Merge branch 'master' of https://github.com/goerch/llama.cpp
This commit is contained in:
commit
5d528ed5be
14 changed files with 1389 additions and 800 deletions
56
.github/workflows/build.yml
vendored
56
.github/workflows/build.yml
vendored
|
@ -197,6 +197,62 @@ jobs:
|
|||
cd build
|
||||
ctest --verbose --timeout 900
|
||||
|
||||
macOS-latest-cmake-ios:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=iOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
||||
cmake --build . --config Release
|
||||
|
||||
macOS-latest-cmake-tvos:
|
||||
runs-on: macos-latest
|
||||
|
||||
steps:
|
||||
- name: Clone
|
||||
id: checkout
|
||||
uses: actions/checkout@v1
|
||||
|
||||
- name: Dependencies
|
||||
id: depends
|
||||
continue-on-error: true
|
||||
run: |
|
||||
brew update
|
||||
|
||||
- name: Build
|
||||
id: cmake_build
|
||||
run: |
|
||||
sysctl -a
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -G Xcode .. \
|
||||
-DLLAMA_BUILD_EXAMPLES=OFF \
|
||||
-DLLAMA_BUILD_TESTS=OFF \
|
||||
-DLLAMA_BUILD_SERVER=OFF \
|
||||
-DCMAKE_SYSTEM_NAME=tvOS \
|
||||
-DCMAKE_OSX_DEPLOYMENT_TARGET=14.0
|
||||
cmake --build . --config Release
|
||||
|
||||
windows-latest-cmake:
|
||||
runs-on: windows-latest
|
||||
|
||||
|
|
|
@ -135,6 +135,7 @@ set(CMAKE_C_STANDARD 11)
|
|||
set(CMAKE_C_STANDARD_REQUIRED true)
|
||||
set(THREADS_PREFER_PTHREAD_FLAG ON)
|
||||
find_package(Threads REQUIRED)
|
||||
include(CheckCXXCompilerFlag)
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_SANITIZE_THREAD)
|
||||
|
@ -388,7 +389,6 @@ if (LLAMA_HIPBLAS)
|
|||
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_DMMV_X=${LLAMA_CUDA_DMMV_X})
|
||||
target_compile_definitions(ggml-rocm PRIVATE GGML_CUDA_MMV_Y=${LLAMA_CUDA_MMV_Y})
|
||||
target_compile_definitions(ggml-rocm PRIVATE K_QUANTS_PER_ITERATION=${LLAMA_CUDA_KQUANTS_ITER})
|
||||
target_compile_definitions(ggml-rocm PRIVATE CC_TURING=1000000000)
|
||||
set_source_files_properties(ggml-cuda.cu PROPERTIES LANGUAGE CXX)
|
||||
target_link_libraries(ggml-rocm PRIVATE hip::device PUBLIC hip::host roc::rocblas roc::hipblas)
|
||||
|
||||
|
@ -461,6 +461,13 @@ endif()
|
|||
# TODO: probably these flags need to be tweaked on some architectures
|
||||
# feel free to update the Makefile for your architecture and send a pull request or issue
|
||||
message(STATUS "CMAKE_SYSTEM_PROCESSOR: ${CMAKE_SYSTEM_PROCESSOR}")
|
||||
if (MSVC)
|
||||
string(TOLOWER "${CMAKE_GENERATOR_PLATFORM}" CMAKE_GENERATOR_PLATFORM_LWR)
|
||||
message(STATUS "CMAKE_GENERATOR_PLATFORM: ${CMAKE_GENERATOR_PLATFORM}")
|
||||
else ()
|
||||
set(CMAKE_GENERATOR_PLATFORM_LWR "")
|
||||
endif ()
|
||||
|
||||
if (NOT MSVC)
|
||||
if (LLAMA_STATIC)
|
||||
add_link_options(-static)
|
||||
|
@ -476,25 +483,33 @@ if (NOT MSVC)
|
|||
endif()
|
||||
endif()
|
||||
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm" OR ${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64")
|
||||
if ((${CMAKE_SYSTEM_PROCESSOR} MATCHES "arm") OR (${CMAKE_SYSTEM_PROCESSOR} MATCHES "aarch64") OR ("${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "arm64"))
|
||||
message(STATUS "ARM detected")
|
||||
if (MSVC)
|
||||
# TODO: arm msvc?
|
||||
add_compile_definitions(__ARM_NEON)
|
||||
add_compile_definitions(__ARM_FEATURE_FMA)
|
||||
add_compile_definitions(__ARM_FEATURE_DOTPROD)
|
||||
# add_compile_definitions(__ARM_FEATURE_FP16_VECTOR_ARITHMETIC) # MSVC doesn't support vdupq_n_f16, vld1q_f16, vst1q_f16
|
||||
add_compile_definitions(__aarch64__) # MSVC defines _M_ARM64 instead
|
||||
else()
|
||||
check_cxx_compiler_flag(-mfp16-format=ieee COMPILER_SUPPORTS_FP16_FORMAT_I3E)
|
||||
if (NOT "${COMPILER_SUPPORTS_FP16_FORMAT_I3E}" STREQUAL "")
|
||||
add_compile_options(-mfp16-format=ieee)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv6")
|
||||
# Raspberry Pi 1, Zero
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access)
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mno-unaligned-access)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv7")
|
||||
# Raspberry Pi 2
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mfp16-format=ieee -mno-unaligned-access -funsafe-math-optimizations)
|
||||
add_compile_options(-mfpu=neon-fp-armv8 -mno-unaligned-access -funsafe-math-optimizations)
|
||||
endif()
|
||||
if (${CMAKE_SYSTEM_PROCESSOR} MATCHES "armv8")
|
||||
# Raspberry Pi 3, 4, Zero 2 (32-bit)
|
||||
add_compile_options(-mfp16-format=ieee -mno-unaligned-access)
|
||||
add_compile_options(-mno-unaligned-access)
|
||||
endif()
|
||||
endif()
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$")
|
||||
elseif (${CMAKE_SYSTEM_PROCESSOR} MATCHES "^(x86_64|i686|AMD64)$" OR "${CMAKE_GENERATOR_PLATFORM_LWR}" MATCHES "^(x86_64|i686|amd64|x64)$" )
|
||||
message(STATUS "x86 detected")
|
||||
if (MSVC)
|
||||
if (LLAMA_AVX512)
|
||||
|
@ -578,10 +593,12 @@ endif()
|
|||
# RLIMIT_MEMLOCK came in BSD, is not specified in POSIX.1,
|
||||
# and on macOS its availability depends on enabling Darwin extensions
|
||||
# similarly on DragonFly, enabling BSD extensions is necessary
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "Darwin")
|
||||
add_compile_definitions(_DARWIN_C_SOURCE)
|
||||
endif()
|
||||
if (CMAKE_SYSTEM_NAME MATCHES "DragonFly")
|
||||
if (
|
||||
CMAKE_SYSTEM_NAME MATCHES "Darwin" OR
|
||||
CMAKE_SYSTEM_NAME MATCHES "iOS" OR
|
||||
CMAKE_SYSTEM_NAME MATCHES "tvOS" OR
|
||||
CMAKE_SYSTEM_NAME MATCHES "DragonFly"
|
||||
)
|
||||
add_compile_definitions(_DARWIN_C_SOURCE)
|
||||
endif()
|
||||
|
||||
|
|
1
Makefile
1
Makefile
|
@ -408,7 +408,6 @@ ifdef LLAMA_HIPBLAS
|
|||
HIPFLAGS += -DGGML_CUDA_DMMV_X=$(LLAMA_CUDA_DMMV_X)
|
||||
HIPFLAGS += -DGGML_CUDA_MMV_Y=$(LLAMA_CUDA_MMV_Y)
|
||||
HIPFLAGS += -DK_QUANTS_PER_ITERATION=$(LLAMA_CUDA_KQUANTS_ITER)
|
||||
HIPFLAGS += -DCC_TURING=1000000000
|
||||
ifdef LLAMA_CUDA_FORCE_DMMV
|
||||
HIPFLAGS += -DGGML_CUDA_FORCE_DMMV
|
||||
endif # LLAMA_CUDA_FORCE_DMMV
|
||||
|
|
|
@ -2,8 +2,30 @@
|
|||
|
||||
import PackageDescription
|
||||
|
||||
#if arch(arm) || arch(arm64)
|
||||
let platforms: [SupportedPlatform]? = [
|
||||
.macOS(.v11),
|
||||
.iOS(.v14),
|
||||
.watchOS(.v4),
|
||||
.tvOS(.v14)
|
||||
]
|
||||
let exclude: [String] = []
|
||||
let additionalSources: [String] = ["ggml-metal.m"]
|
||||
let additionalSettings: [CSetting] = [
|
||||
.unsafeFlags(["-fno-objc-arc"]),
|
||||
.define("GGML_SWIFT"),
|
||||
.define("GGML_USE_METAL")
|
||||
]
|
||||
#else
|
||||
let platforms: [SupportedPlatform]? = nil
|
||||
let exclude: [String] = ["ggml-metal.metal"]
|
||||
let additionalSources: [String] = []
|
||||
let additionalSettings: [CSetting] = []
|
||||
#endif
|
||||
|
||||
let package = Package(
|
||||
name: "llama",
|
||||
platforms: platforms,
|
||||
products: [
|
||||
.library(name: "llama", targets: ["llama"]),
|
||||
],
|
||||
|
@ -11,23 +33,23 @@ let package = Package(
|
|||
.target(
|
||||
name: "llama",
|
||||
path: ".",
|
||||
exclude: ["ggml-metal.metal"],
|
||||
exclude: exclude,
|
||||
sources: [
|
||||
"ggml.c",
|
||||
"llama.cpp",
|
||||
"ggml-alloc.c",
|
||||
"k_quants.c"
|
||||
],
|
||||
"k_quants.c",
|
||||
] + additionalSources,
|
||||
publicHeadersPath: "spm-headers",
|
||||
cSettings: [
|
||||
.unsafeFlags(["-Wno-shorten-64-to-32"]),
|
||||
.define("GGML_USE_K_QUANTS"),
|
||||
.define("GGML_USE_ACCELERATE")
|
||||
],
|
||||
] + additionalSettings,
|
||||
linkerSettings: [
|
||||
.linkedFramework("Accelerate")
|
||||
]
|
||||
),
|
||||
)
|
||||
],
|
||||
cxxLanguageStandard: .cxx11
|
||||
)
|
||||
|
|
|
@ -374,6 +374,17 @@ bool gpt_params_parse(int argc, char ** argv, gpt_params & params) {
|
|||
#else
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
} else if (arg == "--gpu-layers-draft" || arg == "-ngld" || arg == "--n-gpu-layers-draft") {
|
||||
if (++i >= argc) {
|
||||
invalid_param = true;
|
||||
break;
|
||||
}
|
||||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
params.n_gpu_layers_draft = std::stoi(argv[i]);
|
||||
#else
|
||||
fprintf(stderr, "warning: not compiled with GPU offload support, --n-gpu-layers-draft option will be ignored\n");
|
||||
fprintf(stderr, "warning: see main README.md for information on enabling GPU BLAS support\n");
|
||||
#endif
|
||||
} else if (arg == "--main-gpu" || arg == "-mg") {
|
||||
if (++i >= argc) {
|
||||
|
@ -664,6 +675,8 @@ void gpt_print_usage(int /*argc*/, char ** argv, const gpt_params & params) {
|
|||
#ifdef LLAMA_SUPPORTS_GPU_OFFLOAD
|
||||
printf(" -ngl N, --n-gpu-layers N\n");
|
||||
printf(" number of layers to store in VRAM\n");
|
||||
printf(" -ngld N, --n-gpu-layers-draft N\n");
|
||||
printf(" number of layers to store in VRAM for the draft model\n");
|
||||
printf(" -ts SPLIT --tensor-split SPLIT\n");
|
||||
printf(" how to split tensors across multiple GPUs, comma-separated list of proportions, e.g. 3,1\n");
|
||||
printf(" -mg i, --main-gpu i the GPU to use for scratch and small tensors\n");
|
||||
|
|
|
@ -38,6 +38,7 @@ struct gpt_params {
|
|||
int32_t n_draft = 16; // number of tokens to draft during speculative decoding
|
||||
int32_t n_chunks = -1; // max number of chunks to process (-1 = unlimited)
|
||||
int32_t n_gpu_layers = -1; // number of layers to store in VRAM (-1 - use default)
|
||||
int32_t n_gpu_layers_draft = -1; // number of layers to store in VRAM for the draft model (-1 - use default)
|
||||
int32_t main_gpu = 0; // the GPU that is used for scratch and small tensors
|
||||
float tensor_split[LLAMA_MAX_DEVICES] = {0}; // how split tensors should be distributed across GPUs
|
||||
int32_t n_probs = 0; // if greater than 0, output the probabilities of top n_probs tokens.
|
||||
|
|
18
convert.py
18
convert.py
|
@ -145,7 +145,6 @@ GGML_FILE_TYPE_TO_DATA_TYPE: dict[GGMLFileType, DataType] = {
|
|||
class Params:
|
||||
n_vocab: int
|
||||
n_embd: int
|
||||
n_mult: int
|
||||
n_layer: int
|
||||
n_ctx: int
|
||||
n_ff: int
|
||||
|
@ -161,15 +160,6 @@ class Params:
|
|||
# path to the directory containing the model files
|
||||
path_model: Path | None = None
|
||||
|
||||
@staticmethod
|
||||
def find_n_mult(n_ff: int, n_embd: int) -> int:
|
||||
# hardcoded magic range
|
||||
for n_mult in range(8192, 1, -1):
|
||||
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
|
||||
if calc_ff == n_ff:
|
||||
return n_mult
|
||||
raise Exception(f"failed to find n_mult for (n_ff={n_ff}, n_embd={n_embd}).")
|
||||
|
||||
@staticmethod
|
||||
def guessed(model: LazyModel) -> Params:
|
||||
# try transformer naming first
|
||||
|
@ -197,7 +187,6 @@ class Params:
|
|||
return Params(
|
||||
n_vocab = n_vocab,
|
||||
n_embd = n_embd,
|
||||
n_mult = n_mult,
|
||||
n_layer = n_layer,
|
||||
n_ctx = -1,
|
||||
n_ff = n_ff,
|
||||
|
@ -225,8 +214,6 @@ class Params:
|
|||
else:
|
||||
f_rope_scale = None
|
||||
|
||||
n_mult = Params.find_n_mult(n_ff, n_embd)
|
||||
|
||||
if "max_sequence_length" in config:
|
||||
n_ctx = config["max_sequence_length"]
|
||||
elif "max_position_embeddings" in config:
|
||||
|
@ -238,7 +225,6 @@ class Params:
|
|||
return Params(
|
||||
n_vocab = n_vocab,
|
||||
n_embd = n_embd,
|
||||
n_mult = n_mult,
|
||||
n_layer = n_layer,
|
||||
n_ctx = n_ctx,
|
||||
n_ff = n_ff,
|
||||
|
@ -250,7 +236,7 @@ class Params:
|
|||
)
|
||||
|
||||
# LLaMA v2 70B params.json
|
||||
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1
|
||||
# {"dim": 8192, "multiple_of": 4096, "ffn_dim_multiplier": 1.3, "n_heads": 64, "n_kv_heads": 8, "n_layers": 80, "norm_eps": 1e-05, "vocab_size": -1}
|
||||
@staticmethod
|
||||
def loadOriginalParamsJson(model: LazyModel, config_path: Path) -> Params:
|
||||
config = json.load(open(config_path))
|
||||
|
@ -258,7 +244,6 @@ class Params:
|
|||
n_vocab = config["vocab_size"] if "vocab_size" in config else -1
|
||||
n_embd = config["dim"]
|
||||
n_layer = config["n_layers"]
|
||||
n_mult = config["multiple_of"]
|
||||
n_ff = -1
|
||||
n_head = config["n_heads"]
|
||||
n_head_kv = config["n_kv_heads"] if "n_kv_heads" in config else n_head
|
||||
|
@ -285,7 +270,6 @@ class Params:
|
|||
return Params(
|
||||
n_vocab = n_vocab,
|
||||
n_embd = n_embd,
|
||||
n_mult = n_mult,
|
||||
n_layer = n_layer,
|
||||
n_ctx = n_ctx,
|
||||
n_ff = n_ff,
|
||||
|
|
|
@ -42,6 +42,7 @@ int main(int argc, char ** argv) {
|
|||
|
||||
// load the draft model
|
||||
params.model = params.model_draft;
|
||||
params.n_gpu_layers = params.n_gpu_layers_draft;
|
||||
std::tie(model_dft, ctx_dft) = llama_init_from_gpt_params(params);
|
||||
|
||||
// tokenize the prompt
|
||||
|
|
1666
ggml-cuda.cu
1666
ggml-cuda.cu
File diff suppressed because it is too large
Load diff
72
ggml-metal.m
72
ggml-metal.m
|
@ -63,7 +63,9 @@ struct ggml_metal_context {
|
|||
GGML_METAL_DECL_KERNEL(relu);
|
||||
GGML_METAL_DECL_KERNEL(gelu);
|
||||
GGML_METAL_DECL_KERNEL(soft_max);
|
||||
GGML_METAL_DECL_KERNEL(soft_max_4);
|
||||
GGML_METAL_DECL_KERNEL(diag_mask_inf);
|
||||
GGML_METAL_DECL_KERNEL(diag_mask_inf_8);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_f16);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_DECL_KERNEL(get_rows_q4_1);
|
||||
|
@ -77,6 +79,7 @@ struct ggml_metal_context {
|
|||
GGML_METAL_DECL_KERNEL(norm);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_f16_f32_l4);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_DECL_KERNEL(mul_mat_q8_0_f32);
|
||||
|
@ -117,14 +120,17 @@ static NSString * const msl_library_source = @"see metal.metal";
|
|||
struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
||||
metal_printf("%s: allocating\n", __func__);
|
||||
|
||||
// Show all the Metal device instances in the system
|
||||
NSArray * devices = MTLCopyAllDevices();
|
||||
id <MTLDevice> device;
|
||||
NSString * s;
|
||||
|
||||
#if TARGET_OS_OSX
|
||||
// Show all the Metal device instances in the system
|
||||
NSArray * devices = MTLCopyAllDevices();
|
||||
for (device in devices) {
|
||||
s = [device name];
|
||||
metal_printf("%s: found device: %s\n", __func__, [s UTF8String]);
|
||||
}
|
||||
#endif
|
||||
|
||||
// Pick and show default Metal device
|
||||
device = MTLCreateSystemDefaultDevice();
|
||||
|
@ -141,12 +147,20 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
|
||||
ctx->d_queue = dispatch_queue_create("llama.cpp", DISPATCH_QUEUE_CONCURRENT);
|
||||
|
||||
#if 0
|
||||
// compile from source string and show compile log
|
||||
#ifdef GGML_SWIFT
|
||||
// load the default.metallib file
|
||||
{
|
||||
NSError * error = nil;
|
||||
|
||||
ctx->library = [ctx->device newLibraryWithSource:msl_library_source options:nil error:&error];
|
||||
NSBundle * bundle = [NSBundle bundleForClass:[GGMLMetalClass class]];
|
||||
NSString * llamaBundlePath = [bundle pathForResource:@"llama_llama" ofType:@"bundle"];
|
||||
NSBundle * llamaBundle = [NSBundle bundleWithPath:llamaBundlePath];
|
||||
NSString * libPath = [llamaBundle pathForResource:@"default" ofType:@"metallib"];
|
||||
NSURL * libURL = [NSURL fileURLWithPath:libPath];
|
||||
|
||||
// Load the metallib file into a Metal library
|
||||
ctx->library = [ctx->device newLibraryWithURL:libURL error:&error];
|
||||
|
||||
if (error) {
|
||||
metal_printf("%s: error: %s\n", __func__, [[error description] UTF8String]);
|
||||
return NULL;
|
||||
|
@ -207,7 +221,9 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(relu);
|
||||
GGML_METAL_ADD_KERNEL(gelu);
|
||||
GGML_METAL_ADD_KERNEL(soft_max);
|
||||
GGML_METAL_ADD_KERNEL(soft_max_4);
|
||||
GGML_METAL_ADD_KERNEL(diag_mask_inf);
|
||||
GGML_METAL_ADD_KERNEL(diag_mask_inf_8);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_f16);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_ADD_KERNEL(get_rows_q4_1);
|
||||
|
@ -221,6 +237,7 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
GGML_METAL_ADD_KERNEL(norm);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_f16_f32_l4);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_ADD_KERNEL(mul_mat_q8_0_f32);
|
||||
|
@ -247,13 +264,15 @@ struct ggml_metal_context * ggml_metal_init(int n_cb) {
|
|||
#undef GGML_METAL_ADD_KERNEL
|
||||
}
|
||||
|
||||
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
metal_printf("%s: hasUnifiedMemory = %s\n", __func__, ctx->device.hasUnifiedMemory ? "true" : "false");
|
||||
#if TARGET_OS_OSX
|
||||
metal_printf("%s: recommendedMaxWorkingSetSize = %8.2f MB\n", __func__, ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
if (ctx->device.maxTransferRate != 0) {
|
||||
metal_printf("%s: maxTransferRate = %8.2f MB/s\n", __func__, ctx->device.maxTransferRate / 1024.0 / 1024.0);
|
||||
} else {
|
||||
metal_printf("%s: maxTransferRate = built-in GPU\n", __func__);
|
||||
}
|
||||
#endif
|
||||
|
||||
return ctx;
|
||||
}
|
||||
|
@ -273,7 +292,8 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|||
GGML_METAL_DEL_KERNEL(relu);
|
||||
GGML_METAL_DEL_KERNEL(gelu);
|
||||
GGML_METAL_DEL_KERNEL(soft_max);
|
||||
GGML_METAL_DEL_KERNEL(diag_mask_inf);
|
||||
GGML_METAL_DEL_KERNEL(soft_max_4);
|
||||
GGML_METAL_DEL_KERNEL(diag_mask_inf_8);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_f16);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q4_0);
|
||||
GGML_METAL_DEL_KERNEL(get_rows_q4_1);
|
||||
|
@ -287,6 +307,7 @@ void ggml_metal_free(struct ggml_metal_context * ctx) {
|
|||
GGML_METAL_DEL_KERNEL(norm);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_1row);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_f16_f32_l4);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_0_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q4_1_f32);
|
||||
GGML_METAL_DEL_KERNEL(mul_mat_q8_0_f32);
|
||||
|
@ -454,6 +475,7 @@ bool ggml_metal_add_buffer(
|
|||
}
|
||||
}
|
||||
|
||||
#if TARGET_OS_OSX
|
||||
metal_printf(", (%8.2f / %8.2f)",
|
||||
ctx->device.currentAllocatedSize / 1024.0 / 1024.0,
|
||||
ctx->device.recommendedMaxWorkingSetSize / 1024.0 / 1024.0);
|
||||
|
@ -463,6 +485,9 @@ bool ggml_metal_add_buffer(
|
|||
} else {
|
||||
metal_printf("\n");
|
||||
}
|
||||
#else
|
||||
metal_printf(", (%8.2f)\n", ctx->device.currentAllocatedSize / 1024.0 / 1024.0);
|
||||
#endif
|
||||
}
|
||||
|
||||
return true;
|
||||
|
@ -750,7 +775,7 @@ void ggml_metal_graph_compute(
|
|||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&scale length:sizeof(scale) atIndex:2];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
const int64_t n = ggml_nelements(dst)/4;
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
|
@ -762,7 +787,7 @@ void ggml_metal_graph_compute(
|
|||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
const int64_t n = ggml_nelements(dst)/4;
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
|
@ -782,7 +807,7 @@ void ggml_metal_graph_compute(
|
|||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
|
||||
const int64_t n = ggml_nelements(dst);
|
||||
const int64_t n = ggml_nelements(dst)/4;
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(n, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
} break;
|
||||
|
@ -796,13 +821,16 @@ void ggml_metal_graph_compute(
|
|||
{
|
||||
const int nth = 32;
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
||||
if (ne00%4 == 0) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_soft_max_4];
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_soft_max];
|
||||
}
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
[encoder setBytes:&ne02 length:sizeof(ne02) atIndex:4];
|
||||
[encoder setThreadgroupMemoryLength:nth*sizeof(float) atIndex:0];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ne02, ne03) threadsPerThreadgroup:MTLSizeMake(nth, 1, 1)];
|
||||
} break;
|
||||
|
@ -810,14 +838,23 @@ void ggml_metal_graph_compute(
|
|||
{
|
||||
const int n_past = ((int32_t *)(dst->op_params))[0];
|
||||
|
||||
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
||||
if (ne00%8 == 0) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf_8];
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_diag_mask_inf];
|
||||
}
|
||||
[encoder setBuffer:id_src0 offset:offs_src0 atIndex:0];
|
||||
[encoder setBuffer:id_dst offset:offs_dst atIndex:1];
|
||||
[encoder setBytes:&ne00 length:sizeof(ne00) atIndex:2];
|
||||
[encoder setBytes:&ne01 length:sizeof(ne01) atIndex:3];
|
||||
[encoder setBytes:&n_past length:sizeof(int) atIndex:4];
|
||||
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
if (ne00%8 == 0) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne00*ne01*ne02/8, 1, 1) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
}
|
||||
else {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne00, ne01, ne02) threadsPerThreadgroup:MTLSizeMake(1, 1, 1)];
|
||||
}
|
||||
} break;
|
||||
case GGML_OP_MUL_MAT:
|
||||
{
|
||||
|
@ -864,6 +901,7 @@ void ggml_metal_graph_compute(
|
|||
} else {
|
||||
int nth0 = 32;
|
||||
int nth1 = 1;
|
||||
int nrows = 1;
|
||||
|
||||
// use custom matrix x vector kernel
|
||||
switch (src0t) {
|
||||
|
@ -873,8 +911,12 @@ void ggml_metal_graph_compute(
|
|||
nth1 = 1;
|
||||
if (ne11 * ne12 < 4) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_1row];
|
||||
} else if (ne00 >= 128 && ne01 >= 8 && ne00%4 == 0) {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32_l4];
|
||||
nrows = ne11;
|
||||
} else {
|
||||
[encoder setComputePipelineState:ctx->pipeline_mul_mat_f16_f32];
|
||||
nrows = 4;
|
||||
}
|
||||
} break;
|
||||
case GGML_TYPE_Q4_0:
|
||||
|
@ -995,7 +1037,7 @@ void ggml_metal_graph_compute(
|
|||
else if (src0t == GGML_TYPE_Q6_K) {
|
||||
[encoder dispatchThreadgroups:MTLSizeMake((ne01 + 1)/2, ne11, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
} else {
|
||||
int64_t ny = (ne11 + 3)/4;
|
||||
int64_t ny = (ne11 + nrows - 1)/nrows;
|
||||
[encoder dispatchThreadgroups:MTLSizeMake(ne01, ny, ne12) threadsPerThreadgroup:MTLSizeMake(nth0, nth1, 1)];
|
||||
}
|
||||
}
|
||||
|
|
281
ggml-metal.metal
281
ggml-metal.metal
|
@ -63,18 +63,18 @@ kernel void kernel_mul_row(
|
|||
}
|
||||
|
||||
kernel void kernel_scale(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
device const float4 * src0,
|
||||
device float4 * dst,
|
||||
constant float & scale,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
dst[tpig] = src0[tpig] * scale;
|
||||
}
|
||||
|
||||
kernel void kernel_silu(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
device const float4 * src0,
|
||||
device float4 * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
float x = src0[tpig];
|
||||
device const float4 & x = src0[tpig];
|
||||
dst[tpig] = x / (1.0f + exp(-x));
|
||||
}
|
||||
|
||||
|
@ -89,10 +89,10 @@ constant float GELU_COEF_A = 0.044715f;
|
|||
constant float SQRT_2_OVER_PI = 0.79788456080286535587989211986876f;
|
||||
|
||||
kernel void kernel_gelu(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
device const float4 * src0,
|
||||
device float4 * dst,
|
||||
uint tpig[[thread_position_in_grid]]) {
|
||||
float x = src0[tpig];
|
||||
device const float4 & x = src0[tpig];
|
||||
|
||||
// BEWARE !!!
|
||||
// Simply using "tanh" instead of "precise::tanh" will sometimes results in NaNs!
|
||||
|
@ -107,7 +107,6 @@ kernel void kernel_soft_max(
|
|||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
threadgroup float * buf [[threadgroup(0)]],
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
|
@ -119,64 +118,70 @@ kernel void kernel_soft_max(
|
|||
device float * pdst = dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00;
|
||||
|
||||
// parallel max
|
||||
buf[tpitg[0]] = -INFINITY;
|
||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||
buf[tpitg[0]] = MAX(buf[tpitg[0]], psrc0[i00]);
|
||||
float lmax = psrc0[tpitg[0]];
|
||||
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||
lmax = MAX(lmax, psrc0[i00]);
|
||||
}
|
||||
|
||||
// reduce
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
for (uint i = ntg[0]/2; i > 0; i /= 2) {
|
||||
if (tpitg[0] < i) {
|
||||
buf[tpitg[0]] = MAX(buf[tpitg[0]], buf[tpitg[0] + i]);
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
//// broadcast - not needed. There is a threadgroup barrier above in the last iteration of
|
||||
// the loop, and when that is done, buf[0] has the correct (synchronized) value
|
||||
//if (tpitg[0] == 0) {
|
||||
// buf[0] = buf[0];
|
||||
//}
|
||||
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
const float max = buf[0];
|
||||
const float max = simd_max(lmax);
|
||||
|
||||
// parallel sum
|
||||
buf[tpitg[0]] = 0.0f;
|
||||
float lsum = 0.0f;
|
||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||
const float exp_psrc0 = exp(psrc0[i00] - max);
|
||||
buf[tpitg[0]] += exp_psrc0;
|
||||
lsum += exp_psrc0;
|
||||
// Remember the result of exp here. exp is expensive, so we really do not
|
||||
// whish to compute it twice.
|
||||
pdst[i00] = exp_psrc0;
|
||||
}
|
||||
|
||||
// reduce
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
for (uint i = ntg[0]/2; i > 0; i /= 2) {
|
||||
if (tpitg[0] < i) {
|
||||
buf[tpitg[0]] += buf[tpitg[0] + i];
|
||||
}
|
||||
threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
}
|
||||
|
||||
// broadcast - not needed, see above
|
||||
//// broadcast
|
||||
//if (tpitg[0] == 0) {
|
||||
// buf[0] = buf[0];
|
||||
//}
|
||||
|
||||
//threadgroup_barrier(mem_flags::mem_threadgroup);
|
||||
|
||||
const float sum = buf[0];
|
||||
const float sum = simd_sum(lsum);
|
||||
|
||||
for (int i00 = tpitg[0]; i00 < ne00; i00 += ntg[0]) {
|
||||
pdst[i00] /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_soft_max_4(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint3 tpitg[[thread_position_in_threadgroup]],
|
||||
uint3 ntg[[threads_per_threadgroup]]) {
|
||||
const int64_t i03 = tgpig[2];
|
||||
const int64_t i02 = tgpig[1];
|
||||
const int64_t i01 = tgpig[0];
|
||||
|
||||
device const float4 * psrc4 = (device const float4 *)(src0 + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
device float4 * pdst4 = (device float4 *)(dst + i03*ne02*ne01*ne00 + i02*ne01*ne00 + i01*ne00);
|
||||
|
||||
// parallel max
|
||||
float4 lmax4 = psrc4[tpitg[0]];
|
||||
for (int i00 = tpitg[0] + ntg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
||||
lmax4 = fmax(lmax4, psrc4[i00]);
|
||||
}
|
||||
float lmax = MAX(MAX(lmax4[0], lmax4[1]), MAX(lmax4[2], lmax4[3]));
|
||||
|
||||
const float max = simd_max(lmax);
|
||||
|
||||
// parallel sum
|
||||
float4 lsum4 = 0.0f;
|
||||
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
||||
const float4 exp_psrc4 = exp(psrc4[i00] - max);
|
||||
lsum4 += exp_psrc4;
|
||||
pdst4[i00] = exp_psrc4;
|
||||
}
|
||||
float lsum = lsum4[0] + lsum4[1] + lsum4[2] + lsum4[3];
|
||||
|
||||
const float sum = simd_sum(lsum);
|
||||
|
||||
for (int i00 = tpitg[0]; i00 < ne00/4; i00 += ntg[0]) {
|
||||
pdst4[i00] /= sum;
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_diag_mask_inf(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
|
@ -192,6 +197,33 @@ kernel void kernel_diag_mask_inf(
|
|||
dst[i02*ne01*ne00 + i01*ne00 + i00] = -INFINITY;
|
||||
} else {
|
||||
dst[i02*ne01*ne00 + i01*ne00 + i00] = src0[i02*ne01*ne00 + i01*ne00 + i00];
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_diag_mask_inf_8(
|
||||
device const float4 * src0,
|
||||
device float4 * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int & n_past,
|
||||
uint3 tpig[[thread_position_in_grid]]) {
|
||||
|
||||
const int64_t i = 2*tpig[0];
|
||||
|
||||
dst[i+0] = src0[i+0];
|
||||
dst[i+1] = src0[i+1];
|
||||
int64_t i4 = 4*i;
|
||||
const int64_t i02 = i4/(ne00*ne01); i4 -= i02*ne00*ne01;
|
||||
const int64_t i01 = i4/(ne00); i4 -= i01*ne00;
|
||||
const int64_t i00 = i4;
|
||||
for (int k = 3; k >= 0; --k) {
|
||||
if (i00 + 4 + k <= n_past + i01) {
|
||||
break;
|
||||
}
|
||||
dst[i+1][k] = -INFINITY;
|
||||
if (i00 + k > n_past + i01) {
|
||||
dst[i][k] = -INFINITY;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -616,6 +648,49 @@ kernel void kernel_mul_mat_f16_f32(
|
|||
}
|
||||
}
|
||||
|
||||
// Assumes row size (ne00) is a multiple of 4
|
||||
kernel void kernel_mul_mat_f16_f32_l4(
|
||||
device const char * src0,
|
||||
device const char * src1,
|
||||
device float * dst,
|
||||
constant int64_t & ne00,
|
||||
constant int64_t & ne01,
|
||||
constant int64_t & ne02,
|
||||
constant uint64_t & nb00,
|
||||
constant uint64_t & nb01,
|
||||
constant uint64_t & nb02,
|
||||
constant int64_t & ne10,
|
||||
constant int64_t & ne11,
|
||||
constant int64_t & ne12,
|
||||
constant uint64_t & nb10,
|
||||
constant uint64_t & nb11,
|
||||
constant uint64_t & nb12,
|
||||
constant int64_t & ne0,
|
||||
constant int64_t & ne1,
|
||||
uint3 tgpig[[threadgroup_position_in_grid]],
|
||||
uint tiisg[[thread_index_in_simdgroup]]) {
|
||||
|
||||
const int nrows = ne11;
|
||||
const int64_t r0 = tgpig.x;
|
||||
const int64_t im = tgpig.z;
|
||||
|
||||
device const half4 * x4 = (device const half4 *) (src0 + r0*nb01 + im/(ne12/ne02)*nb02);
|
||||
|
||||
for (int r1 = 0; r1 < nrows; ++r1) {
|
||||
device const float4 * y4 = (device const float4 *) (src1 + r1*nb11 + im*nb12);
|
||||
|
||||
float sumf = 0;
|
||||
for (int i = tiisg; i < ne00/4; i += 32) {
|
||||
for (int k = 0; k < 4; ++k) sumf += (float) x4[i][k] * y4[i][k];
|
||||
}
|
||||
|
||||
float all_sum = simd_sum(sumf);
|
||||
if (tiisg == 0) {
|
||||
dst[im*ne1*ne0 + r1*ne0 + r0] = all_sum;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
kernel void kernel_alibi_f32(
|
||||
device const float * src0,
|
||||
device float * dst,
|
||||
|
@ -1800,29 +1875,34 @@ void dequantize_f16(device const half4x4 * src, short il, thread type4x4 & reg)
|
|||
|
||||
template <typename type4x4>
|
||||
void dequantize_q4_0(device const block_q4_0 *xb, short il, thread type4x4 & reg) {
|
||||
|
||||
device const uint16_t * qs = ((device const uint16_t *)xb + 1);
|
||||
const half d = il ? (xb->d / 16.h) : xb->d;
|
||||
const half m = il ? ( -8.h * 16.h) : -8.h;
|
||||
const float d1 = il ? (xb->d / 16.h) : xb->d;
|
||||
const float d2 = d1 / 256.f;
|
||||
const float md = -8.h * xb->d;
|
||||
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
||||
const ushort mask1 = il ? 0xF000 : 0x0F00;
|
||||
const ushort mask1 = mask0 << 8;
|
||||
|
||||
for (int i=0;i<8;i++) {
|
||||
reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) + m) * d;
|
||||
reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) + m) * d;
|
||||
reg[i/2][2*(i%2)+0] = d1 * (qs[i] & mask0) + md;
|
||||
reg[i/2][2*(i%2)+1] = d2 * (qs[i] & mask1) + md;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q4_1(device const block_q4_1 *xb, short il, thread type4x4 & reg) {
|
||||
|
||||
device const uint16_t * qs = ((device const uint16_t *)xb + 2);
|
||||
const half d = il ? (xb->d / 16.h) : xb->d;
|
||||
const half m = xb->m;
|
||||
const float d1 = il ? (xb->d / 16.h) : xb->d;
|
||||
const float d2 = d1 / 256.f;
|
||||
const float m = xb->m;
|
||||
const ushort mask0 = il ? 0x00F0 : 0x000F;
|
||||
const ushort mask1 = il ? 0xF000 : 0x0F00;
|
||||
const ushort mask1 = mask0 << 8;
|
||||
|
||||
for (int i=0;i<8;i++) {
|
||||
reg[i/2][2*(i%2)] = (((qs[i] & mask0) ) * d) + m;
|
||||
reg[i/2][2*(i%2)+1] = (((qs[i] & mask1) >> 8) * d) + m;
|
||||
reg[i/2][2*(i%2)+0] = ((qs[i] & mask0) * d1) + m;
|
||||
reg[i/2][2*(i%2)+1] = ((qs[i] & mask1) * d2) + m;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -1858,7 +1938,7 @@ void dequantize_q2_K(device const block_q2_K *xb, short il, thread type4x4 & reg
|
|||
|
||||
template <typename type4x4>
|
||||
void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg) {
|
||||
const float d_all = (float)(xb->d);
|
||||
const half d_all = xb->d;
|
||||
device const uint8_t * q = (device const uint8_t *)xb->qs;
|
||||
device const uint8_t * h = (device const uint8_t *)xb->hmask;
|
||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||
|
@ -1871,17 +1951,20 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
|
|||
((il/4)>0 ? 12 : 3);
|
||||
uint16_t kmask2 = il/8 ? 0xF0 : 0x0F;
|
||||
uint16_t scale_2 = scales[il%8], scale_1 = scales[8 + il%4];
|
||||
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2) : \
|
||||
(scale_2&kmask2) | ((scale_1&kmask1) << 4);
|
||||
float dl = il<8 ? d_all * (dl_int - 32.f) : d_all * (dl_int / 16.f - 32.f);
|
||||
int16_t dl_int = (il/4)&1 ? (scale_2&kmask2) | ((scale_1&kmask1) << 2)
|
||||
: (scale_2&kmask2) | ((scale_1&kmask1) << 4);
|
||||
half dl = il<8 ? d_all * (dl_int - 32.h) : d_all * (dl_int / 16.h - 32.h);
|
||||
const half ml = 4.h * dl;
|
||||
|
||||
il = (il/2)%4;
|
||||
float coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
||||
uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
il = (il/2) & 3;
|
||||
const half coef = il>1 ? (il>2 ? 1/64.h : 1/16.h) : (il>0 ? 1/4.h : 1.h);
|
||||
const uint8_t mask = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
dl *= coef;
|
||||
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = coef * dl * ((q[i] & mask) - ((h[i] & m) ? 0 : 4.f/coef));
|
||||
reg[i/4][i%4] = dl * (q[i] & mask) - (h[i] & m ? 0 : ml);
|
||||
}
|
||||
|
||||
#else
|
||||
float kcoef = il&1 ? 1.f/16.f : 1.f;
|
||||
uint16_t kmask = il&1 ? 0xF0 : 0x0F;
|
||||
|
@ -1895,31 +1978,37 @@ void dequantize_q3_K(device const block_q3_K *xb, short il, thread type4x4 & reg
|
|||
#endif
|
||||
}
|
||||
|
||||
static inline uchar2 get_scale_min_k4_just2(int j, int k, device const uchar * q) {
|
||||
return j < 4 ? uchar2{uchar(q[j+0+k] & 63), uchar(q[j+4+k] & 63)}
|
||||
: uchar2{uchar((q[j+4+k] & 0xF) | ((q[j-4+k] & 0xc0) >> 2)), uchar((q[j+4+k] >> 4) | ((q[j-0+k] & 0xc0) >> 2))};
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
void dequantize_q4_K(device const block_q4_K *xb, short il, thread type4x4 & reg) {
|
||||
device const uint8_t * q = xb->qs;
|
||||
device const uchar * q = xb->qs;
|
||||
|
||||
#if QK_K == 256
|
||||
const float d = (float)(xb->d);
|
||||
const float min = (float)(xb->dmin);
|
||||
short is = (il/4) * 2;
|
||||
q = q + (il/4) * 32 + 16 * (il&1);
|
||||
il = il%4;
|
||||
const uchar4 sc = get_scale_min_k4(is, xb->scales);
|
||||
const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h;
|
||||
const float ml = il<2 ? min * sc[1] : min * sc[3];
|
||||
il = il & 3;
|
||||
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
|
||||
const half d = il < 2 ? xb->d : xb->d / 16.h;
|
||||
const half min = xb->dmin;
|
||||
const half dl = d * sc[0];
|
||||
const half ml = min * sc[1];
|
||||
#else
|
||||
q = q + 16 * (il&1);
|
||||
device const uint8_t * s = xb->scales;
|
||||
device const half2 * dh = (device const half2 *)xb->d;
|
||||
const float2 d = (float2)dh[0];
|
||||
const float dl = il<2 ? d[0] * (s[0]&0xF) : d[0] * (s[1]&0xF)/16.h;
|
||||
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1 ]* (s[1]>>4);
|
||||
const float ml = il<2 ? d[1] * (s[0]>>4) : d[1] * (s[1]>>4);
|
||||
#endif
|
||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = dl * (q[i] & mask) - ml;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
template <typename type4x4>
|
||||
|
@ -1928,19 +2017,19 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
|||
device const uint8_t * qh = xb->qh;
|
||||
|
||||
#if QK_K == 256
|
||||
const float d = (float)(xb->d);
|
||||
const float min = (float)(xb->dmin);
|
||||
short is = (il/4) * 2;
|
||||
q = q + 32 * (il/4) + 16 * (il&1);
|
||||
qh = qh + 16 * (il&1);
|
||||
uint8_t ul = 1 << (il/2);
|
||||
il = il%4;
|
||||
const uchar4 sc = get_scale_min_k4(is, xb->scales);
|
||||
const float dl = il<2 ? d * sc[0] : d * sc[2]/16.h;
|
||||
const float ml = il<2 ? min * sc[1] : min * sc[3];
|
||||
il = il & 3;
|
||||
const uchar2 sc = get_scale_min_k4_just2(is, il/2, xb->scales);
|
||||
const half d = il < 2 ? xb->d : xb->d / 16.h;
|
||||
const half min = xb->dmin;
|
||||
const half dl = d * sc[0];
|
||||
const half ml = min * sc[1];
|
||||
|
||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||
const float qh_val = il<2 ? 16.f : 256.f;
|
||||
const ushort mask = il<2 ? 0x0F : 0xF0;
|
||||
const half qh_val = il<2 ? 16.h : 256.h;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
reg[i/4][i%4] = dl * ((q[i] & mask) + (qh[i] & ul ? qh_val : 0)) - ml;
|
||||
}
|
||||
|
@ -1959,7 +2048,7 @@ void dequantize_q5_K(device const block_q5_K *xb, short il, thread type4x4 & reg
|
|||
|
||||
template <typename type4x4>
|
||||
void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg) {
|
||||
const float d_all = (float)(xb->d);
|
||||
const half d_all = xb->d;
|
||||
device const uint8_t * ql = (device const uint8_t *)xb->ql;
|
||||
device const uint8_t * qh = (device const uint8_t *)xb->qh;
|
||||
device const int8_t * scales = (device const int8_t *)xb->scales;
|
||||
|
@ -1967,19 +2056,21 @@ void dequantize_q6_K(device const block_q6_K *xb, short il, thread type4x4 & reg
|
|||
#if QK_K == 256
|
||||
ql = ql + 64*(il/8) + 32*((il/2)&1) + 16*(il&1);
|
||||
qh = qh + 32*(il/8) + 16*(il&1);
|
||||
float sc = scales[(il%2) + 2 * ((il/2))];
|
||||
il = (il/2)%4;
|
||||
half sc = scales[(il%2) + 2 * ((il/2))];
|
||||
il = (il/2) & 3;
|
||||
#else
|
||||
ql = ql + 16 * (il&1);
|
||||
float sc = scales[il];
|
||||
half sc = scales[il];
|
||||
#endif
|
||||
const uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
const uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
||||
const half coef = il>1 ? 1.f/16.h : 1.h;
|
||||
const half ml = d_all * sc * 32.h;
|
||||
const half dl = d_all * sc * coef;
|
||||
for (int i = 0; i < 16; ++i) {
|
||||
uint16_t kmask1 = il>1 ? (il>2 ? 192 : 48) : (il>0 ? 12 : 3);
|
||||
uint16_t kmask2 = il>1 ? 0xF0 : 0x0F;
|
||||
const float coef = il>1 ? 1.f/16.f : 1.f;
|
||||
float q = il&1 ? ((ql[i]&kmask2)|((qh[i]&kmask1)<<2)) - 32.f/coef : \
|
||||
((ql[i]&kmask2)|((qh[i]&kmask1)<<4)) - 32.f/coef;
|
||||
reg[i/4][i%4] = d_all * sc * q * coef;
|
||||
const half q = il&1 ? ((ql[i] & kmask2) | ((qh[i] & kmask1) << 2))
|
||||
: ((ql[i] & kmask2) | ((qh[i] & kmask1) << 4));
|
||||
reg[i/4][i%4] = dl * q - ml;
|
||||
}
|
||||
}
|
||||
|
||||
|
|
2
ggml.c
2
ggml.c
|
@ -283,7 +283,7 @@ typedef double ggml_float;
|
|||
// 16-bit float
|
||||
// on Arm, we use __fp16
|
||||
// on x86, we use uint16_t
|
||||
#ifdef __ARM_NEON
|
||||
#if defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
|
||||
// if YCM cannot find <arm_neon.h>, make a symbolic link to it, for example:
|
||||
//
|
||||
|
|
2
ggml.h
2
ggml.h
|
@ -270,7 +270,7 @@ extern "C" {
|
|||
|
||||
#if defined(__ARM_NEON) && defined(__CUDACC__)
|
||||
typedef half ggml_fp16_t;
|
||||
#elif defined(__ARM_NEON)
|
||||
#elif defined(__ARM_NEON) && !defined(_MSC_VER)
|
||||
typedef __fp16 ggml_fp16_t;
|
||||
#else
|
||||
typedef uint16_t ggml_fp16_t;
|
||||
|
|
|
@ -2609,7 +2609,10 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
|||
|
||||
memcpy(utmp, x[i].scales, 12);
|
||||
|
||||
const uint32x2_t mins8 = {utmp[1] & kmask1, ((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4)};
|
||||
uint32x2_t mins8 = { 0 };
|
||||
mins8 = vset_lane_u32(utmp[1] & kmask1, mins8, 0);
|
||||
mins8 = vset_lane_u32(((utmp[2] >> 4) & kmask2) | (((utmp[1] >> 6) & kmask3) << 4), mins8, 1);
|
||||
|
||||
utmp[1] = (utmp[2] & kmask2) | (((utmp[0] >> 6) & kmask3) << 4);
|
||||
utmp[0] &= kmask1;
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue