Merge branch 'master' into update_bench
This commit is contained in:
commit
5ab650435b
28 changed files with 1846 additions and 1585 deletions
6
.github/workflows/build.yml
vendored
6
.github/workflows/build.yml
vendored
|
@ -356,6 +356,8 @@ jobs:
|
|||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_BLAS=ON -DBUILD_SHARED_LIBS=ON -DLLAMA_BLAS_VENDOR=OpenBLAS -DBLAS_INCLUDE_DIRS="$env:RUNNER_TEMP/openblas/include" -DBLAS_LIBRARIES="$env:RUNNER_TEMP/openblas/lib/openblas.lib"'
|
||||
- build: 'kompute'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_KOMPUTE=ON -DKOMPUTE_OPT_DISABLE_VULKAN_VERSION_CHECK=ON -DBUILD_SHARED_LIBS=ON'
|
||||
- build: 'vulkan'
|
||||
defines: '-DLLAMA_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DLLAMA_VULKAN=ON -DBUILD_SHARED_LIBS=ON'
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
|
@ -406,7 +408,7 @@ jobs:
|
|||
|
||||
- name: Install Vulkan SDK
|
||||
id: get_vulkan
|
||||
if: ${{ matrix.build == 'kompute' }}
|
||||
if: ${{ matrix.build == 'kompute' || matrix.build == 'vulkan' }}
|
||||
run: |
|
||||
curl.exe -o $env:RUNNER_TEMP/VulkanSDK-Installer.exe -L "https://sdk.lunarg.com/sdk/download/${env:VULKAN_VERSION}/windows/VulkanSDK-${env:VULKAN_VERSION}-Installer.exe"
|
||||
& "$env:RUNNER_TEMP\VulkanSDK-Installer.exe" --accept-licenses --default-answer --confirm-command install
|
||||
|
@ -451,7 +453,7 @@ jobs:
|
|||
- name: Test
|
||||
id: cmake_test
|
||||
# not all machines have native AVX-512
|
||||
if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
|
||||
if: ${{ matrix.build != 'clblast' && matrix.build != 'kompute' && matrix.build != 'vulkan' && (matrix.build != 'avx512' || env.HAS_AVX512F == '1') }}
|
||||
run: |
|
||||
cd build
|
||||
ctest -L main -C Release --verbose --timeout 900
|
||||
|
|
|
@ -423,10 +423,7 @@ if (LLAMA_VULKAN)
|
|||
if (Vulkan_FOUND)
|
||||
message(STATUS "Vulkan found")
|
||||
|
||||
set(GGML_HEADERS_VULKAN ggml-vulkan.h)
|
||||
set(GGML_SOURCES_VULKAN ggml-vulkan.cpp)
|
||||
|
||||
add_library(ggml-vulkan STATIC ggml-vulkan.cpp ggml-vulkan.h)
|
||||
add_library(ggml-vulkan OBJECT ggml-vulkan.cpp ggml-vulkan.h)
|
||||
if (BUILD_SHARED_LIBS)
|
||||
set_target_properties(ggml-vulkan PROPERTIES POSITION_INDEPENDENT_CODE ON)
|
||||
endif()
|
||||
|
@ -1012,7 +1009,6 @@ add_library(ggml OBJECT
|
|||
ggml-quants.h
|
||||
${GGML_SOURCES_CUDA} ${GGML_HEADERS_CUDA}
|
||||
${GGML_SOURCES_OPENCL} ${GGML_HEADERS_OPENCL}
|
||||
${GGML_SOURCES_VULKAN} ${GGML_HEADERS_VULKAN}
|
||||
${GGML_SOURCES_METAL} ${GGML_HEADERS_METAL}
|
||||
${GGML_SOURCES_MPI} ${GGML_HEADERS_MPI}
|
||||
${GGML_SOURCES_EXTRA} ${GGML_HEADERS_EXTRA}
|
||||
|
@ -1094,7 +1090,7 @@ install(FILES ${CMAKE_CURRENT_BINARY_DIR}/LlamaConfig.cmake
|
|||
DESTINATION ${CMAKE_INSTALL_LIBDIR}/cmake/Llama)
|
||||
|
||||
set(GGML_PUBLIC_HEADERS "ggml.h" "ggml-alloc.h" "ggml-backend.h"
|
||||
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}" "${GGML_HEADERS_VULKAN}"
|
||||
"${GGML_HEADERS_CUDA}" "${GGML_HEADERS_OPENCL}"
|
||||
"${GGML_HEADERS_METAL}" "${GGML_HEADERS_MPI}" "${GGML_HEADERS_EXTRA}")
|
||||
|
||||
set_target_properties(ggml PROPERTIES PUBLIC_HEADER "${GGML_PUBLIC_HEADERS}")
|
||||
|
|
|
@ -10,7 +10,8 @@ Inference of [LLaMA](https://arxiv.org/abs/2302.13971) model in pure C/C++
|
|||
|
||||
### Hot topics
|
||||
|
||||
- ⚠️ Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
|
||||
- Remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD: https://github.com/ggerganov/llama.cpp/pull/5240
|
||||
- Incoming backends: https://github.com/ggerganov/llama.cpp/discussions/5138
|
||||
- [SYCL backend](README-sycl.md) is ready (1/28/2024), support Linux/Windows in Intel GPUs (iGPU, Arc/Flex/Max series)
|
||||
- New SOTA quantized models, including pure 2-bits: https://huggingface.co/ikawrakow
|
||||
- Collecting Apple Silicon performance stats:
|
||||
|
|
|
@ -583,20 +583,20 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||
break;
|
||||
}
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
} else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
params.n_gpu_layers_draft = std::stoi(argv[i]);
|
||||
#ifndef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
if (!llama_supports_gpu_offload()) {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
} else if (arg == "--main-gpu" || arg == "-mg") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
|
@ -637,11 +637,11 @@ bool gpt_params_parse_ex(int argc, char ** argv, gpt_params & params) {
|
|||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
if (split_arg.size() >= LLAMA_MAX_DEVICES) {
|
||||
if (split_arg.size() >= llama_max_devices()) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
params.tensor_split[i] = std::stof(split_arg[i]);
|
||||
} else {
|
||||
|
@ -989,30 +989,30 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
printf(" -cb, --cont-batching enable continuous batching (a.k.a dynamic batching) (default: disabled)\n");
|
||||
printf(" --mmproj MMPROJ_FILE path to a multimodal projector file for LLaVA. see examples/llava/README.md\n");
|
||||
printf(" --image IMAGE_FILE path to an image file. use with multimodal models\n");
|
||||
if (llama_mlock_supported()) {
|
||||
if (llama_supports_mlock()) {
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported()) {
|
||||
if (llama_supports_mmap()) {
|
||||
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
||||
printf(" if run without this previously, it is recommended to drop the system page cache before using this\n");
|
||||
printf(" see https://github.com/ggerganov/llama.cpp/issues/1437\n");
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -ngld N, --n-gpu-layers-draft N\n");
|
||||
printf(" number of layers to store in VRAM for the draft model\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT, --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
||||
#endif // LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
if (llama_supports_gpu_offload()) {
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -ngld N, --n-gpu-layers-draft N\n");
|
||||
printf(" number of layers to store in VRAM for the draft model\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT, --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row) (default: %d)\n", params.main_gpu);
|
||||
}
|
||||
printf(" --verbose-prompt print a verbose prompt before generation (default: %s)\n", params.verbose_prompt ? "true" : "false");
|
||||
printf(" --no-display-prompt don't print prompt at generation (default: %s)\n", !params.display_prompt ? "true" : "false");
|
||||
printf(" -gan N, --grp-attn-n N\n");
|
||||
|
@ -1520,6 +1520,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||
fprintf(stream, "cpu_has_avx512_vbmi: %s\n", ggml_cpu_has_avx512_vbmi() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_avx512_vnni: %s\n", ggml_cpu_has_avx512_vnni() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_cublas: %s\n", ggml_cpu_has_cublas() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_vulkan: %s\n", ggml_cpu_has_vulkan() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_clblast: %s\n", ggml_cpu_has_clblast() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_kompute: %s\n", ggml_cpu_has_kompute() ? "true" : "false");
|
||||
fprintf(stream, "cpu_has_fma: %s\n", ggml_cpu_has_fma() ? "true" : "false");
|
||||
|
@ -1650,7 +1651,7 @@ void dump_non_result_info_yaml(FILE * stream, const gpt_params & params, const l
|
|||
fprintf(stream, "cont_batching: %s # default: false\n", params.cont_batching ? "true" : "false");
|
||||
fprintf(stream, "temp: %f # default: 0.8\n", sparams.temp);
|
||||
|
||||
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + LLAMA_MAX_DEVICES);
|
||||
const std::vector<float> tensor_split_vector(params.tensor_split, params.tensor_split + llama_max_devices());
|
||||
dump_vector_float_yaml(stream, "tensor_split", tensor_split_vector);
|
||||
|
||||
fprintf(stream, "tfs: %f # default: 1.0\n", sparams.tfs_z);
|
||||
|
|
|
@ -43,40 +43,40 @@ extern char const *LLAMA_BUILD_TARGET;
|
|||
int32_t get_num_physical_cores();
|
||||
|
||||
struct gpt_params {
|
||||
uint32_t seed = -1; // RNG seed
|
||||
uint32_t seed = -1; // RNG seed
|
||||
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_accept = 0.5f; // speculative decoding accept probability
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
|
||||
// pinging @cebtenzzre
|
||||
int32_t n_threads = get_num_physical_cores();
|
||||
int32_t n_threads_draft = -1;
|
||||
int32_t n_threads_batch = -1; // number of threads to use for batch processing (-1 = use n_threads)
|
||||
int32_t n_threads_batch_draft = -1;
|
||||
int32_t n_predict = -1; // new tokens to predict
|
||||
int32_t n_ctx = 512; // context size
|
||||
int32_t n_batch = 512; // batch size for prompt processing (must be >=32 to use BLAS)
|
||||
int32_t n_keep = 0; // number of tokens to keep from initial prompt
|
||||
int32_t n_draft = 8; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_parallel = 1; // number of parallel sequences to decode
|
||||
int32_t n_sequences = 1; // number of sequences to decode
|
||||
float p_accept = 0.5f; // speculative decoding accept probability
|
||||
float p_split = 0.1f; // speculative decoding split probability
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
llama_split_mode split_mode = LLAMA_SPLIT_LAYER; // how to split the model across GPUs
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[128] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_beams = 0; // if non-zero then use beam search of given width.
|
||||
int32_t grp_attn_n = 1; // group-attention factor
|
||||
int32_t grp_attn_w = 512; // group-attention width
|
||||
int32_t n_print = -1; // print token count every n tokens (-1 = disabled)
|
||||
float rope_freq_base = 0.0f; // RoPE base frequency
|
||||
float rope_freq_scale = 0.0f; // RoPE frequency scaling factor
|
||||
float yarn_ext_factor = -1.0f; // YaRN extrapolation mix factor
|
||||
float yarn_attn_factor = 1.0f; // YaRN magnitude scaling factor
|
||||
float yarn_beta_fast = 32.0f; // YaRN low correction dim
|
||||
float yarn_beta_slow = 1.0f; // YaRN high correction dim
|
||||
int32_t yarn_orig_ctx = 0; // YaRN original context length
|
||||
int8_t rope_scaling_type = LLAMA_ROPE_SCALING_UNSPECIFIED; // TODO: better to be int32_t for alignment
|
||||
// pinging @cebtenzzre
|
||||
|
||||
// // sampling parameters
|
||||
struct llama_sampling_params sparams;
|
||||
|
|
|
@ -1363,12 +1363,12 @@ bool consume_common_train_arg(
|
|||
*invalid_param = true;
|
||||
return true;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params->n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
if (llama_supports_gpu_offload()) {
|
||||
params->n_gpu_layers = std::stoi(argv[i]);
|
||||
} else {
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
}
|
||||
} else if (arg == "-h" || arg == "--help") {
|
||||
params->print_usage = true;
|
||||
return true;
|
||||
|
|
|
@ -203,6 +203,8 @@ class Model:
|
|||
return CodeShellModel
|
||||
if model_architecture == "OrionForCausalLM":
|
||||
return OrionModel
|
||||
if model_architecture == "InternLM2ForCausalLM":
|
||||
return InternLM2Model
|
||||
return Model
|
||||
|
||||
def _is_model_safetensors(self) -> bool:
|
||||
|
@ -254,6 +256,8 @@ class Model:
|
|||
return gguf.MODEL_ARCH.CODESHELL
|
||||
if arch == "OrionForCausalLM":
|
||||
return gguf.MODEL_ARCH.ORION
|
||||
if arch == "InternLM2ForCausalLM":
|
||||
return gguf.MODEL_ARCH.INTERNLM2
|
||||
|
||||
raise NotImplementedError(f'Architecture "{arch}" not supported!')
|
||||
|
||||
|
@ -1344,6 +1348,154 @@ class CodeShellModel(Model):
|
|||
self.gguf_writer.add_tensor("output.weight", data)
|
||||
print(name, f"=> output.weight, shape = {data.shape}, {old_dtype} --> {data.dtype}")
|
||||
|
||||
|
||||
class InternLM2Model(Model):
|
||||
def set_vocab(self):
|
||||
# (TODO): Is there a better way?
|
||||
# Copy from _set_vocab_sentencepiece, The only difference is that we will treat the character
|
||||
# \x00 specially and convert it into an emoji character to prevent it from being mistakenly
|
||||
# recognized as an empty string in C++.
|
||||
from sentencepiece import SentencePieceProcessor
|
||||
from sentencepiece import sentencepiece_model_pb2 as model
|
||||
|
||||
tokenizer_path = self.dir_model / 'tokenizer.model'
|
||||
|
||||
tokens: list[bytes] = []
|
||||
scores: list[float] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
if not tokenizer_path.is_file():
|
||||
print(f'Error: Missing {tokenizer_path}', file=sys.stderr)
|
||||
sys.exit(1)
|
||||
|
||||
sentencepiece_model = model.ModelProto()
|
||||
sentencepiece_model.ParseFromString(open(tokenizer_path, "rb").read())
|
||||
add_prefix = sentencepiece_model.normalizer_spec.add_dummy_prefix
|
||||
|
||||
tokenizer = SentencePieceProcessor(str(tokenizer_path))
|
||||
vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size())
|
||||
|
||||
for token_id in range(vocab_size):
|
||||
piece = tokenizer.id_to_piece(token_id)
|
||||
text = piece.encode("utf-8")
|
||||
score = tokenizer.get_score(token_id)
|
||||
if text == b"\x00":
|
||||
# (TODO): fixme
|
||||
# Hack here and replace the \x00 characters.
|
||||
print(f"InternLM2 convert token '{text}' to '🐉'!")
|
||||
text = "🐉"
|
||||
|
||||
toktype = SentencePieceTokenTypes.NORMAL
|
||||
if tokenizer.is_unknown(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNKNOWN
|
||||
elif tokenizer.is_control(token_id):
|
||||
toktype = SentencePieceTokenTypes.CONTROL
|
||||
elif tokenizer.is_unused(token_id):
|
||||
toktype = SentencePieceTokenTypes.UNUSED
|
||||
elif tokenizer.is_byte(token_id):
|
||||
toktype = SentencePieceTokenTypes.BYTE
|
||||
|
||||
tokens.append(text)
|
||||
scores.append(score)
|
||||
toktypes.append(toktype)
|
||||
|
||||
added_tokens_file = self.dir_model / 'added_tokens.json'
|
||||
if added_tokens_file.is_file():
|
||||
with open(added_tokens_file, "r", encoding="utf-8") as f:
|
||||
added_tokens_json = json.load(f)
|
||||
|
||||
for key in added_tokens_json:
|
||||
tokens.append(key.encode("utf-8"))
|
||||
scores.append(-1000.0)
|
||||
toktypes.append(SentencePieceTokenTypes.USER_DEFINED)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("llama")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_scores(scores)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
self.gguf_writer.add_add_space_prefix(add_prefix)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def set_gguf_parameters(self):
|
||||
self.gguf_writer.add_name("InternLM2")
|
||||
self.gguf_writer.add_context_length(self.hparams["max_position_embeddings"])
|
||||
self.gguf_writer.add_block_count(self.hparams["num_hidden_layers"])
|
||||
self.gguf_writer.add_embedding_length(self.hparams["hidden_size"])
|
||||
self.gguf_writer.add_feed_forward_length(self.hparams["intermediate_size"])
|
||||
self.gguf_writer.add_rope_freq_base(self.hparams["rope_theta"])
|
||||
self.gguf_writer.add_head_count(self.hparams["num_attention_heads"])
|
||||
self.gguf_writer.add_layer_norm_rms_eps(self.hparams["rms_norm_eps"])
|
||||
self.gguf_writer.add_head_count_kv(self.hparams["num_key_value_heads"])
|
||||
|
||||
def post_write_tensors(self, tensor_map, name, data_torch):
|
||||
old_dtype = data_torch.dtype
|
||||
|
||||
# convert any unsupported data types to float32
|
||||
if data_torch.dtype not in (torch.float16, torch.float32):
|
||||
data_torch = data_torch.to(torch.float32)
|
||||
|
||||
data = data_torch.squeeze().numpy()
|
||||
|
||||
# map tensor names
|
||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||
if new_name is None:
|
||||
print(f"Can not map tensor {name!r}")
|
||||
sys.exit()
|
||||
|
||||
n_dims = len(data.shape)
|
||||
data_dtype = data.dtype
|
||||
|
||||
# if f32 desired, convert any float16 to float32
|
||||
if self.ftype == 0 and data_dtype == np.float16:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# TODO: Why cant we use these float16 as-is? There should be not reason to store float16 as float32
|
||||
if self.ftype == 1 and data_dtype == np.float16 and n_dims == 1:
|
||||
data = data.astype(np.float32)
|
||||
|
||||
# if f16 desired, convert any float32 2-dim weight tensors to float16
|
||||
if self.ftype == 1 and data_dtype == np.float32 and name.endswith(".weight") and n_dims == 2:
|
||||
data = data.astype(np.float16)
|
||||
|
||||
print(f"{new_name}, n_dims = {n_dims}, {old_dtype} --> {data.dtype}")
|
||||
self.gguf_writer.add_tensor(new_name, data)
|
||||
|
||||
def write_tensors(self):
|
||||
from einops import rearrange
|
||||
|
||||
num_heads = self.hparams.get("num_attention_heads")
|
||||
num_kv_heads = self.hparams.get("num_key_value_heads")
|
||||
hidden_size = self.hparams.get("hidden_size")
|
||||
q_per_kv = num_heads // num_kv_heads
|
||||
head_dim = hidden_size // num_heads
|
||||
num_groups = num_heads // q_per_kv
|
||||
|
||||
block_count = self.hparams["num_hidden_layers"]
|
||||
model_kv = dict(self.get_tensors())
|
||||
tensor_map = gguf.get_tensor_name_map(self.model_arch, block_count)
|
||||
qkv_pattern = r"model\.layers\.(\d+)\.attention\.wqkv"
|
||||
for name, data_torch in model_kv.items():
|
||||
# we don't need these
|
||||
if name.endswith(".rotary_emb.inv_freq"):
|
||||
continue
|
||||
|
||||
if re.match(qkv_pattern, name):
|
||||
bid = re.findall(qkv_pattern, name)[0]
|
||||
qkv = data_torch
|
||||
qkv = rearrange(qkv.T, " o (g n i) ->o g n i", g=num_groups, n=q_per_kv + 2, i=head_dim)
|
||||
q, k, v = qkv[..., : q_per_kv, :], qkv[..., q_per_kv: q_per_kv + 1, :], qkv[..., q_per_kv + 1: q_per_kv + 2, :]
|
||||
q = rearrange(q, " o g n i -> o (g n i)").T
|
||||
k = rearrange(k, " o g n i -> o (g n i)").T
|
||||
v = rearrange(v, " o g n i -> o (g n i)").T
|
||||
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wq.weight", q)
|
||||
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wk.weight", k)
|
||||
self.post_write_tensors(tensor_map, f"model.layers.{bid}.attention.wv.weight", v)
|
||||
else:
|
||||
self.post_write_tensors(tensor_map, name, data_torch)
|
||||
|
||||
|
||||
###### CONVERSION LOGIC ######
|
||||
|
||||
|
||||
|
|
|
@ -88,7 +88,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
|
||||
const std::vector<float> t_split(llama_max_devices(), 0.0f);
|
||||
|
||||
model_params.n_gpu_layers = n_gpu_layers;
|
||||
model_params.tensor_split = t_split.data();
|
||||
|
|
|
@ -175,7 +175,7 @@ struct cmd_params {
|
|||
std::vector<int> main_gpu;
|
||||
std::vector<bool> no_kv_offload;
|
||||
std::vector<bool> mul_mat_q;
|
||||
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
|
||||
std::vector<std::vector<float>> tensor_split;
|
||||
bool use_mmap;
|
||||
int reps;
|
||||
bool verbose;
|
||||
|
@ -195,7 +195,7 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* main_gpu */ {0},
|
||||
/* no_kv_offload */ {false},
|
||||
/* mul_mat_q */ {true},
|
||||
/* tensor_split */ {{}},
|
||||
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
|
||||
/* reps */ 5,
|
||||
/* use_mmap */ true,
|
||||
/* verbose */ false,
|
||||
|
@ -400,10 +400,10 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
const std::regex regex{R"([;/]+)"};
|
||||
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
||||
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
std::vector<float> tensor_split(llama_max_devices());
|
||||
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
tensor_split[i] = std::stof(split_arg[i]);
|
||||
} else {
|
||||
|
@ -479,7 +479,7 @@ struct cmd_params_instance {
|
|||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
std::vector<float> tensor_split;
|
||||
bool use_mmap;
|
||||
|
||||
llama_model_params to_llama_mparams() const {
|
||||
|
@ -608,7 +608,7 @@ struct test {
|
|||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
std::vector<float> tensor_split;
|
||||
bool use_mmap;
|
||||
int n_prompt;
|
||||
int n_gen;
|
||||
|
@ -736,7 +736,7 @@ struct test {
|
|||
std::vector<std::string> get_values() const {
|
||||
std::string tensor_split_str;
|
||||
int max_nonzero = 0;
|
||||
for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
|
||||
for (size_t i = 0; i < llama_max_devices(); i++) {
|
||||
if (tensor_split[i] > 0) {
|
||||
max_nonzero = i;
|
||||
}
|
||||
|
|
|
@ -111,17 +111,71 @@ llama_print_timings: eval time = 1279.03 ms / 18 runs ( 71.06 m
|
|||
llama_print_timings: total time = 34570.79 ms
|
||||
```
|
||||
|
||||
## Orin compile and run
|
||||
### compile
|
||||
```sh
|
||||
make LLAMA_CUBLAS=1 CUDA_DOCKER_ARCH=sm_87 LLAMA_CUDA_F16=1 -j 32
|
||||
```
|
||||
|
||||
### run on Orin
|
||||
### case 1
|
||||
**input**
|
||||
```sh
|
||||
./llava-cli \
|
||||
-m /data/local/tmp/ggml-model-q4_k.gguf \
|
||||
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
|
||||
--image /data/local/tmp/demo.jpeg \
|
||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWho is the author of this book? \nAnswer the question using a single word or phrase. ASSISTANT:" \
|
||||
--n-gpu-layers 999
|
||||
```
|
||||
**output**
|
||||
```sh
|
||||
|
||||
encode_image_with_clip: image encoded in 296.62 ms by CLIP ( 2.06 ms per image patch)
|
||||
|
||||
Susan Wise Bauer
|
||||
|
||||
llama_print_timings: load time = 1067.64 ms
|
||||
llama_print_timings: sample time = 1.53 ms / 6 runs ( 0.25 ms per token, 3934.43 tokens per second)
|
||||
llama_print_timings: prompt eval time = 306.84 ms / 246 tokens ( 1.25 ms per token, 801.72 tokens per second)
|
||||
llama_print_timings: eval time = 91.50 ms / 6 runs ( 15.25 ms per token, 65.58 tokens per second)
|
||||
llama_print_timings: total time = 1352.63 ms / 252 tokens
|
||||
```
|
||||
|
||||
### case 2
|
||||
**input**
|
||||
```sh
|
||||
./llava-cli \
|
||||
-m /data/local/tmp/ggml-model-q4_k.gguf \
|
||||
--mmproj /data/local/tmp/mmproj-model-f16.gguf \
|
||||
-p "A chat between a curious user and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the user's questions. USER: <image>\nWhat is in the image? ASSISTANT:" \
|
||||
--n-gpu-layers 999
|
||||
|
||||
```
|
||||
**output**
|
||||
```sh
|
||||
encode_image_with_clip: image encoded in 302.15 ms by CLIP ( 2.10 ms per image patch)
|
||||
|
||||
The image features a cat lying in the grass.
|
||||
|
||||
llama_print_timings: load time = 1057.07 ms
|
||||
llama_print_timings: sample time = 3.27 ms / 11 runs ( 0.30 ms per token, 3360.83 tokens per second)
|
||||
llama_print_timings: prompt eval time = 213.60 ms / 232 tokens ( 0.92 ms per token, 1086.14 tokens per second)
|
||||
llama_print_timings: eval time = 166.65 ms / 11 runs ( 15.15 ms per token, 66.01 tokens per second)
|
||||
llama_print_timings: total time = 1365.47 ms / 243 tokens
|
||||
```
|
||||
|
||||
## Minor shortcomings
|
||||
The `n_patch` of output in `ldp` is 1/4 of the input. In order to implement quickly, we uniformly modified `clip_n_patches` function to a quarter. when counting the time consumption, the calculated time will be 4 times bigger than the real cost.
|
||||
|
||||
## TODO
|
||||
|
||||
- [ ] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
|
||||
- [x] Support non-CPU backend for the new operators, such as `depthwise`, `hardswish`, `hardsigmoid`
|
||||
- [ ] Optimize LDP projector performance
|
||||
|
||||
- Optimize the structure definition to avoid unnecessary memory rearrangements, to reduce the use of `ggml_permute_cpy`;
|
||||
- Optimize operator implementation (ARM CPU/NVIDIA GPU): such as depthwise conv, hardswish, hardsigmoid, etc.
|
||||
- [ ] run MobileVLM on `Jetson Orin`
|
||||
- [x] run MobileVLM on `Jetson Orin`
|
||||
- [ ] Support more model variants, such as `MobileVLM-3B`.
|
||||
|
||||
|
||||
|
|
|
@ -1789,28 +1789,28 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
if (llama_mlock_supported())
|
||||
if (llama_supports_mlock())
|
||||
{
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported())
|
||||
if (llama_supports_mmap())
|
||||
{
|
||||
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
#endif
|
||||
if (llama_supports_gpu_offload()) {
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
}
|
||||
printf(" -m FNAME, --model FNAME\n");
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
printf(" -a ALIAS, --alias ALIAS\n");
|
||||
|
@ -2066,13 +2066,13 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
||||
if (llama_supports_gpu_offload()) {
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
} else {
|
||||
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
||||
"See main README.md for information on enabling GPU BLAS support",
|
||||
{{"n_gpu_layers", params.n_gpu_layers}});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else if (arg == "--split-mode" || arg == "-sm")
|
||||
{
|
||||
|
@ -2115,9 +2115,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
||||
|
||||
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
|
||||
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
|
||||
{
|
||||
if (i_device < split_arg.size())
|
||||
{
|
||||
|
|
|
@ -1,7 +1,9 @@
|
|||
/*MIT license
|
||||
Copyright (C) 2024 Intel Corporation
|
||||
SPDX-License-Identifier: MIT
|
||||
*/
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
|
||||
#include "ggml-sycl.h"
|
||||
|
||||
|
|
209
ggml-cuda.cu
209
ggml-cuda.cu
|
@ -524,6 +524,8 @@ static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong
|
|||
#define CUDA_SILU_BLOCK_SIZE 256
|
||||
#define CUDA_TANH_BLOCK_SIZE 256
|
||||
#define CUDA_RELU_BLOCK_SIZE 256
|
||||
#define CUDA_HARDSIGMOID_BLOCK_SIZE 256
|
||||
#define CUDA_HARDSWISH_BLOCK_SIZE 256
|
||||
#define CUDA_SQR_BLOCK_SIZE 256
|
||||
#define CUDA_CPY_BLOCK_SIZE 32
|
||||
#define CUDA_SCALE_BLOCK_SIZE 256
|
||||
|
@ -540,6 +542,7 @@ static_assert(sizeof(block_iq3_xxs) == sizeof(ggml_fp16_t) + 3*(QK_K/8), "wrong
|
|||
#define CUDA_PAD_BLOCK_SIZE 256
|
||||
#define CUDA_ACC_BLOCK_SIZE 256
|
||||
#define CUDA_IM2COL_BLOCK_SIZE 256
|
||||
#define CUDA_POOL2D_BLOCK_SIZE 256
|
||||
|
||||
#define CUDA_Q8_0_NE_ALIGN 2048
|
||||
|
||||
|
@ -823,6 +826,24 @@ static __global__ void relu_f32(const float * x, float * dst, const int k) {
|
|||
dst[i] = fmaxf(x[i], 0);
|
||||
}
|
||||
|
||||
static __global__ void hardsigmoid_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
||||
}
|
||||
|
||||
static __global__ void hardswish_f32(const float * x, float * dst, const int k) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
|
||||
if (i >= k) {
|
||||
return;
|
||||
}
|
||||
dst[i] = x[i] * fminf(1.0f, fmaxf(0.0f, (x[i] + 3.0f) / 6.0f));
|
||||
}
|
||||
|
||||
static __global__ void leaky_relu_f32(const float * x, float * dst, const int k, const float negative_slope) {
|
||||
const int i = blockDim.x*blockIdx.x + threadIdx.x;
|
||||
if (i >= k) {
|
||||
|
@ -5823,7 +5844,7 @@ static __global__ void alibi_f32(const float * x, float * dst, const int ncols,
|
|||
}
|
||||
|
||||
static __global__ void k_sum_rows_f32(const float * x, float * dst, const int ncols) {
|
||||
const int row = blockIdx.y;
|
||||
const int row = blockIdx.x;
|
||||
const int col = threadIdx.x;
|
||||
|
||||
float sum = 0.0f;
|
||||
|
@ -6145,9 +6166,10 @@ static __global__ void clamp_f32(const float * x, float * dst, const float min,
|
|||
dst[i] = x[i] < min ? min : (x[i] > max ? max : x[i]);
|
||||
}
|
||||
|
||||
static __global__ void im2col_f32_f16(
|
||||
const float * x, half * dst,
|
||||
int offset_delta, int IW, int IH, int OW, int KW, int KH, int pelements, int CHW,
|
||||
template <typename T>
|
||||
static __global__ void im2col_kernel(
|
||||
const float * x, T * dst, int batch_offset,
|
||||
int offset_delta, int IC, int IW, int IH, int OH, int OW, int KW, int KH, int pelements, int CHW,
|
||||
int s0, int s1, int p0, int p1, int d0, int d1) {
|
||||
const int i = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (i >= pelements) {
|
||||
|
@ -6160,21 +6182,73 @@ static __global__ void im2col_f32_f16(
|
|||
const int ky = (i - kd) / OW;
|
||||
const int ix = i % OW;
|
||||
|
||||
const int oh = blockIdx.y;
|
||||
const int batch = blockIdx.z / IC;
|
||||
const int ic = blockIdx.z % IC;
|
||||
|
||||
const int64_t iiw = ix * s0 + kx * d0 - p0;
|
||||
const int64_t iih = blockIdx.y * s1 + ky * d1 - p1;
|
||||
const int64_t iih = oh * s1 + ky * d1 - p1;
|
||||
|
||||
const int64_t offset_dst =
|
||||
(blockIdx.y * OW + ix) * CHW +
|
||||
(blockIdx.z * (KW * KH) + ky * KW + kx);
|
||||
((batch * OH + oh) * OW + ix) * CHW +
|
||||
(ic * (KW * KH) + ky * KW + kx);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = __float2half(0.0f);
|
||||
dst[offset_dst] = 0.0f;
|
||||
} else {
|
||||
const int64_t offset_src = blockIdx.z * offset_delta;
|
||||
dst[offset_dst] = __float2half(x[offset_src + iih * IW + iiw]);
|
||||
const int64_t offset_src = ic * offset_delta + batch * batch_offset;
|
||||
dst[offset_dst] = x[offset_src + iih * IW + iiw];
|
||||
}
|
||||
}
|
||||
|
||||
template <typename Ti, typename To>
|
||||
static __global__ void pool2d_nchw_kernel(
|
||||
const int ih, const int iw, const int oh, const int ow,
|
||||
const int kh, const int kw, const int sh, const int sw,
|
||||
const int ph, const int pw, const int parallel_elements,
|
||||
const Ti* src, To* dst, const enum ggml_op_pool op) {
|
||||
int idx = threadIdx.x + blockIdx.x * blockDim.x;
|
||||
if (idx >= parallel_elements) {
|
||||
return;
|
||||
}
|
||||
|
||||
const int I_HW = ih * iw;
|
||||
const int O_HW = oh * ow;
|
||||
const int nc = idx / O_HW;
|
||||
const int cur_oh = idx % O_HW / ow;
|
||||
const int cur_ow = idx % O_HW % ow;
|
||||
const Ti* i_ptr = src + nc * I_HW;
|
||||
To* o_ptr = dst + nc * O_HW;
|
||||
const int start_h = cur_oh * sh - ph;
|
||||
const int bh = max(0, start_h);
|
||||
const int eh = min(ih, start_h + kh);
|
||||
const int start_w = cur_ow * sw - pw;
|
||||
const int bw = max(0, start_w);
|
||||
const int ew = min(iw, start_w + kw);
|
||||
const To scale = 1. / (kh * kw);
|
||||
To res = 0;
|
||||
|
||||
switch (op) {
|
||||
case GGML_OP_POOL_AVG: res = 0; break;
|
||||
case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
|
||||
}
|
||||
|
||||
for (int i = bh; i < eh; i += 1) {
|
||||
for (int j = bw; j < ew; j += 1) {
|
||||
#if __CUDA_ARCH__ >= 350
|
||||
Ti cur = __ldg(i_ptr + i * iw + j);
|
||||
#else
|
||||
Ti cur = i_ptr[i * iw + j];
|
||||
#endif
|
||||
switch (op) {
|
||||
case GGML_OP_POOL_AVG: res += cur * scale; break;
|
||||
case GGML_OP_POOL_MAX: res = max(res, (To)cur); break;
|
||||
}
|
||||
}
|
||||
}
|
||||
o_ptr[cur_oh * ow + cur_ow] = res;
|
||||
}
|
||||
|
||||
template<int qk, int qr, dequantize_kernel_t dq>
|
||||
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
|
||||
|
@ -6388,6 +6462,16 @@ static void relu_f32_cuda(const float * x, float * dst, const int k, cudaStream_
|
|||
relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void hardsigmoid_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_HARDSIGMOID_BLOCK_SIZE - 1) / CUDA_HARDSIGMOID_BLOCK_SIZE;
|
||||
hardsigmoid_f32<<<num_blocks, CUDA_HARDSIGMOID_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void hardswish_f32_cuda(const float * x, float * dst, const int k, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_HARDSWISH_BLOCK_SIZE - 1) / CUDA_HARDSWISH_BLOCK_SIZE;
|
||||
hardswish_f32<<<num_blocks, CUDA_HARDSWISH_BLOCK_SIZE, 0, stream>>>(x, dst, k);
|
||||
}
|
||||
|
||||
static void leaky_relu_f32_cuda(const float * x, float * dst, const int k, const float negative_slope, cudaStream_t stream) {
|
||||
const int num_blocks = (k + CUDA_RELU_BLOCK_SIZE - 1) / CUDA_RELU_BLOCK_SIZE;
|
||||
leaky_relu_f32<<<num_blocks, CUDA_RELU_BLOCK_SIZE, 0, stream>>>(x, dst, k, negative_slope);
|
||||
|
@ -7475,7 +7559,7 @@ static void alibi_f32_cuda(const float * x, float * dst, const int ncols, const
|
|||
|
||||
static void sum_rows_f32_cuda(const float * x, float * dst, const int ncols, const int nrows, cudaStream_t stream) {
|
||||
const dim3 block_dims(WARP_SIZE, 1, 1);
|
||||
const dim3 block_nums(1, nrows, 1);
|
||||
const dim3 block_nums(nrows, 1, 1);
|
||||
k_sum_rows_f32<<<block_nums, block_dims, 0, stream>>>(x, dst, ncols);
|
||||
}
|
||||
|
||||
|
@ -7587,14 +7671,15 @@ static void soft_max_f32_cuda(const float * x, const float * y, float * dst, con
|
|||
}
|
||||
}
|
||||
|
||||
static void im2col_f32_f16_cuda(const float* x, half* dst,
|
||||
template <typename T>
|
||||
static void im2col_cuda(const float* x, T* dst,
|
||||
int IW, int IH, int OW, int OH, int KW, int KH, int IC,
|
||||
int offset_delta,
|
||||
int batch, int batch_offset, int offset_delta,
|
||||
int s0,int s1,int p0,int p1,int d0,int d1, cudaStream_t stream) {
|
||||
const int parallel_elements = OW * KW * KH;
|
||||
const int num_blocks = (parallel_elements + CUDA_IM2COL_BLOCK_SIZE - 1) / CUDA_IM2COL_BLOCK_SIZE;
|
||||
dim3 block_nums(num_blocks, OH, IC);
|
||||
im2col_f32_f16<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, offset_delta, IW, IH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
||||
dim3 block_nums(num_blocks, OH, batch * IC);
|
||||
im2col_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, stream>>>(x, dst, batch_offset, offset_delta, IC, IW, IH, OH, OW, KW, KH, parallel_elements, (IC * KH * KW), s0, s1, p0, p1, d0, d1);
|
||||
}
|
||||
|
||||
// buffer pool for cuda
|
||||
|
@ -8179,6 +8264,34 @@ static void ggml_cuda_op_relu(
|
|||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_hardsigmoid(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
hardsigmoid_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_hardswish(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
hardswish_f32_cuda(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
|
||||
|
||||
(void) src1;
|
||||
(void) dst;
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_leaky_relu(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
|
||||
|
@ -8810,13 +8923,46 @@ static void ggml_cuda_op_alibi(
|
|||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_pool2d(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int32_t * opts = (const int32_t *)dst->op_params;
|
||||
enum ggml_op_pool op = static_cast<ggml_op_pool>(opts[0]);
|
||||
const int k0 = opts[1];
|
||||
const int k1 = opts[2];
|
||||
const int s0 = opts[3];
|
||||
const int s1 = opts[4];
|
||||
const int p0 = opts[5];
|
||||
const int p1 = opts[6];
|
||||
|
||||
const int64_t IH = src0->ne[1];
|
||||
const int64_t IW = src0->ne[0];
|
||||
|
||||
const int64_t N = dst->ne[3];
|
||||
const int64_t OC = dst->ne[2];
|
||||
const int64_t OH = dst->ne[1];
|
||||
const int64_t OW = dst->ne[0];
|
||||
|
||||
const int parallel_elements = N * OC * OH * OW;
|
||||
const int num_blocks = (parallel_elements + CUDA_POOL2D_BLOCK_SIZE - 1) / CUDA_POOL2D_BLOCK_SIZE;
|
||||
dim3 block_nums(num_blocks);
|
||||
pool2d_nchw_kernel<<<block_nums, CUDA_IM2COL_BLOCK_SIZE, 0, main_stream>>>(IH, IW, OH, OW, k1, k0, s1, s0, p1, p0, parallel_elements, src0_dd, dst_dd, op);
|
||||
|
||||
(void) src1;
|
||||
(void) src1_dd;
|
||||
}
|
||||
|
||||
static void ggml_cuda_op_im2col(
|
||||
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
|
||||
const float * src0_dd, const float * src1_dd, float * dst_dd, cudaStream_t main_stream) {
|
||||
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int32_t s0 = ((const int32_t*)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t*)(dst->op_params))[1];
|
||||
|
@ -8838,8 +8984,14 @@ static void ggml_cuda_op_im2col(
|
|||
const int64_t OW = dst->ne[1];
|
||||
|
||||
const size_t delta_offset = src1->nb[is_2D ? 2 : 1] / 4; // nb is byte offset, src is type float32
|
||||
const int64_t batch = src1->ne[3];
|
||||
const size_t batch_offset = src1->nb[3] / 4; // nb is byte offset, src is type float32
|
||||
|
||||
im2col_f32_f16_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
if(dst->type == GGML_TYPE_F16) {
|
||||
im2col_cuda(src1_dd, (half*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
} else {
|
||||
im2col_cuda(src1_dd, (float*) dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
|
||||
}
|
||||
|
||||
(void) src0;
|
||||
(void) src0_dd;
|
||||
|
@ -9435,6 +9587,13 @@ static void ggml_cuda_relu(const ggml_tensor * src0, const ggml_tensor * src1, g
|
|||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_relu);
|
||||
}
|
||||
|
||||
static void ggml_cuda_hardsigmoid(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardsigmoid);
|
||||
}
|
||||
|
||||
static void ggml_cuda_hardswish(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_hardswish);
|
||||
}
|
||||
static void ggml_cuda_leaky_relu(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_leaky_relu);
|
||||
}
|
||||
|
@ -10220,6 +10379,10 @@ static void ggml_cuda_alibi(const ggml_tensor * src0, const ggml_tensor * src1,
|
|||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_alibi);
|
||||
}
|
||||
|
||||
static void ggml_cuda_pool2d(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_pool2d);
|
||||
}
|
||||
|
||||
static void ggml_cuda_im2col(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
||||
ggml_cuda_op_flatten(src0, src1, dst, ggml_cuda_op_im2col);
|
||||
}
|
||||
|
@ -10321,6 +10484,12 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
|
|||
case GGML_UNARY_OP_RELU:
|
||||
func = ggml_cuda_relu;
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
func = ggml_cuda_hardsigmoid;
|
||||
break;
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
func = ggml_cuda_hardswish;
|
||||
break;
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
|
@ -10395,6 +10564,9 @@ GGML_CALL bool ggml_cuda_compute_forward(struct ggml_compute_params * params, st
|
|||
case GGML_OP_IM2COL:
|
||||
func = ggml_cuda_im2col;
|
||||
break;
|
||||
case GGML_OP_POOL_2D:
|
||||
func = ggml_cuda_pool2d;
|
||||
break;
|
||||
case GGML_OP_SUM_ROWS:
|
||||
func = ggml_cuda_sum_rows;
|
||||
break;
|
||||
|
@ -11123,6 +11295,8 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
case GGML_UNARY_OP_GELU:
|
||||
case GGML_UNARY_OP_SILU:
|
||||
case GGML_UNARY_OP_RELU:
|
||||
case GGML_UNARY_OP_HARDSIGMOID:
|
||||
case GGML_UNARY_OP_HARDSWISH:
|
||||
case GGML_UNARY_OP_GELU_QUICK:
|
||||
case GGML_UNARY_OP_TANH:
|
||||
return true;
|
||||
|
@ -11221,6 +11395,7 @@ GGML_CALL static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, cons
|
|||
case GGML_OP_ROPE:
|
||||
case GGML_OP_ALIBI:
|
||||
case GGML_OP_IM2COL:
|
||||
case GGML_OP_POOL_2D:
|
||||
case GGML_OP_SUM_ROWS:
|
||||
case GGML_OP_ARGSORT:
|
||||
case GGML_OP_ACC:
|
||||
|
|
13
ggml-metal.m
13
ggml-metal.m
|
@ -135,6 +135,7 @@ enum ggml_metal_kernel_type {
|
|||
GGML_METAL_KERNEL_TYPE_ROPE_F16,
|
||||
GGML_METAL_KERNEL_TYPE_ALIBI_F32,
|
||||
GGML_METAL_KERNEL_TYPE_IM2COL_F16,
|
||||
GGML_METAL_KERNEL_TYPE_IM2COL_F32,
|
||||
GGML_METAL_KERNEL_TYPE_UPSCALE_F32,
|
||||
GGML_METAL_KERNEL_TYPE_PAD_F32,
|
||||
GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC,
|
||||
|
@ -506,6 +507,7 @@ static struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ROPE_F16, rope_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ALIBI_F32, alibi_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F16, im2col_f16, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_IM2COL_F32, im2col_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_UPSCALE_F32, upscale_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_PAD_F32, pad_f32, true);
|
||||
GGML_METAL_ADD_KERNEL(GGML_METAL_KERNEL_TYPE_ARGSORT_F32_I32_ASC, argsort_f32_i32_asc, true);
|
||||
|
@ -630,6 +632,10 @@ static bool ggml_metal_supports_op(const struct ggml_metal_context * ctx, const
|
|||
case GGML_OP_ALIBI:
|
||||
case GGML_OP_ROPE:
|
||||
case GGML_OP_IM2COL:
|
||||
return true;
|
||||
case GGML_OP_POOL_1D:
|
||||
case GGML_OP_POOL_2D:
|
||||
return false;
|
||||
case GGML_OP_UPSCALE:
|
||||
case GGML_OP_PAD:
|
||||
case GGML_OP_ARGSORT:
|
||||
|
@ -2015,7 +2021,7 @@ static bool ggml_metal_graph_compute(
|
|||
{
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32);
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
|
@ -2023,6 +2029,7 @@ static bool ggml_metal_graph_compute(
|
|||
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
||||
|
||||
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
||||
|
||||
const int32_t N = src1->ne[is_2D ? 3 : 2];
|
||||
|
@ -2043,8 +2050,8 @@ static bool ggml_metal_graph_compute(
|
|||
|
||||
id<MTLComputePipelineState> pipeline = nil;
|
||||
|
||||
switch (src0->type) {
|
||||
case GGML_TYPE_F32: GGML_ASSERT(false && "not implemented"); break;
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F32: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F32].pipeline; break;
|
||||
case GGML_TYPE_F16: pipeline = ctx->kernels[GGML_METAL_KERNEL_TYPE_IM2COL_F16].pipeline; break;
|
||||
default: GGML_ASSERT(false);
|
||||
};
|
||||
|
|
|
@ -1775,9 +1775,29 @@ kernel void kernel_rope(
|
|||
template [[host_name("kernel_rope_f32")]] kernel rope_t kernel_rope<float>;
|
||||
template [[host_name("kernel_rope_f16")]] kernel rope_t kernel_rope<half>;
|
||||
|
||||
kernel void kernel_im2col_f16(
|
||||
typedef void (im2col_t)(
|
||||
device const float * x,
|
||||
device half * dst,
|
||||
device char * dst,
|
||||
constant int32_t & ofs0,
|
||||
constant int32_t & ofs1,
|
||||
constant int32_t & IW,
|
||||
constant int32_t & IH,
|
||||
constant int32_t & CHW,
|
||||
constant int32_t & s0,
|
||||
constant int32_t & s1,
|
||||
constant int32_t & p0,
|
||||
constant int32_t & p1,
|
||||
constant int32_t & d0,
|
||||
constant int32_t & d1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tgpg[[threadgroups_per_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]);
|
||||
|
||||
template <typename T>
|
||||
kernel void kernel_im2col(
|
||||
device const float * x,
|
||||
device char * dst,
|
||||
constant int32_t & ofs0,
|
||||
constant int32_t & ofs1,
|
||||
constant int32_t & IW,
|
||||
|
@ -1800,14 +1820,19 @@ kernel void kernel_im2col_f16(
|
|||
(tpitg[0] * tgpg[1] * tgpg[2] + tgpig[1] * tgpg[2] + tgpig[2]) * CHW +
|
||||
(tgpig[0] * (ntg[1] * ntg[2]) + tpitg[1] * ntg[2] + tpitg[2]);
|
||||
|
||||
device T * pdst = (device T *) (dst);
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst[offset_dst] = 0.0f;
|
||||
pdst[offset_dst] = 0.0f;
|
||||
} else {
|
||||
const int32_t offset_src = tpitg[0] * ofs0 + tgpig[0] * ofs1;
|
||||
dst[offset_dst] = x[offset_src + iih * IW + iiw];
|
||||
pdst[offset_dst] = x[offset_src + iih * IW + iiw];
|
||||
}
|
||||
}
|
||||
|
||||
template [[host_name("kernel_im2col_f32")]] kernel im2col_t kernel_im2col<float>;
|
||||
template [[host_name("kernel_im2col_f16")]] kernel im2col_t kernel_im2col<half>;
|
||||
|
||||
kernel void kernel_upscale_f32(
|
||||
device const char * src0,
|
||||
device char * dst,
|
||||
|
|
|
@ -1,7 +1,14 @@
|
|||
/*MIT license
|
||||
Copyright (C) 2024 Intel Corporation
|
||||
SPDX-License-Identifier: MIT
|
||||
*/
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
//
|
||||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
||||
// See https://llvm.org/LICENSE.txt for license information.
|
||||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
||||
//
|
||||
|
||||
#include <algorithm>
|
||||
#include <assert.h>
|
||||
|
|
|
@ -1,7 +1,8 @@
|
|||
/*MIT license
|
||||
Copyright (C) 2024 Intel Corporation
|
||||
SPDX-License-Identifier: MIT
|
||||
*/
|
||||
//
|
||||
// MIT license
|
||||
// Copyright (C) 2024 Intel Corporation
|
||||
// SPDX-License-Identifier: MIT
|
||||
//
|
||||
|
||||
#pragma once
|
||||
|
||||
|
|
File diff suppressed because it is too large
Load diff
|
@ -817,7 +817,7 @@ static void ggml_vk_load_shaders() {
|
|||
// mulmat
|
||||
std::initializer_list<uint32_t> warptile_l = { 128, 128, 128, 16, vk_device.subgroup_size * 2, 64, 2, 4, 4, vk_device.subgroup_size };
|
||||
std::initializer_list<uint32_t> warptile_m = { 128, 64, 64, 16, vk_device.subgroup_size, 32, 2, 4, 2, vk_device.subgroup_size };
|
||||
std::initializer_list<uint32_t> warptile_s = { vk_device.subgroup_size, 32, 32, 8, 32, 32, 2, 2, 2, vk_device.subgroup_size };
|
||||
std::initializer_list<uint32_t> warptile_s = { vk_device.subgroup_size, 32, 32, 16, 32, 32, 2, 2, 2, vk_device.subgroup_size };
|
||||
|
||||
std::array<uint32_t, 3> l_wg_denoms = {128, 128, 1 };
|
||||
std::array<uint32_t, 3> m_wg_denoms = { 64, 64, 1 };
|
||||
|
@ -2873,7 +2873,8 @@ static void ggml_vk_op_f32(vk_context * ctx, const ggml_tensor * src0, const ggm
|
|||
if (op == GGML_OP_CPY) {
|
||||
GGML_ASSERT(!transfer_src0);
|
||||
GGML_ASSERT(!transfer_src1);
|
||||
d_sz = dst->ne[1] * dst->nb[1];
|
||||
x_sz = ggml_nbytes(src0);
|
||||
d_sz = ggml_nbytes(dst);
|
||||
|
||||
if (extra->offset + d_sz >= d_D->size) {
|
||||
d_sz = VK_WHOLE_SIZE;
|
||||
|
@ -4556,8 +4557,15 @@ GGML_CALL static bool ggml_backend_vk_graph_compute(ggml_backend_t backend, ggml
|
|||
}
|
||||
ggml_vk_preallocate_buffers();
|
||||
|
||||
int last_node = cgraph->n_nodes - 1;
|
||||
|
||||
// If the last op in the cgraph isn't backend GPU, the command buffer doesn't get closed properly
|
||||
while (last_node > 0 && cgraph->nodes[last_node]->backend != GGML_BACKEND_GPU) {
|
||||
last_node -= 1;
|
||||
}
|
||||
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
ggml_vk_build_graph(cgraph->nodes[i], i == cgraph->n_nodes - 1);
|
||||
ggml_vk_build_graph(cgraph->nodes[i], i == last_node);
|
||||
}
|
||||
|
||||
ggml_compute_params params = {};
|
||||
|
|
124
ggml.c
124
ggml.c
|
@ -5349,7 +5349,7 @@ GGML_API struct ggml_tensor * ggml_conv_1d(
|
|||
int s0,
|
||||
int p0,
|
||||
int d0) {
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false); // [N, OL, IC * K]
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, 0, p0, 0, d0, 0, false, GGML_TYPE_F16); // [N, OL, IC * K]
|
||||
|
||||
struct ggml_tensor * result =
|
||||
ggml_mul_mat(ctx,
|
||||
|
@ -5427,16 +5427,15 @@ struct ggml_tensor * ggml_conv_depthwise_2d(
|
|||
int p1,
|
||||
int d0,
|
||||
int d1) {
|
||||
|
||||
struct ggml_tensor * new_a = ggml_reshape_4d(ctx, a, a->ne[0], a->ne[1], 1, a->ne[2] * a->ne[3]);
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, new_a,
|
||||
ggml_reshape_4d(ctx, b, b->ne[0], b->ne[1], 1, b->ne[2] * b->ne[3]),
|
||||
s0, s1, p0, p1, d0, d1, true); // [N * IC, OH, OW, KH * KW]
|
||||
|
||||
struct ggml_tensor * result =
|
||||
ggml_mul_mat(ctx,
|
||||
ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1), // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
|
||||
ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3])); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
|
||||
s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N * IC, OH, OW, KH * KW]
|
||||
struct ggml_tensor * new_b = ggml_reshape_4d(ctx, im2col, im2col->ne[0], im2col->ne[2] * im2col->ne[1], b->ne[2], b->ne[3]); // [N * IC, OH, OW, KH * KW] => [N, IC, OH * OW, KH * KW]
|
||||
|
||||
new_a = ggml_reshape_4d(ctx, new_a, (new_a->ne[0] * new_a->ne[1]), new_a->ne[2], new_a->ne[3], 1); // [OC,1, KH, KW] => [1, OC, 1, KH * KW]
|
||||
struct ggml_tensor * result = ggml_mul_mat(ctx, new_a, new_b);
|
||||
result = ggml_reshape_4d(ctx, result, im2col->ne[1], im2col->ne[2], b->ne[2], b->ne[3]); // [N, OC, OH, OW]
|
||||
|
||||
return result;
|
||||
|
@ -5457,7 +5456,8 @@ struct ggml_tensor * ggml_im2col(
|
|||
int p1,
|
||||
int d0,
|
||||
int d1,
|
||||
bool is_2D) {
|
||||
bool is_2D,
|
||||
enum ggml_type dst_type) {
|
||||
|
||||
if(is_2D) {
|
||||
GGML_ASSERT(a->ne[2] == b->ne[2]);
|
||||
|
@ -5481,7 +5481,7 @@ struct ggml_tensor * ggml_im2col(
|
|||
is_2D ? b->ne[3] : 1,
|
||||
};
|
||||
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F16, 4, ne);
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, dst_type, 4, ne);
|
||||
int32_t params[] = { s0, s1, p0, p1, d0, d1, (is_2D ? 1 : 0) };
|
||||
ggml_set_op_params(result, params, sizeof(params));
|
||||
|
||||
|
@ -5506,7 +5506,7 @@ struct ggml_tensor * ggml_conv_2d(
|
|||
int p1,
|
||||
int d0,
|
||||
int d1) {
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true); // [N, OH, OW, IC * KH * KW]
|
||||
struct ggml_tensor * im2col = ggml_im2col(ctx, a, b, s0, s1, p0, p1, d0, d1, true, GGML_TYPE_F16); // [N, OH, OW, IC * KH * KW]
|
||||
|
||||
struct ggml_tensor * result =
|
||||
ggml_mul_mat(ctx,
|
||||
|
@ -5632,12 +5632,13 @@ struct ggml_tensor * ggml_pool_2d(
|
|||
is_node = true;
|
||||
}
|
||||
|
||||
struct ggml_tensor * result;
|
||||
const int64_t ne[3] = {
|
||||
ggml_calc_pool_output_size(a->ne[0], k0, s0, p0),
|
||||
ggml_calc_pool_output_size(a->ne[1], k1, s1, p1),
|
||||
a->ne[2],
|
||||
};
|
||||
struct ggml_tensor * result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
||||
result = ggml_new_tensor(ctx, GGML_TYPE_F32, 3, ne);
|
||||
|
||||
int32_t params[] = { op, k0, k1, s0, s1, p0, p1 };
|
||||
ggml_set_op_params(result, params, sizeof(params));
|
||||
|
@ -5645,7 +5646,6 @@ struct ggml_tensor * ggml_pool_2d(
|
|||
result->op = GGML_OP_POOL_2D;
|
||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||
result->src[0] = a;
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
|
@ -12493,6 +12493,92 @@ static void ggml_compute_forward_conv_transpose_1d(
|
|||
}
|
||||
}
|
||||
|
||||
// src0: kernel [OC, IC, KH, KW]
|
||||
// src1: image [N, IC, IH, IW]
|
||||
// dst: result [N, OH, OW, IC*KH*KW]
|
||||
static void ggml_compute_forward_im2col_f32(
|
||||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
||||
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT( dst->type == GGML_TYPE_F32);
|
||||
|
||||
int64_t t0 = ggml_perf_time_us();
|
||||
UNUSED(t0);
|
||||
|
||||
GGML_TENSOR_BINARY_OP_LOCALS;
|
||||
|
||||
const int32_t s0 = ((const int32_t *)(dst->op_params))[0];
|
||||
const int32_t s1 = ((const int32_t *)(dst->op_params))[1];
|
||||
const int32_t p0 = ((const int32_t *)(dst->op_params))[2];
|
||||
const int32_t p1 = ((const int32_t *)(dst->op_params))[3];
|
||||
const int32_t d0 = ((const int32_t *)(dst->op_params))[4];
|
||||
const int32_t d1 = ((const int32_t *)(dst->op_params))[5];
|
||||
const bool is_2D = ((const int32_t *)(dst->op_params))[6] == 1;
|
||||
|
||||
const int ith = params->ith;
|
||||
const int nth = params->nth;
|
||||
|
||||
const int64_t N = is_2D ? ne13 : ne12;
|
||||
const int64_t IC = is_2D ? ne12 : ne11;
|
||||
const int64_t IH = is_2D ? ne11 : 1;
|
||||
const int64_t IW = ne10;
|
||||
|
||||
const int64_t KH = is_2D ? ne01 : 1;
|
||||
const int64_t KW = ne00;
|
||||
|
||||
const int64_t OH = is_2D ? ne2 : 1;
|
||||
const int64_t OW = ne1;
|
||||
|
||||
int ofs0 = is_2D ? nb13 : nb12;
|
||||
int ofs1 = is_2D ? nb12 : nb11;
|
||||
|
||||
GGML_ASSERT(nb00 == sizeof(ggml_fp16_t));
|
||||
GGML_ASSERT(nb10 == sizeof(float));
|
||||
|
||||
if (params->type == GGML_TASK_INIT) {
|
||||
return;
|
||||
}
|
||||
|
||||
if (params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
}
|
||||
|
||||
// im2col: [N, IC, IH, IW] => [N, OH, OW, IC*KH*KW]
|
||||
{
|
||||
float * const wdata = (float *) dst->data;
|
||||
|
||||
for (int64_t in = 0; in < N; in++) {
|
||||
for (int64_t ioh = 0; ioh < OH; ioh++) { // 1
|
||||
for (int64_t iow = 0; iow < OW; iow++) {
|
||||
for (int64_t iic = ith; iic < IC; iic += nth) {
|
||||
|
||||
// micro kernel
|
||||
float * dst_data = wdata + (in*OH*OW + ioh*OW + iow)*(IC*KH*KW); // [IC, KH, KW]
|
||||
const float * const src_data = (float *)((char *) src1->data + in*ofs0 + iic*ofs1); // [IH, IW]
|
||||
|
||||
for (int64_t ikh = 0; ikh < KH; ikh++) { // 1
|
||||
for (int64_t ikw = 0; ikw < KW; ikw++) {
|
||||
const int64_t iiw = iow*s0 + ikw*d0 - p0;
|
||||
const int64_t iih = ioh*s1 + ikh*d1 - p1;
|
||||
|
||||
if (iih < 0 || iih >= IH || iiw < 0 || iiw >= IW) {
|
||||
dst_data[iic*(KH*KW) + ikh*KW + ikw] = 0;
|
||||
} else {
|
||||
dst_data[iic*(KH*KW) + ikh*KW + ikw] = (src_data[iih*IW + iiw]);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// src0: kernel [OC, IC, KH, KW]
|
||||
// src1: image [N, IC, IH, IW]
|
||||
// dst: result [N, OH, OW, IC*KH*KW]
|
||||
|
@ -12583,14 +12669,14 @@ static void ggml_compute_forward_im2col(
|
|||
const struct ggml_tensor * src0,
|
||||
const struct ggml_tensor * src1,
|
||||
struct ggml_tensor * dst) {
|
||||
switch (src0->type) {
|
||||
switch (dst->type) {
|
||||
case GGML_TYPE_F16:
|
||||
{
|
||||
ggml_compute_forward_im2col_f16(params, src0, src1, dst);
|
||||
} break;
|
||||
case GGML_TYPE_F32:
|
||||
{
|
||||
GGML_ASSERT(false);
|
||||
ggml_compute_forward_im2col_f32(params, src0, src1, dst);
|
||||
} break;
|
||||
default:
|
||||
{
|
||||
|
@ -12781,8 +12867,8 @@ static void ggml_compute_forward_pool_2d(
|
|||
const struct ggml_compute_params * params,
|
||||
const struct ggml_tensor * src,
|
||||
struct ggml_tensor * dst) {
|
||||
assert(src->type == GGML_TYPE_F32);
|
||||
assert(params->ith == 0);
|
||||
GGML_ASSERT(src->type == GGML_TYPE_F32);
|
||||
GGML_ASSERT(params->ith == 0);
|
||||
|
||||
if (params->type == GGML_TASK_INIT || params->type == GGML_TASK_FINALIZE) {
|
||||
return;
|
||||
|
@ -16985,12 +17071,16 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
|||
struct ggml_cplan cplan;
|
||||
memset(&cplan, 0, sizeof(struct ggml_cplan));
|
||||
|
||||
int max_tasks = 1;
|
||||
|
||||
// thread scheduling for the different operations + work buffer size estimation
|
||||
for (int i = 0; i < cgraph->n_nodes; i++) {
|
||||
struct ggml_tensor * node = cgraph->nodes[i];
|
||||
|
||||
const int n_tasks = ggml_get_n_tasks(node, n_threads);
|
||||
|
||||
max_tasks = MAX(max_tasks, n_tasks);
|
||||
|
||||
size_t cur = 0;
|
||||
|
||||
switch (node->op) {
|
||||
|
@ -17157,7 +17247,7 @@ struct ggml_cplan ggml_graph_plan(const struct ggml_cgraph * cgraph, int n_threa
|
|||
work_size += CACHE_LINE_SIZE*(n_threads - 1);
|
||||
}
|
||||
|
||||
cplan.n_threads = n_threads;
|
||||
cplan.n_threads = MIN(max_tasks, n_threads);
|
||||
cplan.work_size = work_size;
|
||||
cplan.work_data = NULL;
|
||||
|
||||
|
|
3
ggml.h
3
ggml.h
|
@ -1495,7 +1495,8 @@ extern "C" {
|
|||
int p1,
|
||||
int d0,
|
||||
int d1,
|
||||
bool is_2D);
|
||||
bool is_2D,
|
||||
enum ggml_type dst_type);
|
||||
|
||||
GGML_API struct ggml_tensor * ggml_conv_depthwise_2d(
|
||||
struct ggml_context * ctx,
|
||||
|
|
|
@ -19,8 +19,8 @@ shader_int8_ext = """
|
|||
|
||||
# Type-specific defines
|
||||
shader_f16_defines = """
|
||||
#define QUANT_K 32
|
||||
#define QUANT_R 2
|
||||
#define QUANT_K 1
|
||||
#define QUANT_R 1
|
||||
|
||||
#define A_TYPE float16_t
|
||||
"""
|
||||
|
|
|
@ -72,6 +72,7 @@ class Keys:
|
|||
PAD_ID = "tokenizer.ggml.padding_token_id"
|
||||
ADD_BOS = "tokenizer.ggml.add_bos_token"
|
||||
ADD_EOS = "tokenizer.ggml.add_eos_token"
|
||||
ADD_PREFIX = "tokenizer.ggml.add_space_prefix"
|
||||
HF_JSON = "tokenizer.huggingface.json"
|
||||
RWKV = "tokenizer.rwkv.world"
|
||||
CHAT_TEMPLATE = "tokenizer.chat_template"
|
||||
|
@ -102,6 +103,7 @@ class MODEL_ARCH(IntEnum):
|
|||
PLAMO = auto()
|
||||
CODESHELL = auto()
|
||||
ORION = auto()
|
||||
INTERNLM2 = auto()
|
||||
|
||||
|
||||
class MODEL_TENSOR(IntEnum):
|
||||
|
@ -153,6 +155,7 @@ MODEL_ARCH_NAMES: dict[MODEL_ARCH, str] = {
|
|||
MODEL_ARCH.PLAMO: "plamo",
|
||||
MODEL_ARCH.CODESHELL: "codeshell",
|
||||
MODEL_ARCH.ORION: "orion",
|
||||
MODEL_ARCH.INTERNLM2: "internlm2",
|
||||
}
|
||||
|
||||
TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||
|
@ -446,6 +449,21 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
|||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
MODEL_ARCH.INTERNLM2: [
|
||||
MODEL_TENSOR.TOKEN_EMBD,
|
||||
MODEL_TENSOR.OUTPUT_NORM,
|
||||
MODEL_TENSOR.OUTPUT,
|
||||
MODEL_TENSOR.ATTN_NORM,
|
||||
MODEL_TENSOR.ATTN_Q,
|
||||
MODEL_TENSOR.ATTN_K,
|
||||
MODEL_TENSOR.ATTN_V,
|
||||
MODEL_TENSOR.ATTN_OUT,
|
||||
MODEL_TENSOR.ATTN_ROT_EMBD,
|
||||
MODEL_TENSOR.FFN_NORM,
|
||||
MODEL_TENSOR.FFN_GATE,
|
||||
MODEL_TENSOR.FFN_DOWN,
|
||||
MODEL_TENSOR.FFN_UP,
|
||||
],
|
||||
# TODO
|
||||
}
|
||||
|
||||
|
|
|
@ -411,6 +411,9 @@ class GGUFWriter:
|
|||
def add_add_eos_token(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Tokenizer.ADD_EOS, value)
|
||||
|
||||
def add_add_space_prefix(self, value: bool) -> None:
|
||||
self.add_bool(Keys.Tokenizer.ADD_PREFIX, value)
|
||||
|
||||
def add_chat_template(self, value: str) -> None:
|
||||
self.add_string(Keys.Tokenizer.CHAT_TEMPLATE, value)
|
||||
|
||||
|
|
|
@ -19,6 +19,7 @@ class TensorNameMap:
|
|||
"language_model.embedding.word_embeddings", # persimmon
|
||||
"wte", # gpt2
|
||||
"transformer.embd.wte", # phi2
|
||||
"model.tok_embeddings", # internlm2
|
||||
),
|
||||
|
||||
# Token type embeddings
|
||||
|
@ -42,7 +43,7 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.OUTPUT: (
|
||||
"embed_out", # gptneox
|
||||
"lm_head", # gpt2 mpt falcon llama-hf baichuan qwen
|
||||
"output", # llama-pth bloom
|
||||
"output", # llama-pth bloom internlm2
|
||||
"word_embeddings_for_head", # persimmon
|
||||
"lm_head.linear", # phi2
|
||||
),
|
||||
|
@ -51,7 +52,7 @@ class TensorNameMap:
|
|||
MODEL_TENSOR.OUTPUT_NORM: (
|
||||
"gpt_neox.final_layer_norm", # gptneox
|
||||
"transformer.ln_f", # gpt2 gpt-j falcon
|
||||
"model.norm", # llama-hf baichuan
|
||||
"model.norm", # llama-hf baichuan internlm2
|
||||
"norm", # llama-pth
|
||||
"embeddings.LayerNorm", # bert
|
||||
"transformer.norm_f", # mpt
|
||||
|
@ -84,6 +85,7 @@ class TensorNameMap:
|
|||
"h.{bid}.ln_1", # gpt2
|
||||
"transformer.h.{bid}.ln", # phi2
|
||||
"model.layers.layers.{bid}.norm", # plamo
|
||||
"model.layers.{bid}.attention_norm", # internlm2
|
||||
),
|
||||
|
||||
# Attention norm 2
|
||||
|
@ -111,6 +113,7 @@ class TensorNameMap:
|
|||
"encoder.layer.{bid}.attention.self.query", # bert
|
||||
"transformer.h.{bid}.attn.q_proj", # gpt-j
|
||||
"model.layers.layers.{bid}.self_attn.q_proj", # plamo
|
||||
"model.layers.{bid}.attention.wq" # internlm2
|
||||
),
|
||||
|
||||
# Attention key
|
||||
|
@ -120,6 +123,7 @@ class TensorNameMap:
|
|||
"encoder.layer.{bid}.attention.self.key", # bert
|
||||
"transformer.h.{bid}.attn.k_proj", # gpt-j
|
||||
"model.layers.layers.{bid}.self_attn.k_proj", # plamo
|
||||
"model.layers.{bid}.attention.wk" # internlm2
|
||||
),
|
||||
|
||||
# Attention value
|
||||
|
@ -129,6 +133,7 @@ class TensorNameMap:
|
|||
"encoder.layer.{bid}.attention.self.value", # bert
|
||||
"transformer.h.{bid}.attn.v_proj", # gpt-j
|
||||
"model.layers.layers.{bid}.self_attn.v_proj", # plamo
|
||||
"model.layers.{bid}.attention.wv" # internlm2
|
||||
),
|
||||
|
||||
# Attention output
|
||||
|
@ -147,6 +152,7 @@ class TensorNameMap:
|
|||
"h.{bid}.attn.c_proj", # gpt2
|
||||
"transformer.h.{bid}.mixer.out_proj", # phi2
|
||||
"model.layers.layers.{bid}.self_attn.o_proj", # plamo
|
||||
"model.layers.{bid}.attention.wo", # internlm2
|
||||
),
|
||||
|
||||
# Rotary embeddings
|
||||
|
@ -169,6 +175,7 @@ class TensorNameMap:
|
|||
"language_model.encoder.layers.{bid}.post_attention_layernorm", # persimmon
|
||||
"model.layers.{bid}.ln2", # yi
|
||||
"h.{bid}.ln_2", # gpt2
|
||||
"model.layers.{bid}.ffn_norm", # internlm2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_INP: (
|
||||
|
@ -194,6 +201,7 @@ class TensorNameMap:
|
|||
"transformer.h.{bid}.mlp.fc1", # phi2
|
||||
"model.layers.{bid}.mlp.fc1", # phi2
|
||||
"model.layers.layers.{bid}.mlp.up_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w3", # internlm2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_UP_EXP: (
|
||||
|
@ -212,6 +220,7 @@ class TensorNameMap:
|
|||
"layers.{bid}.feed_forward.w1", # llama-pth
|
||||
"transformer.h.{bid}.mlp.w2", # qwen
|
||||
"model.layers.layers.{bid}.mlp.gate_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w1", # internlm2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_GATE_EXP: (
|
||||
|
@ -236,6 +245,7 @@ class TensorNameMap:
|
|||
"transformer.h.{bid}.mlp.fc2", # phi2
|
||||
"model.layers.{bid}.mlp.fc2", # phi2
|
||||
"model.layers.layers.{bid}.mlp.down_proj", # plamo
|
||||
"model.layers.{bid}.feed_forward.w2", # internlm2
|
||||
),
|
||||
|
||||
MODEL_TENSOR.FFN_DOWN_EXP: (
|
||||
|
|
483
llama.cpp
483
llama.cpp
|
@ -204,6 +204,7 @@ enum llm_arch {
|
|||
LLM_ARCH_PLAMO,
|
||||
LLM_ARCH_CODESHELL,
|
||||
LLM_ARCH_ORION,
|
||||
LLM_ARCH_INTERNLM2,
|
||||
LLM_ARCH_UNKNOWN,
|
||||
};
|
||||
|
||||
|
@ -226,6 +227,7 @@ static std::map<llm_arch, std::string> LLM_ARCH_NAMES = {
|
|||
{ LLM_ARCH_PLAMO, "plamo" },
|
||||
{ LLM_ARCH_CODESHELL, "codeshell" },
|
||||
{ LLM_ARCH_ORION, "orion" },
|
||||
{ LLM_ARCH_INTERNLM2, "internlm2" },
|
||||
};
|
||||
|
||||
enum llm_kv {
|
||||
|
@ -278,6 +280,7 @@ enum llm_kv {
|
|||
LLM_KV_TOKENIZER_PAD_ID,
|
||||
LLM_KV_TOKENIZER_ADD_BOS,
|
||||
LLM_KV_TOKENIZER_ADD_EOS,
|
||||
LLM_KV_TOKENIZER_ADD_PREFIX,
|
||||
LLM_KV_TOKENIZER_HF_JSON,
|
||||
LLM_KV_TOKENIZER_RWKV,
|
||||
};
|
||||
|
@ -332,6 +335,7 @@ static std::map<llm_kv, std::string> LLM_KV_NAMES = {
|
|||
{ LLM_KV_TOKENIZER_PAD_ID, "tokenizer.ggml.padding_token_id" },
|
||||
{ LLM_KV_TOKENIZER_ADD_BOS, "tokenizer.ggml.add_bos_token" },
|
||||
{ LLM_KV_TOKENIZER_ADD_EOS, "tokenizer.ggml.add_eos_token" },
|
||||
{ LLM_KV_TOKENIZER_ADD_PREFIX, "tokenizer.ggml.add_space_prefix" },
|
||||
{ LLM_KV_TOKENIZER_HF_JSON, "tokenizer.huggingface.json" },
|
||||
{ LLM_KV_TOKENIZER_RWKV, "tokenizer.rwkv.world" },
|
||||
};
|
||||
|
@ -669,7 +673,23 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
|||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
|
||||
{
|
||||
LLM_ARCH_INTERNLM2,
|
||||
{
|
||||
{ LLM_TENSOR_TOKEN_EMBD, "token_embd" },
|
||||
{ LLM_TENSOR_OUTPUT_NORM, "output_norm" },
|
||||
{ LLM_TENSOR_OUTPUT, "output" },
|
||||
{ LLM_TENSOR_ATTN_NORM, "blk.%d.attn_norm" },
|
||||
{ LLM_TENSOR_ATTN_Q, "blk.%d.attn_q" },
|
||||
{ LLM_TENSOR_ATTN_K, "blk.%d.attn_k" },
|
||||
{ LLM_TENSOR_ATTN_V, "blk.%d.attn_v" },
|
||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||
{ LLM_TENSOR_FFN_NORM, "blk.%d.ffn_norm" },
|
||||
{ LLM_TENSOR_FFN_GATE, "blk.%d.ffn_gate" },
|
||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||
},
|
||||
},
|
||||
{
|
||||
LLM_ARCH_UNKNOWN,
|
||||
{
|
||||
|
@ -1377,6 +1397,7 @@ enum e_model {
|
|||
MODEL_13B,
|
||||
MODEL_14B,
|
||||
MODEL_15B,
|
||||
MODEL_20B,
|
||||
MODEL_30B,
|
||||
MODEL_34B,
|
||||
MODEL_40B,
|
||||
|
@ -1618,6 +1639,8 @@ struct llama_vocab {
|
|||
id special_suffix_id = 32008;
|
||||
id special_eot_id = 32010;
|
||||
|
||||
bool add_space_prefix = true;
|
||||
|
||||
int find_bpe_rank(const std::string & token_left, const std::string & token_right) const {
|
||||
GGML_ASSERT(token_left.find(' ') == std::string::npos);
|
||||
GGML_ASSERT(token_left.find('\n') == std::string::npos);
|
||||
|
@ -2731,6 +2754,7 @@ static const char * llama_model_type_name(e_model type) {
|
|||
case MODEL_13B: return "13B";
|
||||
case MODEL_14B: return "14B";
|
||||
case MODEL_15B: return "15B";
|
||||
case MODEL_20B: return "20B";
|
||||
case MODEL_30B: return "30B";
|
||||
case MODEL_34B: return "34B";
|
||||
case MODEL_40B: return "40B";
|
||||
|
@ -2743,6 +2767,14 @@ static const char * llama_model_type_name(e_model type) {
|
|||
default: return "?B";
|
||||
}
|
||||
}
|
||||
static const char * llama_model_vocab_type_name(enum llama_vocab_type type){
|
||||
switch (type) {
|
||||
case LLAMA_VOCAB_TYPE_SPM: return "SPM";
|
||||
case LLAMA_VOCAB_TYPE_BPE: return "BPE";
|
||||
default: return "unknown";
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static void llm_load_arch(llama_model_loader & ml, llama_model & model) {
|
||||
model.arch = ml.get_arch();
|
||||
|
@ -3006,6 +3038,15 @@ static void llm_load_hparams(
|
|||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_INTERNLM2:
|
||||
{
|
||||
ml.get_key(LLM_KV_ATTENTION_LAYERNORM_RMS_EPS, hparams.f_norm_rms_eps);
|
||||
switch (hparams.n_layer) {
|
||||
case 32: model.type = e_model::MODEL_7B; break;
|
||||
case 48: model.type = e_model::MODEL_20B; break;
|
||||
default: model.type = e_model::MODEL_UNKNOWN;
|
||||
}
|
||||
} break;
|
||||
default: (void)0;
|
||||
}
|
||||
|
||||
|
@ -3057,6 +3098,11 @@ static void llm_load_vocab(
|
|||
vocab.special_unk_id = 0;
|
||||
vocab.special_sep_id = -1;
|
||||
vocab.special_pad_id = -1;
|
||||
|
||||
const int add_space_prefix_keyidx = gguf_find_key(ctx, kv(LLM_KV_TOKENIZER_ADD_PREFIX).c_str());
|
||||
if (add_space_prefix_keyidx != -1) {
|
||||
vocab.add_space_prefix = gguf_get_val_bool(ctx, add_space_prefix_keyidx);
|
||||
} // The default value of add_space_prefix is true.
|
||||
} else if (tokenizer_name == "gpt2") {
|
||||
vocab.type = LLAMA_VOCAB_TYPE_BPE;
|
||||
|
||||
|
@ -3269,7 +3315,7 @@ static void llm_load_print_meta(llama_model_loader & ml, llama_model & model) {
|
|||
// hparams
|
||||
LLAMA_LOG_INFO("%s: format = %s\n", __func__, llama_file_version_name(ml.fver));
|
||||
LLAMA_LOG_INFO("%s: arch = %s\n", __func__, LLM_ARCH_NAMES.at(model.arch).c_str());
|
||||
LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, vocab.type == LLAMA_VOCAB_TYPE_SPM ? "SPM" : "BPE"); // TODO: fix
|
||||
LLAMA_LOG_INFO("%s: vocab type = %s\n", __func__, llama_model_vocab_type_name(vocab.type));
|
||||
LLAMA_LOG_INFO("%s: n_vocab = %u\n", __func__, hparams.n_vocab);
|
||||
LLAMA_LOG_INFO("%s: n_merges = %u\n", __func__, (int) vocab.bpe_ranks.size());
|
||||
LLAMA_LOG_INFO("%s: n_ctx_train = %u\n", __func__, hparams.n_ctx_train);
|
||||
|
@ -4018,8 +4064,35 @@ static bool llm_load_tensors(
|
|||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
}
|
||||
} break;
|
||||
case LLM_ARCH_INTERNLM2:
|
||||
{
|
||||
model.tok_embd = ml.create_tensor(ctx_input, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab});
|
||||
|
||||
// output
|
||||
{
|
||||
model.output_norm = ml.create_tensor(ctx_output, tn(LLM_TENSOR_OUTPUT_NORM, "weight"), {n_embd});
|
||||
model.output = ml.create_tensor(ctx_output_split, tn(LLM_TENSOR_OUTPUT, "weight"), {n_embd, n_vocab});
|
||||
}
|
||||
|
||||
for (int i = 0; i < n_layer; ++i) {
|
||||
ggml_context * ctx_layer = ctx_for_layer(i);
|
||||
ggml_context * ctx_split = ctx_for_layer_split(i);
|
||||
|
||||
auto & layer = model.layers[i];
|
||||
|
||||
layer.attn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_ATTN_NORM, "weight", i), {n_embd});
|
||||
// layer.wqkv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_QKV, "weight", i), {n_embd, n_embd + 2*n_embd_gqa});
|
||||
layer.wq = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_Q, "weight", i), {n_embd, n_embd});
|
||||
layer.wk = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_K, "weight", i), {n_embd, n_embd_gqa});
|
||||
layer.wv = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_V, "weight", i), {n_embd, n_embd_gqa});
|
||||
|
||||
layer.wo = ml.create_tensor(ctx_split, tn(LLM_TENSOR_ATTN_OUT, "weight", i), {n_embd, n_embd});
|
||||
layer.ffn_norm = ml.create_tensor(ctx_layer, tn(LLM_TENSOR_FFN_NORM, "weight", i), {n_embd});
|
||||
layer.ffn_gate = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_GATE, "weight", i), {n_embd, n_ff});
|
||||
layer.ffn_down = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd});
|
||||
layer.ffn_up = ml.create_tensor(ctx_split, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff});
|
||||
}
|
||||
} break;
|
||||
default:
|
||||
throw std::runtime_error("unknown architecture");
|
||||
}
|
||||
|
@ -4666,126 +4739,6 @@ struct llm_build_context {
|
|||
ctx0 = nullptr;
|
||||
}
|
||||
}
|
||||
struct ggml_cgraph * build_orion() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
||||
cb(inpL, "inp_embd", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
// if (model.layers[il].bq) {
|
||||
// Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
// cb(Qcur, "Qcur", il);
|
||||
// }
|
||||
|
||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
// if (model.layers[il].bk) {
|
||||
// Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
// cb(Kcur, "Kcur", il);
|
||||
// }
|
||||
|
||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
// if (model.layers[il].bv) {
|
||||
// Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
// cb(Vcur, "Vcur", il);
|
||||
// }
|
||||
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
||||
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||
model.layers[il].wo, NULL,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up, NULL,
|
||||
model.layers[il].ffn_gate, NULL,
|
||||
model.layers[il].ffn_down, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm, model.output_norm_b,
|
||||
LLM_NORM, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
|
||||
|
||||
struct ggml_cgraph * build_llama() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
@ -6589,6 +6542,245 @@ struct llm_build_context {
|
|||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_orion() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
||||
cb(inpL, "inp_embd", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, model.layers[il].attn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
// if (model.layers[il].bq) {
|
||||
// Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
// cb(Qcur, "Qcur", il);
|
||||
// }
|
||||
|
||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
// if (model.layers[il].bk) {
|
||||
// Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
// cb(Kcur, "Kcur", il);
|
||||
// }
|
||||
|
||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
// if (model.layers[il].bv) {
|
||||
// Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
// cb(Vcur, "Vcur", il);
|
||||
// }
|
||||
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
||||
hparams.n_rot, 2, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||
model.layers[il].wo, NULL,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, model.layers[il].ffn_norm_b,
|
||||
LLM_NORM, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up, NULL,
|
||||
model.layers[il].ffn_gate, NULL,
|
||||
model.layers[il].ffn_down, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm, model.output_norm_b,
|
||||
LLM_NORM, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
struct ggml_cgraph * build_internlm2() {
|
||||
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
|
||||
|
||||
const int64_t n_embd_head = hparams.n_embd_head_v;
|
||||
GGML_ASSERT(n_embd_head == hparams.n_embd_head_k);
|
||||
GGML_ASSERT(n_embd_head == hparams.n_rot);
|
||||
|
||||
struct ggml_tensor * cur;
|
||||
struct ggml_tensor * inpL;
|
||||
|
||||
inpL = llm_build_inp_embd(ctx0, hparams, batch, model.tok_embd, lctx.inp_tokens, lctx.inp_embd, cb);
|
||||
cb(inpL, "inp_embd", -1);
|
||||
|
||||
// inp_pos - contains the positions
|
||||
struct ggml_tensor * inp_pos = ggml_view_1d(ctx0, lctx.inp_pos, n_tokens, 0);
|
||||
cb(inp_pos, "inp_pos", -1);
|
||||
|
||||
// KQ_mask (mask for 1 head, it will be broadcasted to all heads)
|
||||
struct ggml_tensor * KQ_mask = ggml_view_2d(ctx0, lctx.inp_KQ_mask, n_kv, n_tokens, n_kv*ggml_type_size(lctx.inp_KQ_mask->type), 0);
|
||||
cb(KQ_mask, "KQ_mask", -1);
|
||||
|
||||
// shift the entire K-cache if needed
|
||||
if (do_rope_shift) {
|
||||
llm_build_k_shift(ctx0, hparams, cparams, kv_self, gf, lctx.inp_K_shift, LLM_ROPE, n_ctx, freq_base, freq_scale, cb);
|
||||
}
|
||||
|
||||
for (int il = 0; il < n_layer; ++il) {
|
||||
struct ggml_tensor * inpSA = inpL;
|
||||
|
||||
// norm
|
||||
cur = llm_build_norm(ctx0, inpL, hparams,
|
||||
model.layers[il].attn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "attn_norm", il);
|
||||
|
||||
// self-attention
|
||||
{
|
||||
// compute Q and K and RoPE them
|
||||
struct ggml_tensor * Qcur = ggml_mul_mat(ctx0, model.layers[il].wq, cur);
|
||||
cb(Qcur, "Qcur", il);
|
||||
if (model.layers[il].bq) {
|
||||
Qcur = ggml_add(ctx0, Qcur, model.layers[il].bq);
|
||||
cb(Qcur, "Qcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Kcur = ggml_mul_mat(ctx0, model.layers[il].wk, cur);
|
||||
cb(Kcur, "Kcur", il);
|
||||
if (model.layers[il].bk) {
|
||||
Kcur = ggml_add(ctx0, Kcur, model.layers[il].bk);
|
||||
cb(Kcur, "Kcur", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * Vcur = ggml_mul_mat(ctx0, model.layers[il].wv, cur);
|
||||
cb(Vcur, "Vcur", il);
|
||||
if (model.layers[il].bv) {
|
||||
Vcur = ggml_add(ctx0, Vcur, model.layers[il].bv);
|
||||
cb(Vcur, "Vcur", il);
|
||||
}
|
||||
|
||||
Qcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Qcur, n_embd_head, n_head, n_tokens), inp_pos,
|
||||
hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Qcur, "Qcur", il);
|
||||
|
||||
Kcur = ggml_rope_custom(
|
||||
ctx0, ggml_reshape_3d(ctx0, Kcur, n_embd_head, n_head_kv, n_tokens), inp_pos,
|
||||
hparams.n_rot, 0, 0, n_orig_ctx, freq_base, freq_scale,
|
||||
ext_factor, attn_factor, beta_fast, beta_slow
|
||||
);
|
||||
cb(Kcur, "Kcur", il);
|
||||
|
||||
cur = llm_build_kv(ctx0, model, hparams, kv_self, gf,
|
||||
model.layers[il].wo, model.layers[il].bo,
|
||||
Kcur, Vcur, Qcur, KQ_mask, n_ctx, n_tokens, kv_head, n_kv, -1.0f, 1.0f/sqrtf(float(n_embd_head)), cb, il);
|
||||
cb(cur, "kqv_out", il);
|
||||
}
|
||||
|
||||
struct ggml_tensor * ffn_inp = ggml_add(ctx0, cur, inpSA);
|
||||
cb(ffn_inp, "ffn_inp", il);
|
||||
|
||||
// feed-forward network
|
||||
cur = llm_build_norm(ctx0, ffn_inp, hparams,
|
||||
model.layers[il].ffn_norm, NULL,
|
||||
LLM_NORM_RMS, cb, il);
|
||||
cb(cur, "ffn_norm", il);
|
||||
|
||||
cur = llm_build_ffn(ctx0, cur,
|
||||
model.layers[il].ffn_up, NULL,
|
||||
model.layers[il].ffn_gate, NULL,
|
||||
model.layers[il].ffn_down, NULL,
|
||||
NULL,
|
||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||
cb(cur, "ffn_out", il);
|
||||
|
||||
cur = ggml_add(ctx0, cur, ffn_inp);
|
||||
cb(cur, "l_out", il);
|
||||
|
||||
// input for next layer
|
||||
inpL = cur;
|
||||
}
|
||||
|
||||
cur = inpL;
|
||||
|
||||
cur = llm_build_norm(ctx0, cur, hparams,
|
||||
model.output_norm, NULL,
|
||||
LLM_NORM_RMS, cb, -1);
|
||||
cb(cur, "result_norm", -1);
|
||||
|
||||
// lm_head
|
||||
cur = ggml_mul_mat(ctx0, model.output, cur);
|
||||
cb(cur, "result_output", -1);
|
||||
|
||||
ggml_build_forward_expand(gf, cur);
|
||||
|
||||
return gf;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
static struct ggml_cgraph * llama_build_graph(
|
||||
|
@ -6747,6 +6939,10 @@ static struct ggml_cgraph * llama_build_graph(
|
|||
{
|
||||
result = llm.build_orion();
|
||||
} break;
|
||||
case LLM_ARCH_INTERNLM2:
|
||||
{
|
||||
result = llm.build_internlm2();
|
||||
} break;
|
||||
default:
|
||||
GGML_ASSERT(false);
|
||||
}
|
||||
|
@ -7689,7 +7885,9 @@ static std::vector<llama_vocab::id> llama_tokenize_internal(const llama_vocab &
|
|||
//
|
||||
auto raw_text = fragment.raw_text.substr(fragment.offset, fragment.length);
|
||||
if (&fragment == &fragment_buffer.front()) {
|
||||
raw_text = " " + raw_text; // prefix with space if the first token is not special
|
||||
if (vocab.add_space_prefix) {
|
||||
raw_text = " " + raw_text; // prefix with space if the first token is not special
|
||||
}
|
||||
}
|
||||
|
||||
#ifdef PRETOKENIZERDEBUG
|
||||
|
@ -10090,18 +10288,45 @@ struct llama_model_quantize_params llama_model_quantize_default_params() {
|
|||
return result;
|
||||
}
|
||||
|
||||
int32_t llama_max_devices(void) {
|
||||
return LLAMA_MAX_DEVICES;
|
||||
size_t llama_max_devices(void) {
|
||||
#if defined(GGML_USE_METAL)
|
||||
return 1;
|
||||
#elif defined(GGML_USE_CUBLAS)
|
||||
return GGML_CUDA_MAX_DEVICES;
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
return GGML_SYCL_MAX_DEVICES;
|
||||
#else
|
||||
return 1;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool llama_mmap_supported(void) {
|
||||
bool llama_supports_mmap(void) {
|
||||
return llama_mmap::SUPPORTED;
|
||||
}
|
||||
|
||||
bool llama_mlock_supported(void) {
|
||||
bool llama_supports_mlock(void) {
|
||||
return llama_mlock::SUPPORTED;
|
||||
}
|
||||
|
||||
bool llama_supports_gpu_offload(void) {
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
|
||||
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
return true;
|
||||
#else
|
||||
return false;
|
||||
#endif
|
||||
}
|
||||
|
||||
// deprecated:
|
||||
bool llama_mmap_supported(void) {
|
||||
return llama_supports_mmap();
|
||||
}
|
||||
|
||||
bool llama_mlock_supported(void) {
|
||||
return llama_supports_mlock();
|
||||
}
|
||||
|
||||
void llama_backend_init(bool numa) {
|
||||
ggml_time_init();
|
||||
|
||||
|
@ -10133,8 +10358,8 @@ int64_t llama_time_us(void) {
|
|||
}
|
||||
|
||||
struct llama_model * llama_load_model_from_file(
|
||||
const char * path_model,
|
||||
struct llama_model_params params) {
|
||||
const char * path_model,
|
||||
struct llama_model_params params) {
|
||||
ggml_time_init();
|
||||
|
||||
llama_model * model = new llama_model;
|
||||
|
|
29
llama.h
29
llama.h
|
@ -3,15 +3,7 @@
|
|||
|
||||
#include "ggml.h"
|
||||
#include "ggml-backend.h"
|
||||
#ifdef GGML_USE_CUBLAS
|
||||
#include "ggml-cuda.h"
|
||||
#define LLAMA_MAX_DEVICES GGML_CUDA_MAX_DEVICES
|
||||
#elif defined(GGML_USE_SYCL)
|
||||
#include "ggml-sycl.h"
|
||||
#define LLAMA_MAX_DEVICES GGML_SYCL_MAX_DEVICES
|
||||
#else
|
||||
#define LLAMA_MAX_DEVICES 1
|
||||
#endif // GGML_USE_CUBLAS
|
||||
|
||||
#include <stddef.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
|
@ -49,12 +41,6 @@
|
|||
#define LLAMA_SESSION_MAGIC LLAMA_FILE_MAGIC_GGSN
|
||||
#define LLAMA_SESSION_VERSION 4
|
||||
|
||||
#if defined(GGML_USE_CUBLAS) || defined(GGML_USE_CLBLAST) || defined(GGML_USE_METAL) || defined(GGML_USE_VULKAN) || \
|
||||
defined(GGML_USE_SYCL) || defined(GGML_USE_KOMPUTE)
|
||||
// Defined when llama.cpp is compiled with support for offloading model layers to GPU.
|
||||
#define LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
#endif
|
||||
|
||||
#ifdef __cplusplus
|
||||
extern "C" {
|
||||
#endif
|
||||
|
@ -201,7 +187,7 @@ extern "C" {
|
|||
// LLAMA_SPLIT_LAYER: ignored
|
||||
int32_t main_gpu;
|
||||
|
||||
// proportion of the model (layers or rows) to offload to each GPU, size: LLAMA_MAX_DEVICES
|
||||
// proportion of the model (layers or rows) to offload to each GPU, size: llama_max_devices()
|
||||
const float * tensor_split;
|
||||
|
||||
// Called with a progress value between 0.0 and 1.0. Pass NULL to disable.
|
||||
|
@ -338,9 +324,14 @@ extern "C" {
|
|||
|
||||
LLAMA_API int64_t llama_time_us(void);
|
||||
|
||||
LLAMA_API int32_t llama_max_devices(void);
|
||||
LLAMA_API bool llama_mmap_supported (void);
|
||||
LLAMA_API bool llama_mlock_supported(void);
|
||||
LLAMA_API size_t llama_max_devices(void);
|
||||
|
||||
LLAMA_API bool llama_supports_mmap (void);
|
||||
LLAMA_API bool llama_supports_mlock (void);
|
||||
LLAMA_API bool llama_supports_gpu_offload(void);
|
||||
|
||||
LLAMA_API DEPRECATED(bool llama_mmap_supported (void), "use llama_supports_mmap() instead");
|
||||
LLAMA_API DEPRECATED(bool llama_mlock_supported(void), "use llama_supports_mlock() instead");
|
||||
|
||||
LLAMA_API const struct llama_model * llama_get_model(const struct llama_context * ctx);
|
||||
|
||||
|
|
|
@ -227,6 +227,14 @@ static std::string var_to_str(ggml_type type) {
|
|||
return ggml_type_name(type);
|
||||
}
|
||||
|
||||
static std::string var_to_str(ggml_op_pool pool) {
|
||||
switch (pool) {
|
||||
case GGML_OP_POOL_AVG: return "avg";
|
||||
case GGML_OP_POOL_MAX: return "max";
|
||||
default: return std::to_string(pool);
|
||||
}
|
||||
}
|
||||
|
||||
#define VARS_TO_STR1(a) VAR_TO_STR(a)
|
||||
#define VARS_TO_STR2(a, b) VAR_TO_STR(a) + "," + VAR_TO_STR(b)
|
||||
#define VARS_TO_STR3(a, b, c) VAR_TO_STR(a) + "," + VARS_TO_STR2(b, c)
|
||||
|
@ -238,6 +246,7 @@ static std::string var_to_str(ggml_type type) {
|
|||
#define VARS_TO_STR9(a, b, c, d, e, f, g, h, i) VAR_TO_STR(a) + "," + VARS_TO_STR8(b, c, d, e, f, g, h, i)
|
||||
#define VARS_TO_STR10(a, b, c, d, e, f, g, h, i, j) VAR_TO_STR(a) + "," + VARS_TO_STR9(b, c, d, e, f, g, h, i, j)
|
||||
#define VARS_TO_STR11(a, b, c, d, e, f, g, h, i, j, k) VAR_TO_STR(a) + "," + VARS_TO_STR10(b, c, d, e, f, g, h, i, j, k)
|
||||
#define VARS_TO_STR12(a, b, c, d, e, f, g, h, i, j, k, l) VAR_TO_STR(a) + "," + VARS_TO_STR11(b, c, d, e, f, g, h, i, j, k, l)
|
||||
|
||||
#ifdef GGML_USE_SYCL
|
||||
static bool inline _isinf(float f) {
|
||||
|
@ -1162,10 +1171,45 @@ struct test_alibi : public test_case {
|
|||
}
|
||||
};
|
||||
|
||||
// GGML_OP_POOL2D
|
||||
struct test_pool2d : public test_case {
|
||||
enum ggml_op_pool pool_type;
|
||||
const ggml_type type_input;
|
||||
const std::array<int64_t, 4> ne_input;
|
||||
// kernel size
|
||||
const int k0;
|
||||
const int k1;
|
||||
// stride
|
||||
const int s0;
|
||||
const int s1;
|
||||
// padding
|
||||
const int p0;
|
||||
const int p1;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR9(pool_type, type_input, ne_input, k0, k1, s0, s1, p0, p1);
|
||||
}
|
||||
|
||||
test_pool2d(ggml_op_pool pool_type = GGML_OP_POOL_AVG,
|
||||
ggml_type type_input = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
|
||||
int k0 = 3, int k1 = 3,
|
||||
int s0 = 1, int s1 = 1,
|
||||
int p0 = 1, int p1 = 1)
|
||||
: pool_type(pool_type), type_input(type_input), ne_input(ne_input), k0(k0), k1(k1), s0(s0), s1(s1), p0(p0), p1(p1) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
|
||||
ggml_tensor * out = ggml_pool_2d(ctx, input, pool_type, k0, k1, s0, s1, p0, p1);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
||||
// GGML_OP_IM2COL
|
||||
struct test_im2col : public test_case {
|
||||
const ggml_type type_input;
|
||||
const ggml_type type_kernel;
|
||||
const ggml_type dst_type;
|
||||
const std::array<int64_t, 4> ne_input;
|
||||
const std::array<int64_t, 4> ne_kernel;
|
||||
// stride
|
||||
|
@ -1181,22 +1225,22 @@ struct test_im2col : public test_case {
|
|||
const bool is_2D;
|
||||
|
||||
std::string vars() override {
|
||||
return VARS_TO_STR11(type_input, type_kernel, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
|
||||
return VARS_TO_STR12(type_input, type_kernel, dst_type, ne_input, ne_kernel, s0, s1, p0, p1, d0, d1, is_2D);
|
||||
}
|
||||
|
||||
test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16,
|
||||
test_im2col(ggml_type type_input = GGML_TYPE_F32, ggml_type type_kernel = GGML_TYPE_F16, ggml_type dst_type = GGML_TYPE_F32,
|
||||
std::array<int64_t, 4> ne_input = {10, 10, 3, 1}, // [input_width, input_height, input_channels, 1]
|
||||
std::array<int64_t, 4> ne_kernel = {3, 3, 3, 1}, // [kernel_width, kernel_height, input_channels, 1]
|
||||
int s0 = 1, int s1 = 1,
|
||||
int p0 = 1, int p1 = 1,
|
||||
int d0 = 1, int d1 = 1,
|
||||
bool is_2D = true)
|
||||
: type_input(type_input), type_kernel(type_kernel), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
|
||||
: type_input(type_input), type_kernel(type_kernel), dst_type(dst_type), ne_input(ne_input), ne_kernel(ne_kernel), s0(s0), s1(s1), p0(p0), p1(p1), d0(d0), d1(d1), is_2D(is_2D) {}
|
||||
|
||||
ggml_tensor * build_graph(ggml_context * ctx) override {
|
||||
ggml_tensor * input = ggml_new_tensor(ctx, type_input, 4, ne_input.data());
|
||||
ggml_tensor * kernel = ggml_new_tensor(ctx, type_kernel, 4, ne_kernel.data());
|
||||
ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D);
|
||||
ggml_tensor * out = ggml_im2col(ctx, kernel, input, s0, s1, p0, p1, d0, d1, is_2D, dst_type);
|
||||
return out;
|
||||
}
|
||||
};
|
||||
|
@ -1912,6 +1956,27 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
}
|
||||
}
|
||||
|
||||
for (ggml_type type_input : {GGML_TYPE_F32}) {
|
||||
for (ggml_op_pool pool_type : {GGML_OP_POOL_AVG, GGML_OP_POOL_MAX}) {
|
||||
for (int k0 : {1, 3}) {
|
||||
for (int k1 : {1, 3}) {
|
||||
for (int s0 : {1, 2}) {
|
||||
for (int s1 : {1, 2}) {
|
||||
for (int p0 : {0, 1}) {
|
||||
for (int p1 : {0, 1}) {
|
||||
test_cases.emplace_back(new test_pool2d(pool_type, type_input, {10, 10, 3, 1}, k0, k1, s0, s1, p0, p1));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F32));
|
||||
test_cases.emplace_back(new test_im2col(GGML_TYPE_F32, GGML_TYPE_F16, GGML_TYPE_F16));
|
||||
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 1, 1, 1}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {2, 1, 1, 1}));
|
||||
test_cases.emplace_back(new test_repeat(GGML_TYPE_F32, {10, 10, 10, 10}, {1, 2, 1, 1}));
|
||||
|
@ -2049,7 +2114,6 @@ static bool test_backend(ggml_backend_t backend, test_mode mode, const char * op
|
|||
}
|
||||
|
||||
test_cases.emplace_back(new test_alibi());
|
||||
test_cases.emplace_back(new test_im2col());
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_F32));
|
||||
test_cases.emplace_back(new test_concat(GGML_TYPE_I32));
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue