gguf-py : Numpy dequantization for most types
This commit is contained in:
parent
3a14e00366
commit
5a9edda7ca
2 changed files with 595 additions and 3 deletions
|
@ -4,7 +4,7 @@ from typing import Any, Callable, Sequence
|
|||
|
||||
from numpy.typing import DTypeLike
|
||||
|
||||
from .constants import GGML_QUANT_SIZES, GGMLQuantizationType
|
||||
from .constants import GGML_QUANT_SIZES, GGMLQuantizationType, QK_K
|
||||
from .lazy import LazyNumpyTensor
|
||||
|
||||
import numpy as np
|
||||
|
@ -64,8 +64,10 @@ def quantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
|
|||
|
||||
|
||||
def dequantize(data: np.ndarray, qtype: GGMLQuantizationType) -> np.ndarray:
|
||||
if qtype == GGMLQuantizationType.F32 or qtype == GGMLQuantizationType.F16:
|
||||
return data.astype(np.float32, copy=False)
|
||||
if qtype == GGMLQuantizationType.F32:
|
||||
return data.view(np.float32)
|
||||
elif qtype == GGMLQuantizationType.F16:
|
||||
return data.view(np.float16).astype(np.float32)
|
||||
elif (q := _type_traits.get(qtype)) is not None:
|
||||
return q.dequantize(data)
|
||||
else:
|
||||
|
@ -187,6 +189,166 @@ class BF16(__Quant, qtype=GGMLQuantizationType.BF16):
|
|||
return (blocks.view(np.int16).astype(np.int32) << 16).view(np.float32)
|
||||
|
||||
|
||||
class Q4_0(__Quant, qtype=GGMLQuantizationType.Q4_0):
|
||||
@classmethod
|
||||
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
imax = abs(blocks).argmax(axis=-1, keepdims=True)
|
||||
max = np.take_along_axis(blocks, imax, axis=-1)
|
||||
|
||||
d = max / -8
|
||||
with np.errstate(divide="ignore"):
|
||||
id = np.where(d == 0, 0, 1 / d)
|
||||
# FIXME: Q4_0's reference rounding is cursed and depends on FMA
|
||||
qs = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(8.5), dtype=np.float32).astype(np.uint8).clip(0, 15)
|
||||
|
||||
qs = qs.reshape((n_blocks, 2, cls.block_size // 2))
|
||||
qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4))
|
||||
|
||||
d = d.astype(np.float16).view(np.uint8)
|
||||
|
||||
return np.concatenate([d, qs], axis=-1)
|
||||
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d, qs = np.hsplit(blocks, [2])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
|
||||
qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
|
||||
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.int8) - np.int8(8)
|
||||
|
||||
return (d * qs.astype(np.float32))
|
||||
|
||||
|
||||
class Q4_1(__Quant, qtype=GGMLQuantizationType.Q4_1):
|
||||
@classmethod
|
||||
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
max = blocks.max(axis=-1, keepdims=True)
|
||||
min = blocks.min(axis=-1, keepdims=True)
|
||||
|
||||
d = (max - min) / 15
|
||||
with np.errstate(divide="ignore"):
|
||||
id = np.where(d == 0, 0, 1 / d)
|
||||
qs = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 15)
|
||||
|
||||
qs = qs.reshape((n_blocks, 2, cls.block_size // 2))
|
||||
qs = qs[..., 0, :] | (qs[..., 1, :] << np.uint8(4))
|
||||
|
||||
d = d.astype(np.float16).view(np.uint8)
|
||||
m = min.astype(np.float16).view(np.uint8)
|
||||
|
||||
return np.concatenate([d, m, qs], axis=-1)
|
||||
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d, rest = np.hsplit(blocks, [2])
|
||||
m, qs = np.hsplit(rest, [2])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
m = m.view(np.float16).astype(np.float32)
|
||||
|
||||
qs = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
|
||||
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1)).astype(np.float32)
|
||||
|
||||
return (d * qs) + m
|
||||
|
||||
|
||||
class Q5_0(__Quant, qtype=GGMLQuantizationType.Q5_0):
|
||||
@classmethod
|
||||
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
imax = abs(blocks).argmax(axis=-1, keepdims=True)
|
||||
max = np.take_along_axis(blocks, imax, axis=-1)
|
||||
|
||||
d = max / -16
|
||||
with np.errstate(divide="ignore"):
|
||||
id = np.where(d == 0, 0, 1 / d)
|
||||
# FIXME: Q5_0's reference rounding is cursed and depends on FMA
|
||||
q = np.trunc((np.float64(blocks) * np.float64(id)) + np.float64(16.5), dtype=np.float32).astype(np.uint8).clip(0, 31)
|
||||
|
||||
qs = q.reshape((n_blocks, 2, cls.block_size // 2))
|
||||
qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4))
|
||||
|
||||
qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4)
|
||||
|
||||
d = d.astype(np.float16).view(np.uint8)
|
||||
|
||||
return np.concatenate([d, qh, qs], axis=-1)
|
||||
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d, rest = np.hsplit(blocks, [2])
|
||||
qh, qs = np.hsplit(rest, [4])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
qh = qh.view(np.uint32)
|
||||
|
||||
qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32))
|
||||
ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
|
||||
qh = (qh & np.uint32(0x01)).astype(np.uint8)
|
||||
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1))
|
||||
|
||||
qs = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(16)
|
||||
|
||||
return (d * qs.astype(np.float32))
|
||||
|
||||
|
||||
class Q5_1(__Quant, qtype=GGMLQuantizationType.Q5_1):
|
||||
@classmethod
|
||||
def quantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
max = blocks.max(axis=-1, keepdims=True)
|
||||
min = blocks.min(axis=-1, keepdims=True)
|
||||
|
||||
d = (max - min) / 31
|
||||
with np.errstate(divide="ignore"):
|
||||
id = np.where(d == 0, 0, 1 / d)
|
||||
q = np.trunc((blocks - min) * id + np.float32(0.5), dtype=np.float32).astype(np.uint8).clip(0, 31)
|
||||
|
||||
qs = q.reshape((n_blocks, 2, cls.block_size // 2))
|
||||
qs = (qs[..., 0, :] & np.uint8(0x0F)) | (qs[..., 1, :] << np.uint8(4))
|
||||
|
||||
qh = np.packbits(q.reshape((n_blocks, 1, 32)) >> np.uint8(4), axis=-1, bitorder="little").reshape(n_blocks, 4)
|
||||
|
||||
d = d.astype(np.float16).view(np.uint8)
|
||||
m = min.astype(np.float16).view(np.uint8)
|
||||
|
||||
return np.concatenate([d, m, qh, qs], axis=-1)
|
||||
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d, rest = np.hsplit(blocks, [2])
|
||||
m, rest = np.hsplit(rest, [2])
|
||||
qh, qs = np.hsplit(rest, [4])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
m = m.view(np.float16).astype(np.float32)
|
||||
qh = qh.view(np.uint32)
|
||||
|
||||
qh = qh.reshape((n_blocks, 1)) >> np.array([i for i in range(32)], dtype=np.uint32).reshape((1, 32))
|
||||
ql = qs.reshape((n_blocks, -1, 1, cls.block_size // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
|
||||
qh = (qh & np.uint32(0x01)).astype(np.uint8)
|
||||
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1))
|
||||
|
||||
qs = (ql | (qh << np.uint8(4))).astype(np.float32)
|
||||
|
||||
return (d * qs) + m
|
||||
|
||||
|
||||
class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0):
|
||||
@classmethod
|
||||
# Implementation of Q8_0 with bit-exact same results as reference implementation in ggml-quants.c
|
||||
|
@ -211,3 +373,227 @@ class Q8_0(__Quant, qtype=GGMLQuantizationType.Q8_0):
|
|||
x = x.view(np.int8).astype(np.float32)
|
||||
|
||||
return (x * d)
|
||||
|
||||
|
||||
class Q2_K(__Quant, qtype=GGMLQuantizationType.Q2_K):
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
scales, rest = np.hsplit(blocks, [QK_K // 16])
|
||||
qs, rest = np.hsplit(rest, [QK_K // 4])
|
||||
d, dmin = np.hsplit(rest, [2])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
dmin = dmin.view(np.float16).astype(np.float32)
|
||||
|
||||
# (n_blocks, 16, 1)
|
||||
dl = (d * (scales & 0xF).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1))
|
||||
ml = (dmin * (scales >> 4).astype(np.float32)).reshape((n_blocks, QK_K // 16, 1))
|
||||
|
||||
shift = np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
|
||||
|
||||
qs = (qs.reshape((n_blocks, -1, 1, 32)) >> shift) & np.uint8(3)
|
||||
|
||||
qs = qs.reshape((n_blocks, QK_K // 16, 16)).astype(np.float32)
|
||||
|
||||
qs = dl * qs - ml
|
||||
|
||||
return qs.reshape((n_blocks, -1))
|
||||
|
||||
|
||||
class Q3_K(__Quant, qtype=GGMLQuantizationType.Q3_K):
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
hmask, rest = np.hsplit(blocks, [QK_K // 8])
|
||||
qs, rest = np.hsplit(rest, [QK_K // 4])
|
||||
scales, d = np.hsplit(rest, [12])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
|
||||
# The scales are packed at 6-bit each in this pattern:
|
||||
# 0: IIIIAAAA
|
||||
# 1: JJJJBBBB
|
||||
# 2: KKKKCCCC
|
||||
# 3: LLLLDDDD
|
||||
# 4: MMMMEEEE
|
||||
# 5: NNNNFFFF
|
||||
# 6: OOOOGGGG
|
||||
# 7: PPPPHHHH
|
||||
# 8: MMIIEEAA
|
||||
# 9: NNJJFFBB
|
||||
# 10: OOKKGGCC
|
||||
# 11: PPLLHHDD
|
||||
lscales, hscales = np.hsplit(scales, [8])
|
||||
lscales = lscales.reshape((n_blocks, 1, 8)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 2, 1))
|
||||
lscales = lscales.reshape((n_blocks, 16))
|
||||
hscales = hscales.reshape((n_blocks, 1, 4)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 4, 1))
|
||||
hscales = hscales.reshape((n_blocks, 16))
|
||||
scales = (lscales & np.uint8(0x0F)) | ((hscales & np.uint8(0x03)) << np.uint8(4))
|
||||
scales = (scales.astype(np.int8) - np.int8(32)).astype(np.float32)
|
||||
|
||||
dl = (d * scales).reshape((n_blocks, 16, 1))
|
||||
|
||||
ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
|
||||
qh = hmask.reshape(n_blocks, -1, 1, 32) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1))
|
||||
ql = ql.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(3)
|
||||
qh = (qh.reshape((n_blocks, 16, QK_K // 16)) & np.uint8(1))
|
||||
qh = qh ^ np.uint8(1) # strangely, the offset is zero when the bitmask is 1
|
||||
q = (ql.astype(np.int8) - (qh << np.uint8(2)).astype(np.int8)).astype(np.float32)
|
||||
|
||||
return (dl * q).reshape((n_blocks, QK_K))
|
||||
|
||||
|
||||
class Q4_K(__Quant, qtype=GGMLQuantizationType.Q4_K):
|
||||
K_SCALE_SIZE = 12
|
||||
|
||||
@staticmethod
|
||||
def get_scale_min(scales: np.ndarray) -> tuple[np.ndarray, np.ndarray]:
|
||||
n_blocks = scales.shape[0]
|
||||
scales = scales.view(np.uint8)
|
||||
### Unpacking the following: ###
|
||||
# 0 EEAAAAAA
|
||||
# 1 FFBBBBBB
|
||||
# 2 GGCCCCCC
|
||||
# 3 HHDDDDDD
|
||||
# 4 eeaaaaaa
|
||||
# 5 ffbbbbbb
|
||||
# 6 ggcccccc
|
||||
# 7 hhdddddd
|
||||
# 8 eeeeEEEE
|
||||
# 9 ffffFFFF
|
||||
# 10 ggggGGGG
|
||||
# 11 hhhhHHHH
|
||||
scales = scales.reshape((n_blocks, 3, 4))
|
||||
d, m, m_d = np.split(scales, 3, axis=-2)
|
||||
|
||||
sc = np.concatenate([d & 0x3F, (m_d & 0x0F) | ((d >> 2) & 0x30)], axis=-1)
|
||||
min = np.concatenate([m & 0x3F, (m_d >> 4) | ((m >> 2) & 0x30)], axis=-1)
|
||||
|
||||
return (sc.reshape((n_blocks, 8)), min.reshape((n_blocks, 8)))
|
||||
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d, rest = np.hsplit(blocks, [2])
|
||||
dmin, rest = np.hsplit(rest, [2])
|
||||
scales, qs = np.hsplit(rest, [cls.K_SCALE_SIZE])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
dmin = dmin.view(np.float16).astype(np.float32)
|
||||
|
||||
sc, m = Q4_K.get_scale_min(scales)
|
||||
|
||||
d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1))
|
||||
dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1))
|
||||
|
||||
qs = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
|
||||
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 32)).astype(np.float32)
|
||||
|
||||
return (d * qs - dm).reshape((n_blocks, QK_K))
|
||||
|
||||
|
||||
class Q5_K(__Quant, qtype=GGMLQuantizationType.Q5_K):
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d, rest = np.hsplit(blocks, [2])
|
||||
dmin, rest = np.hsplit(rest, [2])
|
||||
scales, rest = np.hsplit(rest, [Q4_K.K_SCALE_SIZE])
|
||||
qh, qs = np.hsplit(rest, [QK_K // 8])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
dmin = dmin.view(np.float16).astype(np.float32)
|
||||
|
||||
sc, m = Q4_K.get_scale_min(scales)
|
||||
|
||||
d = (d * sc.astype(np.float32)).reshape((n_blocks, -1, 1))
|
||||
dm = (dmin * m.astype(np.float32)).reshape((n_blocks, -1, 1))
|
||||
|
||||
ql = qs.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
|
||||
qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([i for i in range(8)], dtype=np.uint8).reshape((1, 1, 8, 1))
|
||||
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32))
|
||||
qh = (qh & np.uint8(0x01)).reshape((n_blocks, -1, 32))
|
||||
q = (ql | (qh << np.uint8(4))).astype(np.float32)
|
||||
|
||||
return (d * q - dm).reshape((n_blocks, QK_K))
|
||||
|
||||
|
||||
class Q6_K(__Quant, qtype=GGMLQuantizationType.Q6_K):
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
ql, rest = np.hsplit(blocks, [QK_K // 2])
|
||||
qh, rest = np.hsplit(rest, [QK_K // 4])
|
||||
scales, d = np.hsplit(rest, [QK_K // 16])
|
||||
|
||||
scales = scales.view(np.int8).astype(np.float32)
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
d = (d * scales).reshape((n_blocks, QK_K // 16, 1))
|
||||
|
||||
ql = ql.reshape((n_blocks, -1, 1, 64)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
|
||||
ql = (ql & np.uint8(0x0F)).reshape((n_blocks, -1, 32))
|
||||
qh = qh.reshape((n_blocks, -1, 1, 32)) >> np.array([0, 2, 4, 6], dtype=np.uint8).reshape((1, 1, 4, 1))
|
||||
qh = (qh & np.uint8(0x03)).reshape((n_blocks, -1, 32))
|
||||
q = (ql | (qh << np.uint8(4))).astype(np.int8) - np.int8(32)
|
||||
q = q.reshape((n_blocks, QK_K // 16, -1)).astype(np.float32)
|
||||
|
||||
return (d * q).reshape((n_blocks, QK_K))
|
||||
|
||||
|
||||
class IQ4_NL(__Quant, qtype=GGMLQuantizationType.IQ4_NL):
|
||||
QK4_NL = 32
|
||||
|
||||
kvalues = (-127, -104, -83, -65, -49, -35, -22, -10, 1, 13, 25, 38, 53, 69, 89, 113)
|
||||
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d, qs = np.hsplit(blocks, [2])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
|
||||
qs = qs.reshape((n_blocks, -1, 1, cls.QK4_NL // 2)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
|
||||
|
||||
qs = (qs & np.uint8(0x0F)).reshape((n_blocks, -1, 1))
|
||||
|
||||
kvalues = np.array(cls.kvalues, dtype=np.int8).reshape(1, 1, 16)
|
||||
qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1))
|
||||
|
||||
return (d * qs)
|
||||
|
||||
|
||||
class IQ4_XS(__Quant, qtype=GGMLQuantizationType.IQ4_XS):
|
||||
|
||||
@classmethod
|
||||
def dequantize_blocks(cls, blocks: np.ndarray) -> np.ndarray:
|
||||
n_blocks = blocks.shape[0]
|
||||
|
||||
d, rest = np.hsplit(blocks, [2])
|
||||
scales_h, rest = np.hsplit(rest, [2])
|
||||
scales_l, qs = np.hsplit(rest, [QK_K // 64])
|
||||
|
||||
d = d.view(np.float16).astype(np.float32)
|
||||
scales_h = scales_h.view(np.uint16)
|
||||
|
||||
scales_l = scales_l.reshape((n_blocks, -1, 1)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2))
|
||||
scales_h = scales_h.reshape((n_blocks, 1, -1)) >> np.array([2 * i for i in range(QK_K // 32)], dtype=np.uint16).reshape((1, -1, 1))
|
||||
scales_l = scales_l.reshape((n_blocks, -1)) & np.uint8(0x0F)
|
||||
scales_h = scales_h.reshape((n_blocks, -1)).astype(np.uint8) & np.uint8(0x03)
|
||||
|
||||
scales = (scales_l | (scales_h << np.uint8(4))).astype(np.int8) - np.int8(32)
|
||||
dl = (d * scales.astype(np.float32)).reshape((n_blocks, -1, 1))
|
||||
|
||||
qs = qs.reshape((n_blocks, -1, 1, 16)) >> np.array([0, 4], dtype=np.uint8).reshape((1, 1, 2, 1))
|
||||
qs = qs.reshape((n_blocks, -1, 32, 1)) & np.uint8(0x0F)
|
||||
|
||||
kvalues = np.array(IQ4_NL.kvalues, dtype=np.int8).reshape((1, 1, 1, -1))
|
||||
qs = np.take_along_axis(kvalues, qs, axis=-1).astype(np.float32).reshape((n_blocks, -1, 32))
|
||||
|
||||
return (dl * qs).reshape((n_blocks, -1))
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue