llama : remove LLAMA_MAX_DEVICES and LLAMA_SUPPORTS_GPU_OFFLOAD (#5240)
* llama : remove LLAMA_MAX_DEVICES from llama.h ggml-ci * Update llama.cpp Co-authored-by: slaren <slarengh@gmail.com> * server : remove LLAMA_MAX_DEVICES ggml-ci * llama : remove LLAMA_SUPPORTS_GPU_OFFLOAD ggml-ci * train : remove LLAMA_SUPPORTS_GPU_OFFLOAD * readme : add deprecation notice * readme : change deprecation notice to "remove" and fix url * llama : remove gpu includes from llama.h ggml-ci --------- Co-authored-by: slaren <slarengh@gmail.com>
This commit is contained in:
parent
efb7bdbbd0
commit
5cb04dbc16
9 changed files with 143 additions and 124 deletions
|
@ -88,7 +88,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
llama_model_params model_params = llama_model_default_params();
|
||||
|
||||
const std::vector<float> t_split (LLAMA_MAX_DEVICES, 0.0f);
|
||||
const std::vector<float> t_split(llama_max_devices(), 0.0f);
|
||||
|
||||
model_params.n_gpu_layers = n_gpu_layers;
|
||||
model_params.tensor_split = t_split.data();
|
||||
|
|
|
@ -160,7 +160,7 @@ struct cmd_params {
|
|||
std::vector<int> main_gpu;
|
||||
std::vector<bool> no_kv_offload;
|
||||
std::vector<bool> mul_mat_q;
|
||||
std::vector<std::array<float, LLAMA_MAX_DEVICES>> tensor_split;
|
||||
std::vector<std::vector<float>> tensor_split;
|
||||
int reps;
|
||||
bool verbose;
|
||||
output_formats output_format;
|
||||
|
@ -179,7 +179,7 @@ static const cmd_params cmd_params_defaults = {
|
|||
/* main_gpu */ {0},
|
||||
/* no_kv_offload */ {false},
|
||||
/* mul_mat_q */ {true},
|
||||
/* tensor_split */ {{}},
|
||||
/* tensor_split */ {std::vector<float>(llama_max_devices(), 0.0f)},
|
||||
/* reps */ 5,
|
||||
/* verbose */ false,
|
||||
/* output_format */ MARKDOWN
|
||||
|
@ -380,10 +380,10 @@ static cmd_params parse_cmd_params(int argc, char ** argv) {
|
|||
const std::regex regex{R"([;/]+)"};
|
||||
std::sregex_token_iterator it{ts.begin(), ts.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
||||
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
for (size_t i = 0; i < LLAMA_MAX_DEVICES; ++i) {
|
||||
std::vector<float> tensor_split(llama_max_devices());
|
||||
for (size_t i = 0; i < llama_max_devices(); ++i) {
|
||||
if (i < split_arg.size()) {
|
||||
tensor_split[i] = std::stof(split_arg[i]);
|
||||
} else {
|
||||
|
@ -459,7 +459,7 @@ struct cmd_params_instance {
|
|||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
std::vector<float> tensor_split;
|
||||
|
||||
llama_model_params to_llama_mparams() const {
|
||||
llama_model_params mparams = llama_model_default_params();
|
||||
|
@ -582,7 +582,7 @@ struct test {
|
|||
int main_gpu;
|
||||
bool no_kv_offload;
|
||||
bool mul_mat_q;
|
||||
std::array<float, LLAMA_MAX_DEVICES> tensor_split;
|
||||
std::vector<float> tensor_split;
|
||||
int n_prompt;
|
||||
int n_gen;
|
||||
std::string test_time;
|
||||
|
@ -704,7 +704,7 @@ struct test {
|
|||
std::vector<std::string> get_values() const {
|
||||
std::string tensor_split_str;
|
||||
int max_nonzero = 0;
|
||||
for (int i = 0; i < LLAMA_MAX_DEVICES; i++) {
|
||||
for (size_t i = 0; i < llama_max_devices(); i++) {
|
||||
if (tensor_split[i] > 0) {
|
||||
max_nonzero = i;
|
||||
}
|
||||
|
|
|
@ -1789,28 +1789,28 @@ static void server_print_usage(const char *argv0, const gpt_params ¶ms,
|
|||
printf(" -b N, --batch-size N batch size for prompt processing (default: %d)\n", params.n_batch);
|
||||
printf(" --memory-f32 use f32 instead of f16 for memory key+value (default: disabled)\n");
|
||||
printf(" not recommended: doubles context memory required and no measurable increase in quality\n");
|
||||
if (llama_mlock_supported())
|
||||
if (llama_supports_mlock())
|
||||
{
|
||||
printf(" --mlock force system to keep model in RAM rather than swapping or compressing\n");
|
||||
}
|
||||
if (llama_mmap_supported())
|
||||
if (llama_supports_mmap())
|
||||
{
|
||||
printf(" --no-mmap do not memory-map model (slower load but may reduce pageouts if not using mlock)\n");
|
||||
}
|
||||
printf(" --numa attempt optimizations that help on some NUMA systems\n");
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
#endif
|
||||
if (llama_supports_gpu_offload()) {
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -sm SPLIT_MODE, --split-mode SPLIT_MODE\n");
|
||||
printf(" how to split the model across multiple GPUs, one of:\n");
|
||||
printf(" - none: use one GPU only\n");
|
||||
printf(" - layer (default): split layers and KV across GPUs\n");
|
||||
printf(" - row: split rows across GPUs\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" fraction of the model to offload to each GPU, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for the model (with split-mode = none),\n");
|
||||
printf(" or for intermediate results and KV (with split-mode = row)\n");
|
||||
}
|
||||
printf(" -m FNAME, --model FNAME\n");
|
||||
printf(" model path (default: %s)\n", params.model.c_str());
|
||||
printf(" -a ALIAS, --alias ALIAS\n");
|
||||
|
@ -2066,13 +2066,13 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
#else
|
||||
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
||||
if (llama_supports_gpu_offload()) {
|
||||
params.n_gpu_layers = std::stoi(argv[i]);
|
||||
} else {
|
||||
LOG_WARNING("Not compiled with GPU offload support, --n-gpu-layers option will be ignored. "
|
||||
"See main README.md for information on enabling GPU BLAS support",
|
||||
{{"n_gpu_layers", params.n_gpu_layers}});
|
||||
#endif
|
||||
}
|
||||
}
|
||||
else if (arg == "--split-mode" || arg == "-sm")
|
||||
{
|
||||
|
@ -2115,9 +2115,9 @@ static void server_params_parse(int argc, char **argv, server_params &sparams,
|
|||
const std::regex regex{R"([,/]+)"};
|
||||
std::sregex_token_iterator it{arg_next.begin(), arg_next.end(), regex, -1};
|
||||
std::vector<std::string> split_arg{it, {}};
|
||||
GGML_ASSERT(split_arg.size() <= LLAMA_MAX_DEVICES);
|
||||
GGML_ASSERT(split_arg.size() <= llama_max_devices());
|
||||
|
||||
for (size_t i_device = 0; i_device < LLAMA_MAX_DEVICES; ++i_device)
|
||||
for (size_t i_device = 0; i_device < llama_max_devices(); ++i_device)
|
||||
{
|
||||
if (i_device < split_arg.size())
|
||||
{
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue