|
||||||
|
log_dump_cmdline(argc, argv);
|
||||||
|
#endif // LOG_DISABLE_LOGS
|
||||||
|
|
||||||
|
console::init(params.simple_io, params.use_color);
|
||||||
|
atexit([]() { console::cleanup(); });
|
||||||
|
|
||||||
|
if (params.logits_all) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'perplexity' tool for perplexity calculations\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.embedding) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'embedding' tool for embedding calculations\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.n_ctx != 0 && params.n_ctx < 8) {
|
||||||
|
LOG_TEE("%s: warning: minimum context size is 8, using minimum size.\n", __func__);
|
||||||
|
params.n_ctx = 8;
|
||||||
|
}
|
||||||
|
if (params.instruct) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'main' tool for instruct mode\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (!params.antiprompt.empty()) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'main' tool for antiprompt mode\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (!params.interactive_first && (params.input_prefix.empty() && params.input_suffix.empty())) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use '--interactive_first' or specify '--in_prefix' and/or '--in_suffix'\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (params.random_prompt) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: please use the 'main' tool for random prompt mode\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
if (!params.path_prompt_cache.empty()) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("%s: infill does not support prompt caching\n", __func__);
|
||||||
|
printf("************\n\n");
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.rope_freq_base != 0.0) {
|
||||||
|
LOG_TEE("%s: warning: changing RoPE frequency base to %g.\n", __func__, params.rope_freq_base);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.rope_freq_scale != 0.0) {
|
||||||
|
LOG_TEE("%s: warning: scaling RoPE frequency by %g.\n", __func__, params.rope_freq_scale);
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG_TEE("%s: build = %d (%s)\n", __func__, BUILD_NUMBER, BUILD_COMMIT);
|
||||||
|
LOG_TEE("%s: built with %s for %s\n", __func__, BUILD_COMPILER, BUILD_TARGET);
|
||||||
|
|
||||||
|
if (params.seed == LLAMA_DEFAULT_SEED) {
|
||||||
|
params.seed = time(NULL);
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG_TEE("%s: seed = %u\n", __func__, params.seed);
|
||||||
|
|
||||||
|
std::mt19937 rng(params.seed);
|
||||||
|
|
||||||
|
LOG("%s: llama backend init\n", __func__);
|
||||||
|
llama_backend_init(params.numa);
|
||||||
|
|
||||||
|
llama_model * model;
|
||||||
|
llama_context * ctx;
|
||||||
|
llama_context * ctx_guidance = NULL;
|
||||||
|
g_model = &model;
|
||||||
|
g_ctx = &ctx;
|
||||||
|
|
||||||
|
// load the model and apply lora adapter, if any
|
||||||
|
LOG("%s: load the model and apply lora adapter, if any\n", __func__);
|
||||||
|
std::tie(model, ctx) = llama_init_from_gpt_params(params);
|
||||||
|
if (params.cfg_scale > 1.f) {
|
||||||
|
struct llama_context_params lparams = llama_context_params_from_gpt_params(params);
|
||||||
|
ctx_guidance = llama_new_context_with_model(model, lparams);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (model == NULL) {
|
||||||
|
LOG_TEE("%s: error: unable to load model\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n_ctx_train = llama_n_ctx_train(model);
|
||||||
|
const int n_ctx = llama_n_ctx(ctx);
|
||||||
|
LOG("n_ctx: %d\n", n_ctx);
|
||||||
|
|
||||||
|
if (n_ctx > n_ctx_train) {
|
||||||
|
LOG_TEE("%s: warning: model was trained on only %d context tokens (%d specified)\n",
|
||||||
|
__func__, n_ctx_train, n_ctx);
|
||||||
|
}
|
||||||
|
|
||||||
|
// print system information
|
||||||
|
{
|
||||||
|
LOG_TEE("\n");
|
||||||
|
LOG_TEE("%s\n", get_system_info(params).c_str());
|
||||||
|
}
|
||||||
|
const bool add_bos = llama_vocab_type(model) == LLAMA_VOCAB_TYPE_SPM;
|
||||||
|
LOG("add_bos: %d\n", add_bos);
|
||||||
|
|
||||||
|
std::vector<llama_token> embd_inp;
|
||||||
|
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
|
||||||
|
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
|
||||||
|
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
|
||||||
|
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
|
||||||
|
embd_inp = inp_pfx;
|
||||||
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||||
|
embd_inp.push_back(llama_token_middle(ctx));
|
||||||
|
|
||||||
|
LOG("prefix: \"%s\"\n", log_tostr(params.input_prefix));
|
||||||
|
LOG("suffix: \"%s\"\n", log_tostr(params.input_suffix));
|
||||||
|
LOG("tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||||
|
|
||||||
|
// Should not run without any tokens
|
||||||
|
if (embd_inp.empty()) {
|
||||||
|
embd_inp.push_back(llama_token_bos(ctx));
|
||||||
|
LOG("embd_inp was considered empty and bos was added: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_inp));
|
||||||
|
}
|
||||||
|
|
||||||
|
// Tokenize negative prompt
|
||||||
|
std::vector<llama_token> guidance_inp;
|
||||||
|
int guidance_offset = 0;
|
||||||
|
int original_prompt_len = 0;
|
||||||
|
if (ctx_guidance) {
|
||||||
|
LOG("cfg_negative_prompt: \"%s\"\n", log_tostr(params.cfg_negative_prompt));
|
||||||
|
|
||||||
|
guidance_inp = ::llama_tokenize(ctx_guidance, params.cfg_negative_prompt, add_bos);
|
||||||
|
LOG("guidance_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx_guidance, guidance_inp));
|
||||||
|
|
||||||
|
std::vector<llama_token> original_inp = ::llama_tokenize(ctx, params.prompt, add_bos);
|
||||||
|
LOG("original_inp tokenized: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, original_inp));
|
||||||
|
|
||||||
|
original_prompt_len = original_inp.size();
|
||||||
|
guidance_offset = (int)guidance_inp.size() - original_prompt_len;
|
||||||
|
LOG("original_prompt_len: %s", log_tostr(original_prompt_len));
|
||||||
|
LOG("guidance_offset: %s", log_tostr(guidance_offset));
|
||||||
|
}
|
||||||
|
|
||||||
|
if ((int) embd_inp.size() > n_ctx - 4) {
|
||||||
|
LOG_TEE("%s: error: prompt is too long (%d tokens, max %d)\n", __func__, (int) embd_inp.size(), n_ctx - 4);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
// number of tokens to keep when resetting context
|
||||||
|
if (params.n_keep < 0 || params.n_keep > (int) embd_inp.size()) {
|
||||||
|
params.n_keep = (int)embd_inp.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("inp_pfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_pfx));
|
||||||
|
LOG("inp_sfx: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, inp_sfx));
|
||||||
|
|
||||||
|
|
||||||
|
// enable interactive mode if interactive start is specified
|
||||||
|
if (params.interactive_first) {
|
||||||
|
params.interactive = true;
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.verbose_prompt) {
|
||||||
|
LOG_TEE("\n");
|
||||||
|
LOG_TEE("%s: prompt: '%s'\n", __func__, params.prompt.c_str());
|
||||||
|
LOG_TEE("%s: number of tokens in prompt = %zu\n", __func__, embd_inp.size());
|
||||||
|
for (int i = 0; i < (int) embd_inp.size(); i++) {
|
||||||
|
LOG_TEE("%6d -> '%s'\n", embd_inp[i], llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
LOG_TEE("\n");
|
||||||
|
LOG_TEE("%s: negative prompt: '%s'\n", __func__, params.cfg_negative_prompt.c_str());
|
||||||
|
LOG_TEE("%s: number of tokens in negative prompt = %zu\n", __func__, guidance_inp.size());
|
||||||
|
for (int i = 0; i < (int) guidance_inp.size(); i++) {
|
||||||
|
LOG_TEE("%6d -> '%s'\n", guidance_inp[i], llama_token_to_piece(ctx, guidance_inp[i]).c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.n_keep > 0) {
|
||||||
|
LOG_TEE("%s: static prompt based on n_keep: '", __func__);
|
||||||
|
for (int i = 0; i < params.n_keep; i++) {
|
||||||
|
LOG_TEE("%s", llama_token_to_piece(ctx, embd_inp[i]).c_str());
|
||||||
|
}
|
||||||
|
LOG_TEE("'\n");
|
||||||
|
}
|
||||||
|
LOG_TEE("\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
if (params.interactive) {
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__))
|
||||||
|
struct sigaction sigint_action;
|
||||||
|
sigint_action.sa_handler = sigint_handler;
|
||||||
|
sigemptyset (&sigint_action.sa_mask);
|
||||||
|
sigint_action.sa_flags = 0;
|
||||||
|
sigaction(SIGINT, &sigint_action, NULL);
|
||||||
|
#elif defined (_WIN32)
|
||||||
|
auto console_ctrl_handler = +[](DWORD ctrl_type) -> BOOL {
|
||||||
|
return (ctrl_type == CTRL_C_EVENT) ? (sigint_handler(SIGINT), true) : false;
|
||||||
|
};
|
||||||
|
SetConsoleCtrlHandler(reinterpret_cast<PHANDLER_ROUTINE>(console_ctrl_handler), true);
|
||||||
|
#endif
|
||||||
|
|
||||||
|
LOG_TEE("%s: interactive mode on.\n", __func__);
|
||||||
|
|
||||||
|
if (params.input_prefix_bos) {
|
||||||
|
LOG_TEE("Input prefix with BOS\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!params.input_prefix.empty()) {
|
||||||
|
LOG_TEE("Input prefix: '%s'\n", params.input_prefix.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!params.input_suffix.empty()) {
|
||||||
|
LOG_TEE("Input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
|
}
|
||||||
|
}
|
||||||
|
LOG_TEE("sampling: repeat_last_n = %d, repeat_penalty = %f, presence_penalty = %f, frequency_penalty = %f, top_k = %d, tfs_z = %f, top_p = %f, typical_p = %f, temp = %f, mirostat = %d, mirostat_lr = %f, mirostat_ent = %f\n",
|
||||||
|
params.repeat_last_n, params.repeat_penalty, params.presence_penalty, params.frequency_penalty, params.top_k, params.tfs_z, params.top_p, params.typical_p, params.temp, params.mirostat, params.mirostat_eta, params.mirostat_tau);
|
||||||
|
LOG_TEE("generate: n_ctx = %d, n_batch = %d, n_predict = %d, n_keep = %d\n", n_ctx, params.n_batch, params.n_predict, params.n_keep);
|
||||||
|
LOG_TEE("\n\n");
|
||||||
|
|
||||||
|
struct llama_grammar * grammar = NULL;
|
||||||
|
grammar_parser::parse_state parsed_grammar;
|
||||||
|
|
||||||
|
if (!params.grammar.empty()) {
|
||||||
|
parsed_grammar = grammar_parser::parse(params.grammar.c_str());
|
||||||
|
// will be empty (default) if there are parse errors
|
||||||
|
if (parsed_grammar.rules.empty()) {
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
LOG_TEE("%s: grammar:\n", __func__);
|
||||||
|
grammar_parser::print_grammar(stderr, parsed_grammar);
|
||||||
|
LOG_TEE("\n");
|
||||||
|
|
||||||
|
{
|
||||||
|
auto it = params.logit_bias.find(llama_token_eos(ctx));
|
||||||
|
if (it != params.logit_bias.end() && it->second == -INFINITY) {
|
||||||
|
LOG_TEE("%s: warning: EOS token is disabled, which will cause most grammars to fail\n", __func__);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||||
|
grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(), grammar_rules.size(), parsed_grammar.symbol_ids.at("root"));
|
||||||
|
}
|
||||||
|
|
||||||
|
// TODO: replace with ring-buffer
|
||||||
|
std::vector<llama_token> last_tokens(n_ctx);
|
||||||
|
std::fill(last_tokens.begin(), last_tokens.end(), 0);
|
||||||
|
LOG_TEE("\n##### Infill mode #####\n\n");
|
||||||
|
if (params.infill) {
|
||||||
|
printf("\n************\n");
|
||||||
|
printf("no need to specify '--infill', always running infill\n");
|
||||||
|
printf("************\n\n");
|
||||||
|
}
|
||||||
|
if (params.interactive) {
|
||||||
|
const char *control_message;
|
||||||
|
if (params.multiline_input) {
|
||||||
|
control_message = " - To return control to LLaMa, end your input with '\\'.\n"
|
||||||
|
" - To return control without starting a new line, end your input with '/'.\n";
|
||||||
|
} else {
|
||||||
|
control_message = " - Press Return to return control to LLaMa.\n"
|
||||||
|
" - To return control without starting a new line, end your input with '/'.\n"
|
||||||
|
" - If you want to submit another line, end your input with '\\'.\n";
|
||||||
|
}
|
||||||
|
LOG_TEE("== Running in interactive mode. ==\n");
|
||||||
|
#if defined (__unix__) || (defined (__APPLE__) && defined (__MACH__)) || defined (_WIN32)
|
||||||
|
LOG_TEE( " - Press Ctrl+C to interject at any time.\n");
|
||||||
|
#endif
|
||||||
|
LOG_TEE( "%s\n", control_message);
|
||||||
|
|
||||||
|
is_interacting = params.interactive_first;
|
||||||
|
}
|
||||||
|
|
||||||
|
bool input_echo = true;
|
||||||
|
|
||||||
|
int n_past = 0;
|
||||||
|
int n_remain = params.n_predict;
|
||||||
|
int n_consumed = 0;
|
||||||
|
int n_past_guidance = 0;
|
||||||
|
|
||||||
|
std::vector<int> input_tokens; g_input_tokens = &input_tokens;
|
||||||
|
std::vector<int> output_tokens; g_output_tokens = &output_tokens;
|
||||||
|
std::ostringstream output_ss; g_output_ss = &output_ss;
|
||||||
|
|
||||||
|
// the first thing we will do is to output the prompt, so set color accordingly
|
||||||
|
console::set_display(console::prompt);
|
||||||
|
|
||||||
|
std::vector<llama_token> embd;
|
||||||
|
std::vector<llama_token> embd_guidance;
|
||||||
|
|
||||||
|
const int n_vocab = llama_n_vocab(model);
|
||||||
|
|
||||||
|
std::vector<llama_token_data> candidates;
|
||||||
|
candidates.reserve(n_vocab);
|
||||||
|
|
||||||
|
while (n_remain != 0 || params.interactive) {
|
||||||
|
// predict
|
||||||
|
if (!embd.empty()) {
|
||||||
|
// Note: n_ctx - 4 here is to match the logic for commandline prompt handling via
|
||||||
|
// --prompt or --file which uses the same value.
|
||||||
|
int max_embd_size = n_ctx - 4;
|
||||||
|
|
||||||
|
// Ensure the input doesn't exceed the context size by truncating embd if necessary.
|
||||||
|
if ((int) embd.size() > max_embd_size) {
|
||||||
|
const int skipped_tokens = (int) embd.size() - max_embd_size;
|
||||||
|
embd.resize(max_embd_size);
|
||||||
|
|
||||||
|
console::set_display(console::error);
|
||||||
|
printf("<<input too long: skipped %d token%s>>", skipped_tokens, skipped_tokens != 1 ? "s" : "");
|
||||||
|
console::set_display(console::reset);
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
|
||||||
|
// infinite text generation via context swapping
|
||||||
|
// if we run out of context:
|
||||||
|
// - take the n_keep first tokens from the original prompt (via n_past)
|
||||||
|
// - take half of the last (n_ctx - n_keep) tokens and recompute the logits in batches
|
||||||
|
if (n_past + (int) embd.size() + std::max<int>(0, guidance_offset) > n_ctx) {
|
||||||
|
if (params.n_predict == -2) {
|
||||||
|
LOG_TEE("\n\n%s: context full and n_predict == -%d => stopping\n", __func__, params.n_predict);
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
const int n_left = n_past - params.n_keep - 1;
|
||||||
|
const int n_discard = n_left/2;
|
||||||
|
|
||||||
|
LOG("context full, swapping: n_past = %d, n_left = %d, n_ctx = %d, n_keep = %d, n_discard = %d\n",
|
||||||
|
n_past, n_left, n_ctx, params.n_keep, n_discard);
|
||||||
|
|
||||||
|
llama_kv_cache_seq_rm (ctx, 0, params.n_keep + 1 , params.n_keep + n_discard + 1);
|
||||||
|
llama_kv_cache_seq_shift(ctx, 0, params.n_keep + 1 + n_discard, n_past, -n_discard);
|
||||||
|
|
||||||
|
n_past -= n_discard;
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
n_past_guidance -= n_discard;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("after swap: n_past = %d, n_past_guidance = %d\n", n_past, n_past_guidance);
|
||||||
|
|
||||||
|
LOG("embd: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
// evaluate tokens in batches
|
||||||
|
// embd is typically prepared beforehand to fit within a batch, but not always
|
||||||
|
|
||||||
|
if (ctx_guidance) {
|
||||||
|
int input_size = 0;
|
||||||
|
llama_token * input_buf = NULL;
|
||||||
|
|
||||||
|
if (n_past_guidance < (int) guidance_inp.size()) {
|
||||||
|
// Guidance context should have the same data with these modifications:
|
||||||
|
//
|
||||||
|
// * Replace the initial prompt
|
||||||
|
// * Shift everything by guidance_offset
|
||||||
|
embd_guidance = guidance_inp;
|
||||||
|
if (embd.begin() + original_prompt_len < embd.end()) {
|
||||||
|
embd_guidance.insert(
|
||||||
|
embd_guidance.end(),
|
||||||
|
embd.begin() + original_prompt_len,
|
||||||
|
embd.end()
|
||||||
|
);
|
||||||
|
}
|
||||||
|
|
||||||
|
input_buf = embd_guidance.data();
|
||||||
|
input_size = embd_guidance.size();
|
||||||
|
|
||||||
|
LOG("guidance context: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd_guidance));
|
||||||
|
} else {
|
||||||
|
input_buf = embd.data();
|
||||||
|
input_size = embd.size();
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < input_size; i += params.n_batch) {
|
||||||
|
int n_eval = std::min(input_size - i, params.n_batch);
|
||||||
|
if (llama_decode(ctx_guidance, llama_batch_get_one(input_buf + i, n_eval, n_past_guidance, 0))) {
|
||||||
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
n_past_guidance += n_eval;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
for (int i = 0; i < (int) embd.size(); i += params.n_batch) {
|
||||||
|
int n_eval = (int) embd.size() - i;
|
||||||
|
if (n_eval > params.n_batch) {
|
||||||
|
n_eval = params.n_batch;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("eval: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, embd));
|
||||||
|
|
||||||
|
if (llama_decode(ctx, llama_batch_get_one(&embd[i], n_eval, n_past, 0))) {
|
||||||
|
LOG_TEE("%s : failed to eval\n", __func__);
|
||||||
|
return 1;
|
||||||
|
}
|
||||||
|
|
||||||
|
n_past += n_eval;
|
||||||
|
|
||||||
|
LOG("n_past = %d\n", n_past);
|
||||||
|
}
|
||||||
|
|
||||||
|
}
|
||||||
|
|
||||||
|
embd.clear();
|
||||||
|
embd_guidance.clear();
|
||||||
|
|
||||||
|
if ((int) embd_inp.size() <= n_consumed && !is_interacting) {
|
||||||
|
|
||||||
|
const llama_token id = llama_sample_token(ctx, ctx_guidance, grammar, params, last_tokens, candidates);
|
||||||
|
|
||||||
|
last_tokens.erase(last_tokens.begin());
|
||||||
|
last_tokens.push_back(id);
|
||||||
|
|
||||||
|
LOG("last: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, last_tokens));
|
||||||
|
|
||||||
|
embd.push_back(id);
|
||||||
|
|
||||||
|
// echo this to console
|
||||||
|
input_echo = true;
|
||||||
|
|
||||||
|
// decrement remaining sampling budget
|
||||||
|
--n_remain;
|
||||||
|
|
||||||
|
LOG("n_remain: %d\n", n_remain);
|
||||||
|
} else {
|
||||||
|
// some user input remains from prompt or interaction, forward it to processing
|
||||||
|
LOG("embd_inp.size(): %d, n_consumed: %d\n", (int) embd_inp.size(), n_consumed);
|
||||||
|
while ((int) embd_inp.size() > n_consumed) {
|
||||||
|
embd.push_back(embd_inp[n_consumed]);
|
||||||
|
last_tokens.erase(last_tokens.begin());
|
||||||
|
last_tokens.push_back(embd_inp[n_consumed]);
|
||||||
|
++n_consumed;
|
||||||
|
if ((int) embd.size() >= params.n_batch) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// display text
|
||||||
|
if (input_echo) {
|
||||||
|
for (auto id : embd) {
|
||||||
|
const std::string token_str = llama_token_to_piece(ctx, id);
|
||||||
|
printf("%s", token_str.c_str());
|
||||||
|
|
||||||
|
if (embd.size() > 1) {
|
||||||
|
input_tokens.push_back(id);
|
||||||
|
} else {
|
||||||
|
output_tokens.push_back(id);
|
||||||
|
output_ss << token_str;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
// reset color to default if we there is no pending user input
|
||||||
|
if (input_echo && (int) embd_inp.size() == n_consumed) {
|
||||||
|
console::set_display(console::reset);
|
||||||
|
}
|
||||||
|
|
||||||
|
// if not currently processing queued inputs;
|
||||||
|
if ((int) embd_inp.size() <= n_consumed) {
|
||||||
|
|
||||||
|
// deal with eot token in infill mode
|
||||||
|
if ((last_tokens.back() == llama_token_eot(ctx) || is_interacting) && params.interactive){
|
||||||
|
if(is_interacting && !params.interactive_first) {
|
||||||
|
// print an eot token
|
||||||
|
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
|
||||||
|
}
|
||||||
|
fflush(stdout);
|
||||||
|
printf("\n");
|
||||||
|
console::set_display(console::user_input);
|
||||||
|
std::string buffer;
|
||||||
|
std::string line;
|
||||||
|
bool another_line=true;
|
||||||
|
// set a new prefix via stdin
|
||||||
|
do {
|
||||||
|
another_line = console::readline(line, params.multiline_input);
|
||||||
|
buffer += line;
|
||||||
|
} while (another_line);
|
||||||
|
// check if we got an empty line, if so we use the old input
|
||||||
|
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||||
|
params.input_prefix = buffer;
|
||||||
|
}
|
||||||
|
buffer.clear();
|
||||||
|
// set a new suffix via stdin
|
||||||
|
do {
|
||||||
|
another_line = console::readline(line, params.multiline_input);
|
||||||
|
buffer += line;
|
||||||
|
} while (another_line);
|
||||||
|
// check if we got an empty line
|
||||||
|
if(!buffer.empty() && !(buffer.length() == 1 && buffer[0] == '\n')) {
|
||||||
|
params.input_suffix = buffer;
|
||||||
|
}
|
||||||
|
buffer.clear();
|
||||||
|
// done taking input, reset color
|
||||||
|
console::set_display(console::reset);
|
||||||
|
// tokenize new prefix and suffix
|
||||||
|
std::vector<llama_token> inp_pfx = ::llama_tokenize(ctx, params.input_prefix, add_bos);
|
||||||
|
std::vector<llama_token> inp_sfx = ::llama_tokenize(ctx, params.input_suffix, add_bos);
|
||||||
|
inp_pfx.insert(inp_pfx.begin(), llama_token_prefix(ctx));
|
||||||
|
inp_sfx.insert(inp_sfx.begin(), llama_token_suffix(ctx));
|
||||||
|
embd_inp = inp_pfx;
|
||||||
|
embd_inp.insert(embd_inp.end(), inp_sfx.begin(), inp_sfx.end());
|
||||||
|
embd_inp.push_back(llama_token_middle(ctx));
|
||||||
|
embd.clear();
|
||||||
|
embd_guidance.clear();
|
||||||
|
n_remain = params.n_predict;
|
||||||
|
n_past = 0;
|
||||||
|
n_consumed = 0;
|
||||||
|
// LOG_TEE("took new input\n");
|
||||||
|
is_interacting = false;
|
||||||
|
}
|
||||||
|
// deal with end of text token in interactive mode
|
||||||
|
else if (last_tokens.back() == llama_token_eos(ctx)) {
|
||||||
|
LOG("found EOS token\n");
|
||||||
|
|
||||||
|
if (params.interactive) {
|
||||||
|
|
||||||
|
is_interacting = true;
|
||||||
|
printf("\n");
|
||||||
|
console::set_display(console::user_input);
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_past > 0 && is_interacting && !params.interactive) {
|
||||||
|
LOG("waiting for user input\n");
|
||||||
|
|
||||||
|
if (params.input_prefix_bos) {
|
||||||
|
LOG("adding input prefix BOS token\n");
|
||||||
|
embd_inp.push_back(llama_token_bos(ctx));
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string buffer;
|
||||||
|
if (!params.input_prefix.empty()) {
|
||||||
|
LOG("appending input prefix: '%s'\n", params.input_prefix.c_str());
|
||||||
|
buffer += params.input_prefix;
|
||||||
|
printf("%s", buffer.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
std::string line;
|
||||||
|
bool another_line = true;
|
||||||
|
do {
|
||||||
|
another_line = console::readline(line, params.multiline_input);
|
||||||
|
buffer += line;
|
||||||
|
} while (another_line);
|
||||||
|
|
||||||
|
// done taking input, reset color
|
||||||
|
console::set_display(console::reset);
|
||||||
|
|
||||||
|
// Add tokens to embd only if the input buffer is non-empty
|
||||||
|
// Entering a empty line lets the user pass control back
|
||||||
|
if (buffer.length() > 1) {
|
||||||
|
// append input suffix if any
|
||||||
|
if (!params.input_suffix.empty()) {
|
||||||
|
LOG("appending input suffix: '%s'\n", params.input_suffix.c_str());
|
||||||
|
buffer += params.input_suffix;
|
||||||
|
printf("%s", params.input_suffix.c_str());
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG("buffer: '%s'\n", buffer.c_str());
|
||||||
|
|
||||||
|
const size_t original_size = embd_inp.size();
|
||||||
|
|
||||||
|
const auto line_inp = ::llama_tokenize(ctx, buffer, false);
|
||||||
|
LOG("input tokens: %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, line_inp));
|
||||||
|
|
||||||
|
embd_inp.insert(embd_inp.end(), line_inp.begin(), line_inp.end());
|
||||||
|
|
||||||
|
for (size_t i = original_size; i < embd_inp.size(); ++i) {
|
||||||
|
const llama_token token = embd_inp[i];
|
||||||
|
output_tokens.push_back(token);
|
||||||
|
output_ss << llama_token_to_piece(ctx, token);
|
||||||
|
}
|
||||||
|
|
||||||
|
n_remain -= line_inp.size();
|
||||||
|
LOG("n_remain: %d\n", n_remain);
|
||||||
|
} else {
|
||||||
|
LOG("empty line, passing control back\n");
|
||||||
|
}
|
||||||
|
|
||||||
|
input_echo = false; // do not echo this again
|
||||||
|
}
|
||||||
|
|
||||||
|
if (n_past > 0) {
|
||||||
|
if (is_interacting) {
|
||||||
|
// reset grammar state if we're restarting generation
|
||||||
|
if (grammar != NULL) {
|
||||||
|
llama_grammar_free(grammar);
|
||||||
|
|
||||||
|
std::vector<const llama_grammar_element *> grammar_rules(parsed_grammar.c_rules());
|
||||||
|
grammar = llama_grammar_init(
|
||||||
|
grammar_rules.data(), grammar_rules.size(),
|
||||||
|
parsed_grammar.symbol_ids.at("root"));
|
||||||
|
}
|
||||||
|
}
|
||||||
|
is_interacting = false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
// end of text token
|
||||||
|
if (!embd.empty() && embd.back() == llama_token_eos(ctx) && !params.interactive) {
|
||||||
|
break;
|
||||||
|
}
|
||||||
|
|
||||||
|
// In interactive mode, respect the maximum number of tokens and drop back to user input when reached.
|
||||||
|
// We skip this logic when n_predict == -1 (infinite) or -2 (stop at context size).
|
||||||
|
if (params.interactive && n_remain <= 0 && params.n_predict >= 0) {
|
||||||
|
n_remain = params.n_predict;
|
||||||
|
is_interacting = true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
if (!params.interactive && n_remain <= 0) {
|
||||||
|
printf("%s", llama_token_to_piece(ctx, llama_token_eot(ctx)).c_str());
|
||||||
|
fflush(stdout);
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_print_timings(ctx);
|
||||||
|
write_logfile(ctx, params, model, input_tokens, output_ss.str(), output_tokens);
|
||||||
|
|
||||||
|
if (ctx_guidance) { llama_free(ctx_guidance); }
|
||||||
|
llama_free(ctx);
|
||||||
|
llama_free_model(model);
|
||||||
|
|
||||||
|
if (grammar != NULL) {
|
||||||
|
llama_grammar_free(grammar);
|
||||||
|
}
|
||||||
|
llama_backend_free();
|
||||||
|
|
||||||
|
#ifndef LOG_DISABLE_LOGS
|
||||||
|
LOG_TEE("Log end\n");
|
||||||
|
#endif // LOG_DISABLE_LOGS
|
||||||
|
|
||||||
|
return 0;
|
||||||
|
}
|
||||||
|
|
|
@ -28,6 +28,16 @@ configure_file(${_common_path}/../build-info.h
|
||||||
target_include_directories(common PUBLIC ${LLAMA_INCLUDE_DIR}
|
target_include_directories(common PUBLIC ${LLAMA_INCLUDE_DIR}
|
||||||
${CMAKE_CURRENT_BINARY_DIR})
|
${CMAKE_CURRENT_BINARY_DIR})
|
||||||
|
|
||||||
|
# If the common project was part of "main-cmake-pkg" the transient
|
||||||
|
# defines would automatically be attached. Because the common func-
|
||||||
|
# tionality is separate, but dependent upon the defines, it must be
|
||||||
|
# explicitly extracted from the "llama" target.
|
||||||
|
#
|
||||||
|
get_target_property(_llama_transient_defines llama
|
||||||
|
INTERFACE_COMPILE_DEFINITIONS)
|
||||||
|
|
||||||
|
target_compile_definitions(common PRIVATE "${_llama_transient_defines}")
|
||||||
|
|
||||||
add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../main/main.cpp)
|
add_executable(${TARGET} ${CMAKE_CURRENT_LIST_DIR}/../main/main.cpp)
|
||||||
target_include_directories(${TARGET} PRIVATE ${_common_path})
|
target_include_directories(${TARGET} PRIVATE ${_common_path})
|
||||||
install(TARGETS ${TARGET} RUNTIME)
|
install(TARGETS ${TARGET} RUNTIME)
|
||||||
|
|
|
@ -176,6 +176,16 @@ node index.js
|
||||||
|
|
||||||
`content`: Set the text to process.
|
`content`: Set the text to process.
|
||||||
|
|
||||||
|
**POST** `/infill`: For code infilling. Takes a prefix and a suffix and returns the predicted completion as stream.
|
||||||
|
|
||||||
|
*Options:*
|
||||||
|
|
||||||
|
`input_prefix`: Set the prefix of the code to infill.
|
||||||
|
|
||||||
|
`input_suffix`: Set the suffix of the code to infill.
|
||||||
|
|
||||||
|
It also accepts all the options of `/completion` except `stream` and `prompt`.
|
||||||
|
|
||||||
## More examples
|
## More examples
|
||||||
|
|
||||||
### Interactive mode
|
### Interactive mode
|
||||||
|
|
|
@ -342,6 +342,70 @@ struct llama_server_context
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
void loadInfill()
|
||||||
|
{
|
||||||
|
auto prefix_tokens = tokenize(params.input_prefix, true); // always add BOS
|
||||||
|
auto suffix_tokens = tokenize(params.input_suffix, true); // always add BOS
|
||||||
|
prefix_tokens.insert(prefix_tokens.begin(), llama_token_prefix(ctx));
|
||||||
|
prefix_tokens.insert(prefix_tokens.end(), llama_token_suffix(ctx));
|
||||||
|
prefix_tokens.insert(prefix_tokens.end(), suffix_tokens.begin(), suffix_tokens.end());
|
||||||
|
prefix_tokens.push_back(llama_token_middle(ctx));
|
||||||
|
auto prompt_tokens = prefix_tokens;
|
||||||
|
|
||||||
|
num_prompt_tokens = prompt_tokens.size();
|
||||||
|
|
||||||
|
if (params.n_keep < 0)
|
||||||
|
{
|
||||||
|
params.n_keep = (int)num_prompt_tokens;
|
||||||
|
}
|
||||||
|
params.n_keep = std::min(params.n_ctx - 4, params.n_keep);
|
||||||
|
|
||||||
|
// if input prompt is too big, truncate like normal
|
||||||
|
if (num_prompt_tokens >= (size_t)params.n_ctx)
|
||||||
|
{
|
||||||
|
printf("Input prompt is too big, truncating. Can only take %d tokens but got %zu\n", params.n_ctx, num_prompt_tokens);
|
||||||
|
// todo we probably want to cut from both sides
|
||||||
|
const int n_left = (params.n_ctx - params.n_keep) / 2;
|
||||||
|
std::vector<llama_token> new_tokens(prompt_tokens.begin(), prompt_tokens.begin() + params.n_keep);
|
||||||
|
const int erased_blocks = (num_prompt_tokens - params.n_keep - n_left - 1) / n_left;
|
||||||
|
new_tokens.insert(new_tokens.end(), prompt_tokens.begin() + params.n_keep + erased_blocks * n_left, prompt_tokens.end());
|
||||||
|
std::copy(prompt_tokens.end() - params.n_ctx, prompt_tokens.end(), last_n_tokens.begin());
|
||||||
|
|
||||||
|
LOG_VERBOSE("input truncated", {
|
||||||
|
{"n_ctx", params.n_ctx},
|
||||||
|
{"n_keep", params.n_keep},
|
||||||
|
{"n_left", n_left},
|
||||||
|
{"new_tokens", tokens_to_str(ctx, new_tokens.cbegin(), new_tokens.cend())},
|
||||||
|
});
|
||||||
|
|
||||||
|
truncated = true;
|
||||||
|
prompt_tokens = new_tokens;
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
const size_t ps = num_prompt_tokens;
|
||||||
|
std::fill(last_n_tokens.begin(), last_n_tokens.end() - ps, 0);
|
||||||
|
std::copy(prompt_tokens.begin(), prompt_tokens.end(), last_n_tokens.end() - ps);
|
||||||
|
}
|
||||||
|
|
||||||
|
// compare the evaluated prompt with the new prompt
|
||||||
|
n_past = common_part(embd, prompt_tokens);
|
||||||
|
embd = prompt_tokens;
|
||||||
|
if (n_past == num_prompt_tokens)
|
||||||
|
{
|
||||||
|
// we have to evaluate at least 1 token to generate logits.
|
||||||
|
printf("we have to evaluate at least 1 token to generate logits\n");
|
||||||
|
n_past--;
|
||||||
|
}
|
||||||
|
|
||||||
|
LOG_VERBOSE("prompt ingested", {
|
||||||
|
{"n_past", n_past},
|
||||||
|
{"cached", tokens_to_str(ctx, embd.cbegin(), embd.cbegin() + n_past)},
|
||||||
|
{"to_eval", tokens_to_str(ctx, embd.cbegin() + n_past, embd.cend())},
|
||||||
|
});
|
||||||
|
|
||||||
|
has_next_token = true;
|
||||||
|
}
|
||||||
void loadPrompt()
|
void loadPrompt()
|
||||||
{
|
{
|
||||||
auto prompt_tokens = tokenize(prompt, true); // always add BOS
|
auto prompt_tokens = tokenize(prompt, true); // always add BOS
|
||||||
|
@ -1219,6 +1283,27 @@ static void parse_options_completion(const json &body, llama_server_context &lla
|
||||||
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
LOG_VERBOSE("completion parameters parsed", format_generation_settings(llama));
|
||||||
}
|
}
|
||||||
|
|
||||||
|
static void parse_options_infill(const json &body, llama_server_context &llama)
|
||||||
|
{
|
||||||
|
if (body.count("input_prefix") != 0)
|
||||||
|
{
|
||||||
|
llama.params.input_prefix = body["input_prefix"];
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
llama.params.input_prefix = "";
|
||||||
|
}
|
||||||
|
if (body.count("input_suffix") != 0)
|
||||||
|
{
|
||||||
|
llama.params.input_suffix = body["input_suffix"];
|
||||||
|
}
|
||||||
|
else
|
||||||
|
{
|
||||||
|
llama.params.input_suffix = "";
|
||||||
|
}
|
||||||
|
parse_options_completion(body, llama);
|
||||||
|
}
|
||||||
|
|
||||||
static void log_server_request(const Request &req, const Response &res)
|
static void log_server_request(const Request &req, const Response &res)
|
||||||
{
|
{
|
||||||
LOG_INFO("request", {
|
LOG_INFO("request", {
|
||||||
|
@ -1519,6 +1604,127 @@ int main(int argc, char **argv)
|
||||||
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
||||||
} });
|
} });
|
||||||
|
|
||||||
|
svr.Post("/infill", [&llama](const Request &req, Response &res)
|
||||||
|
{
|
||||||
|
auto lock = llama.lock();
|
||||||
|
|
||||||
|
llama.rewind();
|
||||||
|
|
||||||
|
llama_reset_timings(llama.ctx);
|
||||||
|
|
||||||
|
parse_options_infill(json::parse(req.body), llama);
|
||||||
|
|
||||||
|
if (!llama.loadGrammar())
|
||||||
|
{
|
||||||
|
res.status = 400;
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
llama.loadInfill();
|
||||||
|
llama.beginCompletion();
|
||||||
|
const auto chunked_content_provider = [&](size_t, DataSink & sink) {
|
||||||
|
size_t sent_count = 0;
|
||||||
|
size_t sent_token_probs_index = 0;
|
||||||
|
|
||||||
|
while (llama.has_next_token) {
|
||||||
|
const completion_token_output token_with_probs = llama.doCompletion();
|
||||||
|
if (token_with_probs.tok == -1 || llama.multibyte_pending > 0) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
const std::string token_text = llama_token_to_piece(llama.ctx, token_with_probs.tok);
|
||||||
|
|
||||||
|
size_t pos = std::min(sent_count, llama.generated_text.size());
|
||||||
|
|
||||||
|
const std::string str_test = llama.generated_text.substr(pos);
|
||||||
|
bool is_stop_full = false;
|
||||||
|
size_t stop_pos =
|
||||||
|
llama.findStoppingStrings(str_test, token_text.size(), STOP_FULL);
|
||||||
|
if (stop_pos != std::string::npos) {
|
||||||
|
is_stop_full = true;
|
||||||
|
llama.generated_text.erase(
|
||||||
|
llama.generated_text.begin() + pos + stop_pos,
|
||||||
|
llama.generated_text.end());
|
||||||
|
pos = std::min(sent_count, llama.generated_text.size());
|
||||||
|
} else {
|
||||||
|
is_stop_full = false;
|
||||||
|
stop_pos = llama.findStoppingStrings(str_test, token_text.size(),
|
||||||
|
STOP_PARTIAL);
|
||||||
|
}
|
||||||
|
|
||||||
|
if (
|
||||||
|
stop_pos == std::string::npos ||
|
||||||
|
// Send rest of the text if we are at the end of the generation
|
||||||
|
(!llama.has_next_token && !is_stop_full && stop_pos > 0)
|
||||||
|
) {
|
||||||
|
const std::string to_send = llama.generated_text.substr(pos, std::string::npos);
|
||||||
|
|
||||||
|
sent_count += to_send.size();
|
||||||
|
|
||||||
|
std::vector<completion_token_output> probs_output = {};
|
||||||
|
|
||||||
|
if (llama.params.n_probs > 0) {
|
||||||
|
const std::vector<llama_token> to_send_toks = llama_tokenize(llama.ctx, to_send, false);
|
||||||
|
size_t probs_pos = std::min(sent_token_probs_index, llama.generated_token_probs.size());
|
||||||
|
size_t probs_stop_pos = std::min(sent_token_probs_index + to_send_toks.size(), llama.generated_token_probs.size());
|
||||||
|
if (probs_pos < probs_stop_pos) {
|
||||||
|
probs_output = std::vector<completion_token_output>(llama.generated_token_probs.begin() + probs_pos, llama.generated_token_probs.begin() + probs_stop_pos);
|
||||||
|
}
|
||||||
|
sent_token_probs_index = probs_stop_pos;
|
||||||
|
}
|
||||||
|
|
||||||
|
const json data = format_partial_response(llama, to_send, probs_output);
|
||||||
|
|
||||||
|
const std::string str =
|
||||||
|
"data: " +
|
||||||
|
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||||
|
"\n\n";
|
||||||
|
|
||||||
|
LOG_VERBOSE("data stream", {
|
||||||
|
{ "to_send", str }
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!sink.write(str.data(), str.size())) {
|
||||||
|
LOG_VERBOSE("stream closed", {});
|
||||||
|
llama_print_timings(llama.ctx);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
if (!llama.has_next_token) {
|
||||||
|
// Generation is done, send extra information.
|
||||||
|
const json data = format_final_response(
|
||||||
|
llama,
|
||||||
|
"",
|
||||||
|
std::vector<completion_token_output>(llama.generated_token_probs.begin(), llama.generated_token_probs.begin() + sent_token_probs_index)
|
||||||
|
);
|
||||||
|
|
||||||
|
const std::string str =
|
||||||
|
"data: " +
|
||||||
|
data.dump(-1, ' ', false, json::error_handler_t::replace) +
|
||||||
|
"\n\n";
|
||||||
|
|
||||||
|
LOG_VERBOSE("data stream", {
|
||||||
|
{ "to_send", str }
|
||||||
|
});
|
||||||
|
|
||||||
|
if (!sink.write(str.data(), str.size())) {
|
||||||
|
LOG_VERBOSE("stream closed", {});
|
||||||
|
llama_print_timings(llama.ctx);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_print_timings(llama.ctx);
|
||||||
|
sink.done();
|
||||||
|
return true;
|
||||||
|
};
|
||||||
|
const auto on_complete = [&](bool) {
|
||||||
|
llama.mutex.unlock();
|
||||||
|
};
|
||||||
|
lock.release();
|
||||||
|
res.set_chunked_content_provider("text/event-stream", chunked_content_provider, on_complete);
|
||||||
|
});
|
||||||
|
|
||||||
svr.Get("/model.json", [&llama](const Request &, Response &res)
|
svr.Get("/model.json", [&llama](const Request &, Response &res)
|
||||||
{
|
{
|
||||||
const json data = format_generation_settings(llama);
|
const json data = format_generation_settings(llama);
|
||||||
|
|
|
@ -364,7 +364,7 @@ class ModelParams:
|
||||||
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
gguf_writer.add_feed_forward_length(self.get_n_ff())
|
||||||
|
|
||||||
def tensor_name(key, bid=None):
|
def tensor_name(key, bid=None):
|
||||||
return gguf.MODEL_TENSOR_NAMES[gguf.MODEL_ARCH.LLAMA][key].format(bid=bid) + ".weight"
|
return gguf.TENSOR_NAMES[key].format(bid=bid) + ".weight"
|
||||||
|
|
||||||
class Layer:
|
class Layer:
|
||||||
def __init__(self, params, bid):
|
def __init__(self, params, bid):
|
||||||
|
|
|
@ -1476,10 +1476,15 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
|
|
||||||
const int64_t ne10 = src1->ne[0];
|
const int64_t ne10 = src1->ne[0];
|
||||||
const int64_t ne11 = src1->ne[1];
|
const int64_t ne11 = src1->ne[1];
|
||||||
|
const int64_t ne12 = src1->ne[2];
|
||||||
|
const int64_t ne13 = src1->ne[3];
|
||||||
|
|
||||||
const int nb2 = dst->nb[2];
|
const int nb2 = dst->nb[2];
|
||||||
const int nb3 = dst->nb[3];
|
const int nb3 = dst->nb[3];
|
||||||
|
|
||||||
|
const int64_t r2 = ne12 / ne02;
|
||||||
|
const int64_t r3 = ne13 / ne03;
|
||||||
|
|
||||||
const float alpha = 1.0f;
|
const float alpha = 1.0f;
|
||||||
const float beta = 0.0f;
|
const float beta = 0.0f;
|
||||||
const int x_ne = ne01 * ne00;
|
const int x_ne = ne01 * ne00;
|
||||||
|
@ -1498,13 +1503,22 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
cl_mem d_Y = ggml_cl_pool_malloc(sizeof(float) * y_ne, &y_size);
|
||||||
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
cl_mem d_D = ggml_cl_pool_malloc(sizeof(float) * d_ne, &d_size);
|
||||||
|
|
||||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
int64_t pi02 = -1;
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
int64_t pi03 = -1;
|
||||||
|
|
||||||
|
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||||
|
int64_t i03 = i13 / r3;
|
||||||
|
|
||||||
|
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||||
|
int64_t i02 = i12 / r2;
|
||||||
|
|
||||||
// copy data to device
|
// copy data to device
|
||||||
if (src0->backend != GGML_BACKEND_GPU) {
|
if (src0->backend != GGML_BACKEND_GPU && (i02 != pi02 || i03 != pi03)) {
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||||
|
pi02 = i02;
|
||||||
|
pi03 = i03;
|
||||||
}
|
}
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||||
|
|
||||||
CL_CHECK(clFinish(queue));
|
CL_CHECK(clFinish(queue));
|
||||||
|
|
||||||
|
@ -1525,7 +1539,7 @@ static void ggml_cl_mul_mat_f32(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
}
|
}
|
||||||
|
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &ev_sgemm, NULL));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1547,6 +1561,8 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
|
|
||||||
const int64_t ne10 = src1->ne[0];
|
const int64_t ne10 = src1->ne[0];
|
||||||
const int64_t ne11 = src1->ne[1];
|
const int64_t ne11 = src1->ne[1];
|
||||||
|
const int64_t ne12 = src1->ne[2];
|
||||||
|
const int64_t ne13 = src1->ne[3];
|
||||||
|
|
||||||
const int nb10 = src1->nb[0];
|
const int nb10 = src1->nb[0];
|
||||||
const int nb11 = src1->nb[1];
|
const int nb11 = src1->nb[1];
|
||||||
|
@ -1556,6 +1572,9 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
const int nb2 = dst->nb[2];
|
const int nb2 = dst->nb[2];
|
||||||
const int nb3 = dst->nb[3];
|
const int nb3 = dst->nb[3];
|
||||||
|
|
||||||
|
const int64_t r2 = ne12 / ne02;
|
||||||
|
const int64_t r3 = ne13 / ne03;
|
||||||
|
|
||||||
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
|
const ggml_fp16_t alpha = ggml_fp32_to_fp16(1.0f);
|
||||||
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
|
const ggml_fp16_t beta = ggml_fp32_to_fp16(0.0f);
|
||||||
const int x_ne = ne01 * ne00;
|
const int x_ne = ne01 * ne00;
|
||||||
|
@ -1577,32 +1596,41 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
bool src1_cont_rows = nb10 == sizeof(float);
|
bool src1_cont_rows = nb10 == sizeof(float);
|
||||||
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
bool src1_cont_cols = (size_t)nb11 == ne11*sizeof(float);
|
||||||
|
|
||||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
int64_t pi02 = -1;
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
int64_t pi03 = -1;
|
||||||
|
|
||||||
|
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||||
|
int64_t i03 = i13 / r3;
|
||||||
|
|
||||||
|
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||||
|
int64_t i02 = i12 / r2;
|
||||||
|
|
||||||
// copy src0 to device
|
// copy src0 to device
|
||||||
if (src0->backend != GGML_BACKEND_GPU) {
|
if (src0->backend != GGML_BACKEND_GPU && (i02 != pi02 || i03 != pi03)) {
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_X, 0, src0, i03, i02, NULL));
|
||||||
|
pi02 = i02;
|
||||||
|
pi03 = i03;
|
||||||
}
|
}
|
||||||
|
|
||||||
// convert src1 to fp16
|
// convert src1 to fp16
|
||||||
// TODO: use multiple threads
|
// TODO: use multiple threads
|
||||||
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i03 * ne02 + i02);
|
ggml_fp16_t * const tmp = (ggml_fp16_t *) wdata + (ne11 * ne10) * (i13 * ne12 + i12);
|
||||||
char * src1i = (char *) src1->data + i03*nb13 + i02*nb12;
|
char * src1i = (char *) src1->data + i13*nb13 + i12*nb12;
|
||||||
if (src1_cont_rows) {
|
if (src1_cont_rows) {
|
||||||
if (src1_cont_cols) {
|
if (src1_cont_cols) {
|
||||||
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
ggml_fp32_to_fp16_row((float *) src1i, tmp, ne10*ne11);
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||||||
ggml_fp32_to_fp16_row((float *) (src1i + i01*nb11), tmp + i01*ne10, ne10);
|
ggml_fp32_to_fp16_row((float *) (src1i + i11*nb11), tmp + i11*ne10, ne10);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
else {
|
else {
|
||||||
for (int64_t i01 = 0; i01 < ne11; i01++) {
|
for (int64_t i11 = 0; i11 < ne11; i11++) {
|
||||||
for (int64_t i00 = 0; i00 < ne10; i00++) {
|
for (int64_t i10 = 0; i10 < ne10; i10++) {
|
||||||
// very slow due to no inlining
|
// very slow due to no inlining
|
||||||
tmp[i01*ne10 + i00] = ggml_fp32_to_fp16(*(float *) (src1i + i01*nb11 + i00*nb10));
|
tmp[i11*ne10 + i10] = ggml_fp32_to_fp16(*(float *) (src1i + i11*nb11 + i10*nb10));
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -1631,7 +1659,7 @@ static void ggml_cl_mul_mat_f16(const ggml_tensor * src0, const ggml_tensor * sr
|
||||||
// copy dst to host, then convert to float
|
// copy dst to host, then convert to float
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(ggml_fp16_t) * d_ne, tmp, 1, &ev_sgemm, NULL));
|
||||||
|
|
||||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
|
|
||||||
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
ggml_fp16_to_fp32_row(tmp, d, d_ne);
|
||||||
}
|
}
|
||||||
|
@ -1652,12 +1680,17 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||||
|
|
||||||
const int64_t ne10 = src1->ne[0];
|
const int64_t ne10 = src1->ne[0];
|
||||||
const int64_t ne11 = src1->ne[1];
|
const int64_t ne11 = src1->ne[1];
|
||||||
|
const int64_t ne12 = src1->ne[2];
|
||||||
|
const int64_t ne13 = src1->ne[3];
|
||||||
|
|
||||||
const int nb2 = dst->nb[2];
|
const int nb2 = dst->nb[2];
|
||||||
const int nb3 = dst->nb[3];
|
const int nb3 = dst->nb[3];
|
||||||
const ggml_type type = src0->type;
|
const ggml_type type = src0->type;
|
||||||
const bool mul_mat_vec = ne11 == 1;
|
const bool mul_mat_vec = ne11 == 1;
|
||||||
|
|
||||||
|
const int64_t r2 = ne12 / ne02;
|
||||||
|
const int64_t r3 = ne13 / ne03;
|
||||||
|
|
||||||
const float alpha = 1.0f;
|
const float alpha = 1.0f;
|
||||||
const float beta = 0.0f;
|
const float beta = 0.0f;
|
||||||
const int x_ne = ne01 * ne00;
|
const int x_ne = ne01 * ne00;
|
||||||
|
@ -1690,12 +1723,23 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||||
size_t ev_idx = 0;
|
size_t ev_idx = 0;
|
||||||
std::vector<cl_event> events;
|
std::vector<cl_event> events;
|
||||||
|
|
||||||
for (int64_t i03 = 0; i03 < ne03; i03++) {
|
int64_t pi02 = -1;
|
||||||
for (int64_t i02 = 0; i02 < ne02; i02++) {
|
int64_t pi03 = -1;
|
||||||
|
|
||||||
|
for (int64_t i13 = 0; i13 < ne13; i13++) {
|
||||||
|
int64_t i03 = i13 / r3;
|
||||||
|
|
||||||
|
for (int64_t i12 = 0; i12 < ne12; i12++) {
|
||||||
|
int64_t i02 = i12 / r2;
|
||||||
|
|
||||||
// copy src0 to device if necessary
|
// copy src0 to device if necessary
|
||||||
if (src0->backend == GGML_BACKEND_CPU) {
|
if (src0->backend == GGML_BACKEND_CPU) {
|
||||||
events.emplace_back();
|
if (i02 != pi02 || i03 != pi03) {
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
events.emplace_back();
|
||||||
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Q, 0, src0, i03, i02, events.data() + ev_idx++));
|
||||||
|
pi02 = i02;
|
||||||
|
pi03 = i03;
|
||||||
|
}
|
||||||
} else if (src0->backend == GGML_BACKEND_GPU) {
|
} else if (src0->backend == GGML_BACKEND_GPU) {
|
||||||
d_Q = (cl_mem) src0->extra;
|
d_Q = (cl_mem) src0->extra;
|
||||||
} else {
|
} else {
|
||||||
|
@ -1704,7 +1748,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||||
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
if (mul_mat_vec) { // specialized dequantize_mul_mat_vec kernel
|
||||||
// copy src1 to device
|
// copy src1 to device
|
||||||
events.emplace_back();
|
events.emplace_back();
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, events.data() + ev_idx++));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, events.data() + ev_idx++));
|
||||||
|
|
||||||
// compute
|
// compute
|
||||||
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
|
const size_t global = ne01 * CL_DMMV_BLOCK_SIZE;
|
||||||
|
@ -1725,7 +1769,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||||
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
CL_CHECK(clEnqueueNDRangeKernel(queue, *to_fp32_cl, 1, NULL, &global, local > 0 ? &local : NULL, events.size(), !events.empty() ? events.data() : NULL, NULL));
|
||||||
|
|
||||||
// copy src1 to device
|
// copy src1 to device
|
||||||
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i03, i02, NULL));
|
CL_CHECK(ggml_cl_h2d_tensor_2d(queue, d_Y, 0, src1, i13, i12, NULL));
|
||||||
|
|
||||||
events.emplace_back();
|
events.emplace_back();
|
||||||
|
|
||||||
|
@ -1749,7 +1793,7 @@ static void ggml_cl_mul_mat_q_f32(const ggml_tensor * src0, const ggml_tensor *
|
||||||
}
|
}
|
||||||
|
|
||||||
// copy dst to host
|
// copy dst to host
|
||||||
float * d = (float *) ((char *) dst->data + i02*nb2 + i03*nb3);
|
float * d = (float *) ((char *) dst->data + i12*nb2 + i13*nb3);
|
||||||
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
CL_CHECK(clEnqueueReadBuffer(queue, d_D, true, 0, sizeof(float) * d_ne, d, 1, &events[events.size() - 1], NULL));
|
||||||
for (auto *event : events) {
|
for (auto *event : events) {
|
||||||
clReleaseEvent(event);
|
clReleaseEvent(event);
|
||||||
|
|
5
ggml.c
5
ggml.c
|
@ -11621,11 +11621,6 @@ static void ggml_compute_forward_mul_mat(
|
||||||
|
|
||||||
#if defined(GGML_USE_CLBLAST)
|
#if defined(GGML_USE_CLBLAST)
|
||||||
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
|
if (ggml_cl_can_mul_mat(src0, src1, dst)) {
|
||||||
// TODO: handle case when src0 is broadcast-able into src1 across 2nd,3rd dimension
|
|
||||||
// ref: https://github.com/ggerganov/ggml/pull/224
|
|
||||||
GGML_ASSERT(ne02 == ne12);
|
|
||||||
GGML_ASSERT(ne03 == ne13);
|
|
||||||
|
|
||||||
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
if (params->ith == 0 && params->type == GGML_TASK_COMPUTE) {
|
||||||
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
ggml_cl_mul_mat(src0, src1, dst, params->wdata, params->wsize);
|
||||||
}
|
}
|
||||||
|
|
|
@ -86,10 +86,12 @@ class MODEL_ARCH(IntEnum):
|
||||||
MPT : int = auto()
|
MPT : int = auto()
|
||||||
STARCODER : int = auto()
|
STARCODER : int = auto()
|
||||||
PERSIMMON : int = auto()
|
PERSIMMON : int = auto()
|
||||||
|
BERT : int = auto()
|
||||||
|
|
||||||
|
|
||||||
class MODEL_TENSOR(IntEnum):
|
class MODEL_TENSOR(IntEnum):
|
||||||
TOKEN_EMBD : int = auto()
|
TOKEN_EMBD : int = auto()
|
||||||
|
TOKEN_TYPES : int = auto()
|
||||||
POS_EMBD : int = auto()
|
POS_EMBD : int = auto()
|
||||||
OUTPUT : int = auto()
|
OUTPUT : int = auto()
|
||||||
OUTPUT_NORM : int = auto()
|
OUTPUT_NORM : int = auto()
|
||||||
|
@ -122,90 +124,150 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
||||||
MODEL_ARCH.PERSIMMON: "persimmon",
|
MODEL_ARCH.PERSIMMON: "persimmon",
|
||||||
}
|
}
|
||||||
|
|
||||||
MODEL_TENSOR_NAMES: dict[MODEL_ARCH, dict[MODEL_TENSOR, str]] = {
|
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||||
MODEL_ARCH.LLAMA: {
|
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_TENSOR.TOKEN_TYPES: "token_types",
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.POS_EMBD: "position_embd",
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
||||||
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
MODEL_TENSOR.OUTPUT: "output",
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
||||||
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
||||||
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
||||||
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
||||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
||||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
||||||
},
|
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
||||||
MODEL_ARCH.GPTNEOX: {
|
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
}
|
||||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
MODEL_ARCH.LLAMA: [
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
},
|
MODEL_TENSOR.OUTPUT,
|
||||||
MODEL_ARCH.FALCON: {
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.ATTN_Q,
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.ATTN_K,
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
MODEL_TENSOR.ATTN_V,
|
||||||
MODEL_TENSOR.ATTN_NORM_2: "blk.{bid}.attn_norm_2",
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_TENSOR.FFN_NORM,
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.FFN_GATE,
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
},
|
MODEL_TENSOR.FFN_UP,
|
||||||
MODEL_ARCH.BAICHUAN: {
|
],
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_ARCH.GPTNEOX: [
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
MODEL_TENSOR.ROPE_FREQS: "rope_freqs",
|
MODEL_TENSOR.OUTPUT,
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
MODEL_TENSOR.ATTN_Q: "blk.{bid}.attn_q",
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
MODEL_TENSOR.ATTN_K: "blk.{bid}.attn_k",
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
MODEL_TENSOR.ATTN_V: "blk.{bid}.attn_v",
|
MODEL_TENSOR.FFN_NORM,
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
MODEL_TENSOR.FFN_UP,
|
||||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
],
|
||||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
MODEL_ARCH.FALCON: [
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
},
|
MODEL_TENSOR.OUTPUT,
|
||||||
MODEL_ARCH.STARCODER: {
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_TENSOR.ATTN_NORM_2,
|
||||||
MODEL_TENSOR.POS_EMBD: "position_embd",
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
MODEL_TENSOR.FFN_UP,
|
||||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
],
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_ARCH.BAICHUAN: [
|
||||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.OUTPUT,
|
||||||
},
|
MODEL_TENSOR.ROPE_FREQS,
|
||||||
MODEL_ARCH.PERSIMMON: {
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
MODEL_TENSOR.TOKEN_EMBD: "token_embd",
|
MODEL_TENSOR.ATTN_Q,
|
||||||
MODEL_TENSOR.OUTPUT: "output",
|
MODEL_TENSOR.ATTN_K,
|
||||||
MODEL_TENSOR.OUTPUT_NORM: "output_norm",
|
MODEL_TENSOR.ATTN_V,
|
||||||
MODEL_TENSOR.ATTN_NORM: "blk.{bid}.attn_norm",
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
MODEL_TENSOR.ATTN_QKV: "blk.{bid}.attn_qkv",
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
MODEL_TENSOR.ATTN_OUT: "blk.{bid}.attn_output",
|
MODEL_TENSOR.FFN_NORM,
|
||||||
MODEL_TENSOR.FFN_NORM: "blk.{bid}.ffn_norm",
|
MODEL_TENSOR.FFN_GATE,
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.FFN_UP,
|
||||||
MODEL_TENSOR.ATTN_Q_NORM: "blk.{bid}.attn_q_norm",
|
],
|
||||||
MODEL_TENSOR.ATTN_K_NORM: "blk.{bid}.attn_k_norm",
|
MODEL_ARCH.STARCODER: [
|
||||||
MODEL_TENSOR.ATTN_ROT_EMBD: "blk.{bid}.attn_rot_embd",
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
},
|
MODEL_TENSOR.POS_EMBD,
|
||||||
MODEL_ARCH.GPT2: {
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.BERT: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.TOKEN_TYPES,
|
||||||
|
MODEL_TENSOR.POS_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.MPT: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.GPTJ: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_Q,
|
||||||
|
MODEL_TENSOR.ATTN_K,
|
||||||
|
MODEL_TENSOR.ATTN_V,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.PERSIMMON: [
|
||||||
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
MODEL_TENSOR.OUTPUT,
|
||||||
|
MODEL_TENSOR.OUTPUT_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_QKV,
|
||||||
|
MODEL_TENSOR.ATTN_OUT,
|
||||||
|
MODEL_TENSOR.FFN_NORM,
|
||||||
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
MODEL_TENSOR.ATTN_Q_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_K_NORM,
|
||||||
|
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||||
|
],
|
||||||
|
MODEL_ARCH.GPT2: [
|
||||||
# TODO
|
# TODO
|
||||||
},
|
],
|
||||||
# TODO
|
# TODO
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -229,33 +291,42 @@ class TensorNameMap:
|
||||||
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||||
# Token embeddings
|
# Token embeddings
|
||||||
MODEL_TENSOR.TOKEN_EMBD: (
|
MODEL_TENSOR.TOKEN_EMBD: (
|
||||||
"gpt_neox.embed_in", # gptneox
|
"gpt_neox.embed_in", # gptneox
|
||||||
"transformer.wte", # gpt2 mpt
|
"transformer.wte", # gpt2 mpt
|
||||||
"transformer.word_embeddings", # falcon
|
"transformer.word_embeddings", # falcon
|
||||||
"model.embed_tokens", # llama-hf
|
"model.embed_tokens", # llama-hf
|
||||||
"tok_embeddings", # llama-pth
|
"tok_embeddings", # llama-pth
|
||||||
|
"embeddings.word_embeddings", # bert
|
||||||
"language_model.embedding.word_embeddings", # persimmon
|
"language_model.embedding.word_embeddings", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
|
# Token type embeddings
|
||||||
|
MODEL_TENSOR.TOKEN_TYPES: (
|
||||||
|
"embeddings.token_type_embeddings", # bert
|
||||||
|
),
|
||||||
|
|
||||||
# Position embeddings
|
# Position embeddings
|
||||||
MODEL_TENSOR.POS_EMBD: (
|
MODEL_TENSOR.POS_EMBD: (
|
||||||
"transformer.wpe", # gpt2
|
"transformer.wpe", # gpt2
|
||||||
|
"embeddings.position_embeddings", # bert
|
||||||
),
|
),
|
||||||
|
|
||||||
# Output
|
# Output
|
||||||
MODEL_TENSOR.OUTPUT: (
|
MODEL_TENSOR.OUTPUT: (
|
||||||
"embed_out", # gptneox
|
"embed_out", # gptneox
|
||||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan
|
"lm_head", # gpt2 mpt falcon llama-hf baichuan
|
||||||
"output", # llama-pth
|
"output", # llama-pth
|
||||||
"word_embeddings_for_head", # persimmon
|
"word_embeddings_for_head", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
# Output norm
|
# Output norm
|
||||||
MODEL_TENSOR.OUTPUT_NORM: (
|
MODEL_TENSOR.OUTPUT_NORM: (
|
||||||
"gpt_neox.final_layer_norm", # gptneox
|
"gpt_neox.final_layer_norm", # gptneox
|
||||||
"transformer.ln_f", # gpt2 falcon
|
"transformer.ln_f", # gpt2 gpt-j falcon
|
||||||
"model.norm", # llama-hf baichuan
|
"model.norm", # llama-hf baichuan
|
||||||
"norm", # llama-pth
|
"norm", # llama-pth
|
||||||
|
"embeddings.LayerNorm", # bert
|
||||||
|
"transformer.norm_f", # mpt
|
||||||
"language_model.encoder.final_layernorm", # persimmon
|
"language_model.encoder.final_layernorm", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
|
@ -268,13 +339,14 @@ class TensorNameMap:
|
||||||
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
block_mappings_cfg: dict[MODEL_TENSOR, tuple[str, ...]] = {
|
||||||
# Attention norm
|
# Attention norm
|
||||||
MODEL_TENSOR.ATTN_NORM: (
|
MODEL_TENSOR.ATTN_NORM: (
|
||||||
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
"gpt_neox.layers.{bid}.input_layernorm", # gptneox
|
||||||
"transformer.h.{bid}.ln_1", # gpt2
|
"transformer.h.{bid}.ln_1", # gpt2 gpt-j
|
||||||
"transformer.blocks.{bid}.norm_1", # mpt
|
"transformer.blocks.{bid}.norm_1", # mpt
|
||||||
"transformer.h.{bid}.input_layernorm", # falcon7b
|
"transformer.h.{bid}.input_layernorm", # falcon7b
|
||||||
"transformer.h.{bid}.ln_mlp", # falcon40b
|
"transformer.h.{bid}.ln_mlp", # falcon40b
|
||||||
"model.layers.{bid}.input_layernorm", # llama-hf
|
"model.layers.{bid}.input_layernorm", # llama-hf
|
||||||
"layers.{bid}.attention_norm", # llama-pth
|
"layers.{bid}.attention_norm", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.output.LayerNorm", # bert
|
||||||
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
|
"language_model.encoder.layers.{bid}.input_layernorm", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
|
@ -285,39 +357,47 @@ class TensorNameMap:
|
||||||
|
|
||||||
# Attention query-key-value
|
# Attention query-key-value
|
||||||
MODEL_TENSOR.ATTN_QKV: (
|
MODEL_TENSOR.ATTN_QKV: (
|
||||||
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
"gpt_neox.layers.{bid}.attention.query_key_value", # gptneox
|
||||||
"transformer.h.{bid}.attn.c_attn", # gpt2
|
"transformer.h.{bid}.attn.c_attn", # gpt2
|
||||||
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
"transformer.blocks.{bid}.attn.Wqkv", # mpt
|
||||||
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
"transformer.h.{bid}.self_attention.query_key_value", # falcon
|
||||||
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
"language_model.encoder.layers.{bid}.self_attention.query_key_value", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention query
|
# Attention query
|
||||||
MODEL_TENSOR.ATTN_Q: (
|
MODEL_TENSOR.ATTN_Q: (
|
||||||
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
"model.layers.{bid}.self_attn.q_proj", # llama-hf
|
||||||
"layers.{bid}.attention.wq", # llama-pth
|
"layers.{bid}.attention.wq", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.self.query", # bert
|
||||||
|
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention key
|
# Attention key
|
||||||
MODEL_TENSOR.ATTN_K: (
|
MODEL_TENSOR.ATTN_K: (
|
||||||
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
"model.layers.{bid}.self_attn.k_proj", # llama-hf
|
||||||
"layers.{bid}.attention.wk", # llama-pth
|
"layers.{bid}.attention.wk", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.self.key", # bert
|
||||||
|
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention value
|
# Attention value
|
||||||
MODEL_TENSOR.ATTN_V: (
|
MODEL_TENSOR.ATTN_V: (
|
||||||
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
"model.layers.{bid}.self_attn.v_proj", # llama-hf
|
||||||
"layers.{bid}.attention.wv", # llama-pth
|
"layers.{bid}.attention.wv", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.self.value", # bert
|
||||||
|
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
||||||
),
|
),
|
||||||
|
|
||||||
# Attention output
|
# Attention output
|
||||||
MODEL_TENSOR.ATTN_OUT: (
|
MODEL_TENSOR.ATTN_OUT: (
|
||||||
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
"gpt_neox.layers.{bid}.attention.dense", # gptneox
|
||||||
"transformer.h.{bid}.attn.c_proj", # gpt2
|
"transformer.h.{bid}.attn.c_proj", # gpt2
|
||||||
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
"transformer.blocks.{bid}.attn.out_proj", # mpt
|
||||||
"transformer.h.{bid}.self_attention.dense", # falcon
|
"transformer.h.{bid}.self_attention.dense", # falcon
|
||||||
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
"model.layers.{bid}.self_attn.o_proj", # llama-hf
|
||||||
"layers.{bid}.attention.wo", # llama-pth
|
"layers.{bid}.attention.wo", # llama-pth
|
||||||
|
"encoder.layer.{bid}.attention.output.dense", # bert
|
||||||
|
"transformer.h.{bid}.attn.out_proj", # gpt-j
|
||||||
"language_model.encoder.layers.{bid}.self_attention.dense" # persimmon
|
"language_model.encoder.layers.{bid}.self_attention.dense" # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
|
@ -329,22 +409,25 @@ class TensorNameMap:
|
||||||
|
|
||||||
# Feed-forward norm
|
# Feed-forward norm
|
||||||
MODEL_TENSOR.FFN_NORM: (
|
MODEL_TENSOR.FFN_NORM: (
|
||||||
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
"gpt_neox.layers.{bid}.post_attention_layernorm", # gptneox
|
||||||
"transformer.h.{bid}.ln_2", # gpt2
|
"transformer.h.{bid}.ln_2", # gpt2
|
||||||
"transformer.blocks.{bid}.norm_2", # mpt
|
"transformer.blocks.{bid}.norm_2", # mpt
|
||||||
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
"model.layers.{bid}.post_attention_layernorm", # llama-hf
|
||||||
"layers.{bid}.ffn_norm", # llama-pth
|
"layers.{bid}.ffn_norm", # llama-pth
|
||||||
|
"encoder.layer.{bid}.output.LayerNorm", # bert
|
||||||
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
# Feed-forward up
|
# Feed-forward up
|
||||||
MODEL_TENSOR.FFN_UP: (
|
MODEL_TENSOR.FFN_UP: (
|
||||||
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
"gpt_neox.layers.{bid}.mlp.dense_h_to_4h", # gptneox
|
||||||
"transformer.h.{bid}.mlp.c_fc", # gpt2
|
"transformer.h.{bid}.mlp.c_fc", # gpt2
|
||||||
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
"transformer.blocks.{bid}.ffn.up_proj", # mpt
|
||||||
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
"transformer.h.{bid}.mlp.dense_h_to_4h", # falcon
|
||||||
"model.layers.{bid}.mlp.up_proj", # llama-hf
|
"model.layers.{bid}.mlp.up_proj", # llama-hf
|
||||||
"layers.{bid}.feed_forward.w3", # llama-pth
|
"layers.{bid}.feed_forward.w3", # llama-pth
|
||||||
|
"encoder.layer.{bid}.intermediate.dense", # bert
|
||||||
|
"transformer.h.{bid}.mlp.fc_in", # gpt-j
|
||||||
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
|
"language_model.encoder.layers.{bid}.mlp.dense_h_to_4h", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
|
@ -356,12 +439,14 @@ class TensorNameMap:
|
||||||
|
|
||||||
# Feed-forward down
|
# Feed-forward down
|
||||||
MODEL_TENSOR.FFN_DOWN: (
|
MODEL_TENSOR.FFN_DOWN: (
|
||||||
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
"gpt_neox.layers.{bid}.mlp.dense_4h_to_h", # gptneox
|
||||||
"transformer.h.{bid}.mlp.c_proj", # gpt2
|
"transformer.h.{bid}.mlp.c_proj", # gpt2
|
||||||
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
"transformer.blocks.{bid}.ffn.down_proj", # mpt
|
||||||
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
"transformer.h.{bid}.mlp.dense_4h_to_h", # falcon
|
||||||
"model.layers.{bid}.mlp.down_proj", # llama-hf
|
"model.layers.{bid}.mlp.down_proj", # llama-hf
|
||||||
"layers.{bid}.feed_forward.w2", # llama-pth
|
"layers.{bid}.feed_forward.w2", # llama-pth
|
||||||
|
"encoder.layer.{bid}.output.dense", # bert
|
||||||
|
"transformer.h.{bid}.mlp.fc_out", # gpt-j
|
||||||
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
"language_model.encoder.layers.{bid}.mlp.dense_4h_to_h", # persimmon
|
||||||
),
|
),
|
||||||
|
|
||||||
|
@ -380,28 +465,24 @@ class TensorNameMap:
|
||||||
|
|
||||||
mapping: dict[str, tuple[MODEL_TENSOR, str]]
|
mapping: dict[str, tuple[MODEL_TENSOR, str]]
|
||||||
|
|
||||||
tensor_names: dict[MODEL_TENSOR, str]
|
|
||||||
|
|
||||||
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
def __init__(self, arch: MODEL_ARCH, n_blocks: int):
|
||||||
mapping = self.mapping = {}
|
self.mapping = {}
|
||||||
tensor_names = self.tensor_names = MODEL_TENSOR_NAMES[arch]
|
|
||||||
for tensor, keys in self.mappings_cfg.items():
|
for tensor, keys in self.mappings_cfg.items():
|
||||||
tensor_name = tensor_names.get(tensor)
|
if tensor not in MODEL_TENSORS[arch]:
|
||||||
if tensor_name is None:
|
|
||||||
continue
|
continue
|
||||||
mapping[tensor_name] = (tensor, tensor_name)
|
tensor_name = TENSOR_NAMES[tensor]
|
||||||
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||||
for key in keys:
|
for key in keys:
|
||||||
mapping[key] = (tensor, tensor_name)
|
self.mapping[key] = (tensor, tensor_name)
|
||||||
for bid in range(n_blocks):
|
for bid in range(n_blocks):
|
||||||
for tensor, keys in self.block_mappings_cfg.items():
|
for tensor, keys in self.block_mappings_cfg.items():
|
||||||
tensor_name = tensor_names.get(tensor)
|
if tensor not in MODEL_TENSORS[arch]:
|
||||||
if tensor_name is None:
|
|
||||||
continue
|
continue
|
||||||
tensor_name = tensor_name.format(bid = bid)
|
tensor_name = TENSOR_NAMES[tensor].format(bid = bid)
|
||||||
mapping[tensor_name] = (tensor, tensor_name)
|
self.mapping[tensor_name] = (tensor, tensor_name)
|
||||||
for key in keys:
|
for key in keys:
|
||||||
key = key.format(bid = bid)
|
key = key.format(bid = bid)
|
||||||
mapping[key] = (tensor, tensor_name)
|
self.mapping[key] = (tensor, tensor_name)
|
||||||
|
|
||||||
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
def get_type_and_name(self, key: str, try_suffixes: Sequence[str] = ()) -> tuple[MODEL_TENSOR, str] | None:
|
||||||
result = self.mapping.get(key)
|
result = self.mapping.get(key)
|
||||||
|
@ -842,22 +923,25 @@ class SpecialVocab:
|
||||||
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
|
special_token_types: tuple[str, ...] = ('bos', 'eos', 'unk', 'sep', 'pad')
|
||||||
special_token_ids: dict[str, int] = {}
|
special_token_ids: dict[str, int] = {}
|
||||||
|
|
||||||
def __init__(self, path: Path, load_merges: bool = False, special_token_types: tuple[str, ...] | None = None):
|
def __init__(
|
||||||
|
self, path: str | os.PathLike[str], load_merges: bool = False,
|
||||||
|
special_token_types: tuple[str, ...] | None = None,
|
||||||
|
):
|
||||||
self.special_token_ids = {}
|
self.special_token_ids = {}
|
||||||
self.load_merges = load_merges
|
self.load_merges = load_merges
|
||||||
if special_token_types is not None:
|
if special_token_types is not None:
|
||||||
self.special_token_types = special_token_types
|
self.special_token_types = special_token_types
|
||||||
self.load(path)
|
self._load(Path(path))
|
||||||
|
|
||||||
def load(self, path: Path):
|
def _load(self, path: Path) -> None:
|
||||||
if not self.try_load_from_tokenizer_json(path):
|
if not self._try_load_from_tokenizer_json(path):
|
||||||
self.try_load_from_config_json(path)
|
self._try_load_from_config_json(path)
|
||||||
|
|
||||||
def try_load_from_tokenizer_json(self, path: Path) -> bool:
|
def _try_load_from_tokenizer_json(self, path: Path) -> bool:
|
||||||
tokenizer_file = path / 'tokenizer.json'
|
tokenizer_file = path / 'tokenizer.json'
|
||||||
if not tokenizer_file.is_file():
|
if not tokenizer_file.is_file():
|
||||||
return False
|
return False
|
||||||
with open(tokenizer_file, 'r', encoding = 'utf-8') as f:
|
with open(tokenizer_file, encoding = 'utf-8') as f:
|
||||||
tokenizer = json.load(f)
|
tokenizer = json.load(f)
|
||||||
if self.load_merges:
|
if self.load_merges:
|
||||||
merges = tokenizer.get('model', {}).get('merges')
|
merges = tokenizer.get('model', {}).get('merges')
|
||||||
|
@ -867,7 +951,7 @@ class SpecialVocab:
|
||||||
added_tokens = tokenizer.get('added_tokens')
|
added_tokens = tokenizer.get('added_tokens')
|
||||||
if added_tokens is None or not tokenizer_config_file.is_file():
|
if added_tokens is None or not tokenizer_config_file.is_file():
|
||||||
return True
|
return True
|
||||||
with open(tokenizer_config_file, 'r', encoding = 'utf-8') as f:
|
with open(tokenizer_config_file, encoding = 'utf-8') as f:
|
||||||
tokenizer_config = json.load(f)
|
tokenizer_config = json.load(f)
|
||||||
for typ in self.special_token_types:
|
for typ in self.special_token_types:
|
||||||
entry = tokenizer_config.get(f'{typ}_token')
|
entry = tokenizer_config.get(f'{typ}_token')
|
||||||
|
@ -886,11 +970,11 @@ class SpecialVocab:
|
||||||
break
|
break
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def try_load_from_config_json(self, path: Path) -> bool:
|
def _try_load_from_config_json(self, path: Path) -> bool:
|
||||||
config_file = path / 'config.json'
|
config_file = path / 'config.json'
|
||||||
if not config_file.is_file():
|
if not config_file.is_file():
|
||||||
return False
|
return False
|
||||||
with open(config_file, 'r', encoding = 'utf-8') as f:
|
with open(config_file, encoding = 'utf-8') as f:
|
||||||
config = json.load(f)
|
config = json.load(f)
|
||||||
for typ in self.special_token_types:
|
for typ in self.special_token_types:
|
||||||
maybe_token_id = config.get(f'{typ}_token_id')
|
maybe_token_id = config.get(f'{typ}_token_id')
|
||||||
|
@ -898,7 +982,7 @@ class SpecialVocab:
|
||||||
self.special_token_ids[typ] = maybe_token_id
|
self.special_token_ids[typ] = maybe_token_id
|
||||||
return True
|
return True
|
||||||
|
|
||||||
def add_to_gguf(self, gw: GGUFWriter):
|
def add_to_gguf(self, gw: GGUFWriter) -> None:
|
||||||
if len(self.merges) > 0:
|
if len(self.merges) > 0:
|
||||||
print(f'gguf: Adding {len(self.merges)} merge(s).')
|
print(f'gguf: Adding {len(self.merges)} merge(s).')
|
||||||
gw.add_token_merges(self.merges)
|
gw.add_token_merges(self.merges)
|
||||||
|
@ -910,8 +994,8 @@ class SpecialVocab:
|
||||||
print(f'gguf: Setting special token type {typ} to {tokid}')
|
print(f'gguf: Setting special token type {typ} to {tokid}')
|
||||||
handler(tokid)
|
handler(tokid)
|
||||||
|
|
||||||
def __repr__(self):
|
def __repr__(self) -> str:
|
||||||
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids if self.special_token_ids else "unset"}>'
|
return f'<SpecialVocab with {len(self.merges)} merges and special tokens {self.special_token_ids or "unset"}>'
|
||||||
|
|
||||||
|
|
||||||
# Example usage:
|
# Example usage:
|
||||||
|
|
|
@ -1,6 +1,6 @@
|
||||||
[tool.poetry]
|
[tool.poetry]
|
||||||
name = "gguf"
|
name = "gguf"
|
||||||
version = "0.3.3"
|
version = "0.4.0"
|
||||||
description = "Write ML models in GGUF for GGML"
|
description = "Write ML models in GGUF for GGML"
|
||||||
authors = ["GGML <ggml@ggml.ai>"]
|
authors = ["GGML <ggml@ggml.ai>"]
|
||||||
packages = [
|
packages = [
|
||||||
|
|
23
llama.cpp
23
llama.cpp
|
@ -1102,6 +1102,10 @@ struct llama_vocab {
|
||||||
id special_pad_id = -1;
|
id special_pad_id = -1;
|
||||||
|
|
||||||
id linefeed_id = 13;
|
id linefeed_id = 13;
|
||||||
|
id special_prefix_id = 32007;
|
||||||
|
id special_middle_id = 32009;
|
||||||
|
id special_suffix_id = 32008;
|
||||||
|
id special_eot_id = 32010;
|
||||||
|
|
||||||
int find_bpe_rank(std::string token_left, std::string token_right) const {
|
int find_bpe_rank(std::string token_left, std::string token_right) const {
|
||||||
replace_all(token_left, " ", "\u0120");
|
replace_all(token_left, " ", "\u0120");
|
||||||
|
@ -7217,13 +7221,14 @@ struct llama_context * llama_new_context_with_model(
|
||||||
|
|
||||||
#ifdef GGML_USE_METAL
|
#ifdef GGML_USE_METAL
|
||||||
if (model->n_gpu_layers > 0) {
|
if (model->n_gpu_layers > 0) {
|
||||||
|
ggml_metal_log_set_callback(llama_log_callback_default, NULL);
|
||||||
|
|
||||||
ctx->ctx_metal = ggml_metal_init(1);
|
ctx->ctx_metal = ggml_metal_init(1);
|
||||||
if (!ctx->ctx_metal) {
|
if (!ctx->ctx_metal) {
|
||||||
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
|
LLAMA_LOG_ERROR("%s: ggml_metal_init() failed\n", __func__);
|
||||||
llama_free(ctx);
|
llama_free(ctx);
|
||||||
return NULL;
|
return NULL;
|
||||||
}
|
}
|
||||||
ggml_metal_log_set_callback(llama_log_callback_default, NULL);
|
|
||||||
//ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
|
//ggml_metal_graph_find_concurrency(ctx->ctx_metal, gf, false);
|
||||||
//ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
|
//ggml_allocr_set_parse_seq(ctx->alloc, ggml_metal_get_concur_list(ctx->ctx_metal), ggml_metal_if_optimized(ctx->ctx_metal));
|
||||||
}
|
}
|
||||||
|
@ -7950,6 +7955,22 @@ llama_token llama_token_eos(const struct llama_context * ctx) {
|
||||||
llama_token llama_token_nl(const struct llama_context * ctx) {
|
llama_token llama_token_nl(const struct llama_context * ctx) {
|
||||||
return ctx->model.vocab.linefeed_id;
|
return ctx->model.vocab.linefeed_id;
|
||||||
}
|
}
|
||||||
|
llama_token llama_token_prefix(const struct llama_context * ctx) {
|
||||||
|
return ctx->model.vocab.special_prefix_id;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_token llama_token_middle(const struct llama_context * ctx) {
|
||||||
|
return ctx->model.vocab.special_middle_id;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_token llama_token_suffix(const struct llama_context * ctx) {
|
||||||
|
return ctx->model.vocab.special_suffix_id;
|
||||||
|
}
|
||||||
|
|
||||||
|
llama_token llama_token_eot(const struct llama_context * ctx) {
|
||||||
|
return ctx->model.vocab.special_eot_id;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
int llama_tokenize(
|
int llama_tokenize(
|
||||||
const struct llama_model * model,
|
const struct llama_model * model,
|
||||||
|
|
5
llama.h
5
llama.h
|
@ -490,6 +490,11 @@ extern "C" {
|
||||||
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
|
LLAMA_API llama_token llama_token_bos(const struct llama_context * ctx); // beginning-of-sentence
|
||||||
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
|
LLAMA_API llama_token llama_token_eos(const struct llama_context * ctx); // end-of-sentence
|
||||||
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
|
LLAMA_API llama_token llama_token_nl (const struct llama_context * ctx); // next-line
|
||||||
|
// codellama infill tokens
|
||||||
|
LLAMA_API llama_token llama_token_prefix(const struct llama_context * ctx); // Beginning of infill prefix
|
||||||
|
LLAMA_API llama_token llama_token_middle(const struct llama_context * ctx); // Beginning of infill middle
|
||||||
|
LLAMA_API llama_token llama_token_suffix(const struct llama_context * ctx); // Beginning of infill suffix
|
||||||
|
LLAMA_API llama_token llama_token_eot (const struct llama_context * ctx); // End of infill middle
|
||||||
|
|
||||||
//
|
//
|
||||||
// Tokenization
|
// Tokenization
|
||||||
|
|
|
@ -56,11 +56,13 @@ find_library(llama_LIBRARY llama
|
||||||
HINTS ${LLAMA_LIB_DIR})
|
HINTS ${LLAMA_LIB_DIR})
|
||||||
|
|
||||||
set(_llama_link_deps "Threads::Threads" "@LLAMA_EXTRA_LIBS@")
|
set(_llama_link_deps "Threads::Threads" "@LLAMA_EXTRA_LIBS@")
|
||||||
|
set(_llama_transient_defines "@LLAMA_TRANSIENT_DEFINES@")
|
||||||
add_library(llama UNKNOWN IMPORTED)
|
add_library(llama UNKNOWN IMPORTED)
|
||||||
set_target_properties(llama
|
set_target_properties(llama
|
||||||
PROPERTIES
|
PROPERTIES
|
||||||
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
INTERFACE_INCLUDE_DIRECTORIES "${LLAMA_INCLUDE_DIR}"
|
||||||
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
INTERFACE_LINK_LIBRARIES "${_llama_link_deps}"
|
||||||
|
INTERFACE_COMPILE_DEFINITIONS "${_llama_transient_defines}"
|
||||||
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
IMPORTED_LINK_INTERFACE_LANGUAGES "CXX"
|
||||||
IMPORTED_LOCATION "${llama_LIBRARY}"
|
IMPORTED_LOCATION "${llama_LIBRARY}"
|
||||||
INTERFACE_COMPILE_FEATURES cxx_std_11
|
INTERFACE_COMPILE_FEATURES cxx_std_11
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue