Merge branch 'master' into phi-1

This commit is contained in:
teleprint-me 2023-12-27 23:37:04 -05:00
commit 5d546a3c98
No known key found for this signature in database
GPG key ID: B0D11345E65C4D48
15 changed files with 857 additions and 605 deletions

View file

@ -133,6 +133,7 @@ as the main playground for developing new features for the [ggml](https://github
- [withcatai/catai](https://github.com/withcatai/catai) - [withcatai/catai](https://github.com/withcatai/catai)
- [semperai/amica](https://github.com/semperai/amica) - [semperai/amica](https://github.com/semperai/amica)
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat) - [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
--- ---

116
awq-py/README.md Normal file
View file

@ -0,0 +1,116 @@
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)]
**Supported models:**
- [X] LLaMA
- [x] LLaMA 2
- [X] MPT
- [X] Mistral AI v0.1
- [ ] Bloom
- [ ] Mixtral MoE
**TODO:**
- [x] Update version work with both MPT and MPT-AWQ model
- [ ] Add OPT model
- [ ] Add Bloom model
- [ ] Add Mixtral MoE
- [ ] Support w3, w2
## Contents
- [Install](##Install)
- [Convert](##Convert)
- [Quantize](##Quantize)
- [Test](##Test)
- [Benchmark](##Benchmark)
- [Results](##Results)
## Install
Install requirements
```bash
pip install -r requirements.txt
```
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
```bash
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
```
## Convert
Example for llama model
```bash
# For llama7b and llama2 models
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
# For mistral and mpt models
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
```
## Quantize
```bash
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
```
## Test
```bash
# For all models.
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
```
## Benchmark
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
```bash
# For llama and llama2, and mistral models.
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
```
## Results
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k
### Llama 7B (Build with OpenBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|-----------:|--------------|-------:|-------:|-------:|-------:|
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
### Llama2 7B (Build with CuBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|------------:|--------------|-------:|-------:|-------:|-------:|
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
### Mistral 7B v0.1 (Build with CuBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|-------------:|--------------|-------:|-------:|-------:|-------:|
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G |
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
### MPT 7B (Build with OpenBLAS)
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|---------:|--------------|-------:|-------:|-------:|--------:|
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873|
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G |
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |

254
awq-py/awq/apply_awq.py Normal file
View file

@ -0,0 +1,254 @@
"""
Implements the AWQ for llama.cpp use cases.
Original paper: https://arxiv.org/abs/2306.00978
This code is based on versions of the AWQ implementation found in the following repositories:
* https://github.com/mit-han-lab/llm-awq
* https://github.com/casper-hansen/AutoAWQ
"""
import os
import torch
import torch.nn as nn
from transformers import AutoModelForCausalLM, AutoConfig
from transformers.models.bloom.modeling_bloom import BloomGelu
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers.activations import GELUActivation
class ScaledActivation(nn.Module):
"""
ScaledActivation module wraps an existing activation function and applies a
scale factor to its output.
Args:
module (nn.Module): The activation function to be scaled.
scales (torch.Tensor): A tensor of size (num_features,) containing the initial
scale factors for each feature.
Returns:
torch.Tensor: The scaled output of the activation function.
"""
def __init__(self, module, scales):
super().__init__()
self.act = module
self.scales = nn.Parameter(scales.data)
def forward(self, x):
return self.act(x) / self.scales.view(1, 1, -1).to(x.device)
def set_op_by_name(layer, name, new_module):
"""
Set the new module for given module's name.
Args:
layer (nn.Module): The layer in which to replace the submodule.
name (str): The path to the submodule to be replaced, using dot notation
to access nested modules.
new_module (nn.Module): The new module to replace the existing one.
"""
levels = name.split(".")
if len(levels) > 1:
mod_ = layer
for l_idx in range(len(levels) - 1):
if levels[l_idx].isdigit():
mod_ = mod_[int(levels[l_idx])]
else:
mod_ = getattr(mod_, levels[l_idx])
setattr(mod_, levels[-1], new_module)
else:
setattr(layer, name, new_module)
def get_op_by_name(module, op_name):
"""
Retrieves a submodule within a given layer based on its name.
Args:
module (nn.Module): The layer containing the submodule to find.
op_name (str): The name of the submodule.
Returns:
nn.Module: The requested submodule found within the given layer.
Raises:
ValueError: If the specified submodule cannot be found within the layer.
"""
for name, m in module.named_modules():
if name == op_name:
return m
raise ValueError(f"Cannot find op {op_name} in module {module}")
@torch.no_grad()
def scale_ln_fcs(ln, fcs, scales):
"""
Scales the weights of a LayerNorm and a list of fully-connected layers proportionally.
Args:
ln (nn.LayerNorm): The LayerNorm module to be scaled.
fcs (List[nn.Linear]): A list of fully-connected layers to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
"""
if not isinstance(fcs, list):
fcs = [fcs]
scales = scales.to(ln.weight.device)
ln.weight.div_(scales)
if hasattr(ln, "bias") and ln.bias is not None:
ln.bias.div_(scales)
for fc in fcs:
fc.weight.mul_(scales.view(1, -1))
for p in ln.parameters():
assert torch.isnan(p).sum() == 0
for fc in fcs:
for p in fc.parameters():
assert torch.isnan(p).sum() == 0
@torch.no_grad()
def scale_fc_fc(fc1, fc2, scales):
"""
Scales the weights of two fully-connected layers in a specific pattern.
Args:
fc1 (nn.Linear): The first fully-connected layer to be scaled.
fc2 (nn.Linear): The second fully-connected layer to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
"""
assert isinstance(fc1, nn.Linear)
assert isinstance(fc2, nn.Linear)
scales = scales.to(fc1.weight.device)
fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
if fc1.bias is not None:
fc1.bias.div_(scales.view(-1))
fc2.weight.mul_(scales.view(1, -1))
for p in fc1.parameters():
assert torch.isnan(p).sum() == 0
for p in fc2.parameters():
assert torch.isnan(p).sum() == 0
@torch.no_grad()
def scale_gelu_fc(gelu, fc, scales):
"""
Scales the weight of a GELU activation and a fully-connected layer proportionally.
Args:
gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled.
fc (nn.Linear): The fully-connected layer to be scaled.
scales (torch.Tensor): A 1D tensor of size (num_features,).
Raises:
TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`.
TypeError: If the `fc` module is not of type `nn.Linear`.
"""
assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation))
assert isinstance(fc, nn.Linear)
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
for p in fc.parameters():
assert torch.isnan(p).sum() == 0
def apply_scale(module, scales_list, input_feat_dict=None):
"""
Applies different scaling strategies to layers based on their type and hierarchy within a given module.
Args:
module (nn.Module): The module containing the layers to be scaled.
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
* prev_op_name (str): The name of the preceding operation or module,
relative to which the layers to be scaled are located.
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding
input features (optional).
"""
for prev_op_name, layer_names, scales in scales_list:
prev_op = get_op_by_name(module, prev_op_name)
layers = [get_op_by_name(module, name) for name in layer_names]
prev_op.cuda()
for layer in layers:
layer.cuda()
scales.cuda()
if isinstance(prev_op, nn.Linear):
assert len(layers) == 1
scale_fc_fc(prev_op, layers[0], scales)
elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower():
scale_ln_fcs(prev_op, layers, scales)
elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)):
new_module = ScaledActivation(prev_op, scales)
set_op_by_name(module, prev_op_name, new_module)
scale_gelu_fc(prev_op, layers[0], scales)
else:
raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!")
# apply the scaling to input feat if given; prepare it for clipping
if input_feat_dict is not None:
for layer_name in layer_names:
inp = input_feat_dict[layer_name]
inp.div_(scales.view(1, -1).to(inp.device))
prev_op.cpu()
for layer in layers:
layer.cpu()
scales.cpu()
@torch.no_grad()
def apply_clip(module, clip_list):
"""
Applies element-wise clipping to the weight of a specific layer within a given module.
Args:
module (nn.Module): The module containing the layer to be clipped.
clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing:
* name (str): The name of the layer to be clipped, relative to the root of the module.
* max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight.
"""
for name, max_val in clip_list:
layer = get_op_by_name(module, name)
layer.cuda()
max_val = max_val.to(layer.weight.device)
org_shape = layer.weight.shape
layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
layer.weight.data = layer.weight.data.reshape(org_shape)
layer.cpu()
def add_scale_weights(model_path, scale_path, tmp_path):
"""
Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
including scaling factors and clipping bounds.
Args:
model_path (str): Path to the pre-trained model to be equipped with AWQ.
scale_path (str): Path to the AWQ scale factors (.pt file).
tmp_path (str): Path to the temporary directory where the equipped model will be saved.
"""
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
model_path, config=config, trust_remote_code=True
)
model.eval()
awq_results = torch.load(str(scale_path), map_location="cpu")
apply_scale(model, awq_results["scale"])
apply_clip(model, awq_results["clip"])
model.save_pretrained(str(tmp_path))
os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}")

2
awq-py/requirements.txt Normal file
View file

@ -0,0 +1,2 @@
torch>=2.0.0
transformers>=4.32.0

View file

@ -45,7 +45,7 @@ class Model:
self.part_names = self._get_part_names() self.part_names = self._get_part_names()
self.hparams = Model.load_hparams(self.dir_model) self.hparams = Model.load_hparams(self.dir_model)
self.model_arch = self._get_model_architecture() self.model_arch = self._get_model_architecture()
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess) self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
def set_vocab(self): def set_vocab(self):
self._set_vocab_gpt2() self._set_vocab_gpt2()
@ -58,7 +58,7 @@ class Model:
from safetensors import safe_open from safetensors import safe_open
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu")) ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
else: else:
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True)) ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", weights_only=True))
with ctx as model_part: with ctx as model_part:
for name in model_part.keys(): for name in model_part.keys():
@ -463,6 +463,10 @@ class MPTModel(Model):
data = data_torch.squeeze().numpy() data = data_torch.squeeze().numpy()
# map tensor names # map tensor names
if "scales" in name:
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
new_name = new_name.replace("scales", "act.scales")
else:
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias")) new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
if new_name is None: if new_name is None:
print(f"Can not map tensor {name!r}") print(f"Can not map tensor {name!r}")
@ -1094,6 +1098,9 @@ def parse_args() -> argparse.Namespace:
"--vocab-only", action="store_true", "--vocab-only", action="store_true",
help="extract only the vocab", help="extract only the vocab",
) )
parser.add_argument(
"--awq-path", type=Path, default=None,
help="Path to scale awq cache file")
parser.add_argument( parser.add_argument(
"--outfile", type=Path, "--outfile", type=Path,
help="path to write to; default: based on input", help="path to write to; default: based on input",
@ -1114,6 +1121,20 @@ def parse_args() -> argparse.Namespace:
args = parse_args() args = parse_args()
dir_model = args.model dir_model = args.model
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model"
dir_model = tmp_model_path
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
if not dir_model.is_dir(): if not dir_model.is_dir():
print(f'Error: {args.model} is not a directory', file=sys.stderr) print(f'Error: {args.model} is not a directory', file=sys.stderr)
sys.exit(1) sys.exit(1)

View file

@ -357,6 +357,7 @@ class VocabLoader:
for tok in self.tokenizer.all_special_tokens for tok in self.tokenizer.all_special_tokens
} }
self.special_ids: set[int] = set(self.tokenizer.all_special_ids) self.special_ids: set[int] = set(self.tokenizer.all_special_ids)
self.reverse_vocab = {id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()}
self.vocab_size_base: int = self.tokenizer.vocab_size self.vocab_size_base: int = self.tokenizer.vocab_size
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_dict) self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_dict)
self.fname_tokenizer: Path = fname_tokenizer self.fname_tokenizer: Path = fname_tokenizer
@ -370,15 +371,13 @@ class VocabLoader:
self.spm = None self.spm = None
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]: def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
tokenizer = self.tokenizer
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.get_vocab().items()}
added_tokens_ids = set(self.added_tokens_dict.values()) added_tokens_ids = set(self.added_tokens_dict.values())
for i in range(self.vocab_size_base): for i in range(self.vocab_size_base):
if i in added_tokens_ids: if i in added_tokens_ids:
continue continue
text = reverse_vocab[i].encode("utf-8") text = self.reverse_vocab[i].encode("utf-8")
yield text, self.get_token_score(i), self.get_token_type(i) yield text, self.get_token_score(i), self.get_token_type(i)
def get_token_type(self, token_id: int) -> gguf.TokenType: def get_token_type(self, token_id: int) -> gguf.TokenType:
@ -394,10 +393,13 @@ class VocabLoader:
if self.spm.is_byte(token_id): if self.spm.is_byte(token_id):
toktype = gguf.TokenType.BYTE toktype = gguf.TokenType.BYTE
else: else:
token = self.reverse_vocab[token_id]
if token_id == self.unk_token_id: if token_id == self.unk_token_id:
toktype = gguf.TokenType.UNKNOWN toktype = gguf.TokenType.UNKNOWN
if token_id in self.special_ids: elif token_id in self.special_ids:
toktype = gguf.TokenType.CONTROL toktype = gguf.TokenType.CONTROL
elif len(token) == 6 and token.startswith("<0x") and token.endswith(">"):
toktype = gguf.TokenType.BYTE
return toktype return toktype
@ -1185,6 +1187,7 @@ def main(args_in: list[str] | None = None) -> None:
# We currently only support Q8_0 output on little endian systems. # We currently only support Q8_0 output on little endian systems.
output_choices.append("q8_0") output_choices.append("q8_0")
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file") parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model") parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file") parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab") parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
@ -1198,6 +1201,19 @@ def main(args_in: list[str] | None = None) -> None:
parser.add_argument("--padvocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides") parser.add_argument("--padvocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
args = parser.parse_args(args_in) args = parser.parse_args(args_in)
if args.awq_path:
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
from awq.apply_awq import add_scale_weights
tmp_model_path = args.model / "weighted_model"
if tmp_model_path.is_dir():
print(f"{tmp_model_path} exists as a weighted model.")
else:
tmp_model_path.mkdir(parents=True, exist_ok=True)
print("Saving new weighted model ...")
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
print(f"Saved weighted model at {tmp_model_path}.")
args.model = tmp_model_path
if args.dump_single: if args.dump_single:
model_plus = lazy_load_file(args.model) model_plus = lazy_load_file(args.model)
do_dump_model(model_plus) do_dump_model(model_plus)

File diff suppressed because it is too large Load diff

View file

@ -407,6 +407,18 @@ inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
#define ggml_vld1q_s8_x4 vld1q_s8_x4 #define ggml_vld1q_s8_x4 vld1q_s8_x4
#endif #endif
#if !defined(__ARM_FEATURE_DOTPROD)
inline static int32x4_t vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
}
#endif
#endif #endif
#if defined(__ARM_NEON) || defined(__wasm_simd128__) #if defined(__ARM_NEON) || defined(__wasm_simd128__)
@ -2468,32 +2480,12 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx,
const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
// dot product into int32x4_t // dot product into int32x4_t
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h); const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h); const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#endif
} }
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
@ -2776,32 +2768,12 @@ void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restri
const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
// dot product into int32x4_t // dot product into int32x4_t
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h); const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h); const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d); sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d); sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
#endif
} }
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs; *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
@ -2963,32 +2935,12 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri
const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#endif
} }
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
@ -3275,32 +3227,12 @@ void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restri
const int8x16_t v1_1l = vld1q_s8(y1->qs); const int8x16_t v1_1l = vld1q_s8(y1->qs);
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16); const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l), vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d); vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l), vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d); vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
#else
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
#endif
} }
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1; *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
@ -3550,7 +3482,6 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri
const int8x16_t y1_0 = vld1q_s8(y1->qs); const int8x16_t y1_0 = vld1q_s8(y1->qs);
const int8x16_t y1_1 = vld1q_s8(y1->qs + 16); const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
#if defined(__ARM_FEATURE_DOTPROD)
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32( sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), x0_0, y0_0), vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d)); vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
@ -3558,26 +3489,6 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32( sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
vdotq_s32(vdupq_n_s32(0), x1_0, y1_0), vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d)); vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#else
const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
#endif
} }
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1); *s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
@ -3650,12 +3561,10 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const int nb = n / QK_K; const int nb = n / QK_K;
#ifdef __ARM_NEON #ifdef __ARM_NEON
const uint8x16_t m3 = vdupq_n_u8(0x3); const uint8x16_t m3 = vdupq_n_u8(0x3);
const uint8x16_t m4 = vdupq_n_u8(0xF); const uint8x16_t m4 = vdupq_n_u8(0xF);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t vzero = vdupq_n_s32(0); const int32x4_t vzero = vdupq_n_s32(0);
#endif
ggml_int8x16x2_t q2bytes; ggml_int8x16x2_t q2bytes;
uint8_t aux[16]; uint8_t aux[16];
@ -3663,7 +3572,6 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
float sum = 0; float sum = 0;
for (int i = 0; i < nb; ++i) { for (int i = 0; i < nb; ++i) {
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d); const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin); const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
@ -3689,20 +3597,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
// We use this macro instead of a function call because for some reason // We use this macro instead of a function call because for some reason
// the code runs 2-3% slower, even if the function is declared inline // the code runs 2-3% slower, even if the function is declared inline
#if defined(__ARM_FEATURE_DOTPROD)
#define MULTIPLY_ACCUM_WITH_SCALE(index)\ #define MULTIPLY_ACCUM_WITH_SCALE(index)\
isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\ isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)]; isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
#else
#define MULTIPLY_ACCUM_WITH_SCALE(index)\
{\
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
}
#endif
#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\ #define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\ q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
@ -3710,26 +3607,23 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\ q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
MULTIPLY_ACCUM_WITH_SCALE((index)); MULTIPLY_ACCUM_WITH_SCALE((index));
for (int j = 0; j < QK_K/128; ++j) { for (int j = 0; j < QK_K/128; ++j) {
const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32; const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3)); q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3)); q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
MULTIPLY_ACCUM_WITH_SCALE(0); MULTIPLY_ACCUM_WITH_SCALE(0);
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2); SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4); SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6); SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
is += 8; is += 8;
} }
sum += d * isum;
sum += d * isum;
} }
*s = sum; *s = sum;
@ -4043,11 +3937,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
const int nb = n / QK_K; const int nb = n / QK_K;
#ifdef __ARM_NEON #ifdef __ARM_NEON
const uint8x16_t m3 = vdupq_n_u8(0x3); const uint8x16_t m3 = vdupq_n_u8(0x3);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t vzero = vdupq_n_s32(0); const int32x4_t vzero = vdupq_n_s32(0);
#endif
ggml_int8x16x4_t q2bytes; ggml_int8x16x4_t q2bytes;
@ -4081,28 +3973,12 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3)); q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3)); q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
#if defined(__ARM_FEATURE_DOTPROD)
isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0]; isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1]; isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2]; isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3]; isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
#else
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
isum1 += vaddvq_s16(p1) * scales[0];
isum2 += vaddvq_s16(p2) * scales[1];
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
isum1 += vaddvq_s16(p3) * scales[2];
isum2 += vaddvq_s16(p4) * scales[3];
#endif
sum += d * (isum1 + isum2); sum += d * (isum1 + isum2);
} }
*s = sum; *s = sum;
@ -4328,9 +4204,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
uint32_t utmp[4]; uint32_t utmp[4];
const uint8x16_t m3b = vdupq_n_u8(0x3); const uint8x16_t m3b = vdupq_n_u8(0x3);
#ifdef __ARM_FEATURE_DOTPROD
const int32x4_t vzero = vdupq_n_s32(0); const int32x4_t vzero = vdupq_n_s32(0);
#endif
const uint8x16_t m0 = vdupq_n_u8(1); const uint8x16_t m0 = vdupq_n_u8(1);
const uint8x16_t m1 = vshlq_n_u8(m0, 1); const uint8x16_t m1 = vshlq_n_u8(m0, 1);
@ -4382,22 +4256,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2])); q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3])); q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
#if defined(__ARM_FEATURE_DOTPROD)
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
#else
int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
#endif
scale += 4; scale += 4;
q3h.val[0] = vbicq_u8(m2, qhbits.val[0]); q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
@ -4410,22 +4273,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2])); q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3])); q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
#if defined(__ARM_FEATURE_DOTPROD)
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
#else
p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
#endif
scale += 4; scale += 4;
if (j == 0) { if (j == 0) {
@ -4864,10 +4716,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
const int nb = n / QK_K; const int nb = n / QK_K;
#ifdef __ARM_NEON #ifdef __ARM_NEON
#ifdef __ARM_FEATURE_DOTPROD
const int32x4_t vzero = vdupq_n_s32(0); const int32x4_t vzero = vdupq_n_s32(0);
#endif
const uint8x16_t m3b = vdupq_n_u8(0x3); const uint8x16_t m3b = vdupq_n_u8(0x3);
const uint8x16_t mh = vdupq_n_u8(4); const uint8x16_t mh = vdupq_n_u8(4);
@ -4908,22 +4757,10 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2])); q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3])); q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
#if defined(__ARM_FEATURE_DOTPROD)
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3]; isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
#else
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
#endif
sum += d * isum; sum += d * isum;
@ -5228,11 +5065,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
uint32_t utmp[4]; uint32_t utmp[4];
#ifdef __ARM_NEON #ifdef __ARM_NEON
const uint8x16_t m4b = vdupq_n_u8(0xf); const uint8x16_t m4b = vdupq_n_u8(0xf);
#ifdef __ARM_FEATURE_DOTPROD
const int32x4_t mzero = vdupq_n_s32(0); const int32x4_t mzero = vdupq_n_s32(0);
#endif
ggml_int8x16x2_t q4bytes; ggml_int8x16x2_t q4bytes;
ggml_int8x16x2_t q8bytes; ggml_int8x16x2_t q8bytes;
@ -5269,10 +5103,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
int32_t sumi2 = 0; int32_t sumi2 = 0;
for (int j = 0; j < QK_K/64; ++j) { for (int j = 0; j < QK_K/64; ++j) {
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32; const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
#ifdef __ARM_FEATURE_DOTPROD
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32; q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
@ -5287,26 +5119,6 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]); const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
sumi2 += vaddvq_s32(p2) * scales[2*j+1]; sumi2 += vaddvq_s32(p2) * scales[2*j+1];
#else
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
#endif
} }
sumf += d * (sumi1 + sumi2); sumf += d * (sumi1 + sumi2);
@ -5603,12 +5415,9 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const int nb = n / QK_K; const int nb = n / QK_K;
#ifdef __ARM_NEON #ifdef __ARM_NEON
const uint8x16_t m4b = vdupq_n_u8(0xf); const uint8x16_t m4b = vdupq_n_u8(0xf);
#ifdef __ARM_FEATURE_DOTPROD
const int32x4_t mzero = vdupq_n_s32(0); const int32x4_t mzero = vdupq_n_s32(0);
#endif
float sumf = 0; float sumf = 0;
@ -5636,7 +5445,6 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
#ifdef __ARM_FEATURE_DOTPROD
q8bytes = ggml_vld1q_s8_x4(q8); q8bytes = ggml_vld1q_s8_x4(q8);
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b)); q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b)); q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
@ -5650,27 +5458,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]); const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
const int32_t sumi2 = vaddvq_s32(p2) * scales[1]; const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
#else
q8bytes = ggml_vld1q_s8_x4(q8);
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
#endif
sumf += d * (sumi1 + sumi2); sumf += d * (sumi1 + sumi2);
} }
*s = sumf - sum_mins; *s = sumf - sum_mins;
@ -5875,15 +5663,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
uint32_t utmp[4]; uint32_t utmp[4];
#ifdef __ARM_NEON #ifdef __ARM_NEON
const uint8x16_t m4b = vdupq_n_u8(0xf); const uint8x16_t m4b = vdupq_n_u8(0xf);
const uint8x16_t mone = vdupq_n_u8(1); const uint8x16_t mone = vdupq_n_u8(1);
const uint8x16_t mtwo = vdupq_n_u8(2); const uint8x16_t mtwo = vdupq_n_u8(2);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t mzero = vdupq_n_s32(0); const int32x4_t mzero = vdupq_n_s32(0);
#endif
ggml_int8x16x4_t q5bytes; ggml_int8x16x4_t q5bytes;
@ -5938,28 +5722,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2])); q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3])); q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
#if defined(__ARM_FEATURE_DOTPROD)
sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++; sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++; sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
#else
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
#endif
} }
sumf += d * sumi - dmin * sumi_mins; sumf += d * sumi - dmin * sumi_mins;
} }
*s = sumf; *s = sumf;
@ -6311,12 +6078,9 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
const int nb = n / QK_K; const int nb = n / QK_K;
#ifdef __ARM_NEON #ifdef __ARM_NEON
const uint8x16_t m4b = vdupq_n_u8(0xf); const uint8x16_t m4b = vdupq_n_u8(0xf);
const uint8x16_t mh = vdupq_n_u8(16); const uint8x16_t mh = vdupq_n_u8(16);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t mzero = vdupq_n_s32(0); const int32x4_t mzero = vdupq_n_s32(0);
#endif
ggml_int8x16x4_t q5bytes; ggml_int8x16x4_t q5bytes;
ggml_uint8x16x4_t q5h; ggml_uint8x16x4_t q5h;
@ -6348,32 +6112,12 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2])); q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3])); q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
#if defined(__ARM_FEATURE_DOTPROD)
int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0])); int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1])); int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2])); int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3])); int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
sumf += d * (sumi1 + sumi2 + sumi3 + sumi4); sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
#else
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
sumf += d*sumi;
#endif
} }
*s = sumf; *s = sumf;
@ -6600,13 +6344,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const int nb = n / QK_K; const int nb = n / QK_K;
#ifdef __ARM_NEON #ifdef __ARM_NEON
float sum = 0; float sum = 0;
const uint8x16_t m4b = vdupq_n_u8(0xF); const uint8x16_t m4b = vdupq_n_u8(0xF);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t vzero = vdupq_n_s32(0); const int32x4_t vzero = vdupq_n_s32(0);
#endif
//const int8x16_t m32s = vdupq_n_s8(32); //const int8x16_t m32s = vdupq_n_s8(32);
const uint8x16_t mone = vdupq_n_u8(3); const uint8x16_t mone = vdupq_n_u8(3);
@ -6658,31 +6399,13 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2])); q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3])); q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
#if defined(__ARM_FEATURE_DOTPROD)
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
scale += 4; scale += 4;
#else
int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
scale += 2;
int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
scale += 2;
#endif
q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64; q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
shifted = vshrq_n_u8(qhbits.val[0], 4); shifted = vshrq_n_u8(qhbits.val[0], 4);
@ -6703,34 +6426,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2])); q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3])); q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
#if defined(__ARM_FEATURE_DOTPROD)
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
scale += 4; scale += 4;
//for (int l = 0; l < 4; ++l) {
// const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
// isum += vaddvq_s32(p) * *scale++;
//}
#else
p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
scale += 2;
p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
scale += 2;
#endif
} }
//sum += isum * d_all * y[i].d; //sum += isum * d_all * y[i].d;
sum += d_all * y[i].d * (isum - 32 * isum_mins); sum += d_all * y[i].d * (isum - 32 * isum_mins);
@ -7076,14 +6776,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
const int nb = n / QK_K; const int nb = n / QK_K;
#ifdef __ARM_NEON #ifdef __ARM_NEON
float sum = 0; float sum = 0;
const uint8x16_t m4b = vdupq_n_u8(0xF); const uint8x16_t m4b = vdupq_n_u8(0xF);
const int8x16_t m32s = vdupq_n_s8(32); const int8x16_t m32s = vdupq_n_s8(32);
#if defined(__ARM_FEATURE_DOTPROD)
const int32x4_t vzero = vdupq_n_s32(0); const int32x4_t vzero = vdupq_n_s32(0);
#endif
const uint8x16_t mone = vdupq_n_u8(3); const uint8x16_t mone = vdupq_n_u8(3);
@ -7119,26 +6816,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s); q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s); q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
#if defined(__ARM_FEATURE_DOTPROD)
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] + isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] + vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3]; vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
#else
int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
#endif
sum += isum * d_all * y[i].d; sum += isum * d_all * y[i].d;

7
ggml.c
View file

@ -4041,7 +4041,6 @@ static struct ggml_tensor * ggml_group_norm_impl(
result->op = GGML_OP_GROUP_NORM; result->op = GGML_OP_GROUP_NORM;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a; result->src[0] = a;
result->src[1] = NULL; // TODO: maybe store epsilon here?
return result; return result;
} }
@ -5541,7 +5540,6 @@ static struct ggml_tensor * ggml_upscale_impl(
result->op_params[0] = scale_factor; result->op_params[0] = scale_factor;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a; result->src[0] = a;
result->src[1] = NULL;
return result; return result;
} }
@ -5846,7 +5844,6 @@ struct ggml_tensor * ggml_get_rel_pos(
result->op = GGML_OP_GET_REL_POS; result->op = GGML_OP_GET_REL_POS;
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL; result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
result->src[0] = a; result->src[0] = a;
result->src[1] = NULL;
return result; return result;
} }
@ -17456,9 +17453,9 @@ static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g
} }
// //
// ADAM // Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
// //
// ref: https://arxiv.org/pdf/1412.6980.pdf // (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
// //
static enum ggml_opt_result ggml_opt_adam( static enum ggml_opt_result ggml_opt_adam(

View file

@ -120,6 +120,7 @@ class MODEL_TENSOR(IntEnum):
FFN_GATE = auto() FFN_GATE = auto()
FFN_DOWN = auto() FFN_DOWN = auto()
FFN_UP = auto() FFN_UP = auto()
FFN_ACT = auto()
FFN_GATE_EXP = auto() FFN_GATE_EXP = auto()
FFN_DOWN_EXP = auto() FFN_DOWN_EXP = auto()
FFN_UP_EXP = auto() FFN_UP_EXP = auto()
@ -169,6 +170,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate", MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down", MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up", MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}", MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}", MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}", MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
@ -269,6 +271,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
MODEL_TENSOR.FFN_NORM, MODEL_TENSOR.FFN_NORM,
MODEL_TENSOR.FFN_DOWN, MODEL_TENSOR.FFN_DOWN,
MODEL_TENSOR.FFN_UP, MODEL_TENSOR.FFN_UP,
MODEL_TENSOR.FFN_ACT,
], ],
MODEL_ARCH.GPTJ: [ MODEL_ARCH.GPTJ: [
MODEL_TENSOR.TOKEN_EMBD, MODEL_TENSOR.TOKEN_EMBD,

View file

@ -188,6 +188,11 @@ class TensorNameMap:
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral "model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
), ),
# AWQ-activation gate
MODEL_TENSOR.FFN_ACT: (
"transformer.blocks.{bid}.ffn.act", # mpt
),
# Feed-forward gate # Feed-forward gate
MODEL_TENSOR.FFN_GATE: ( MODEL_TENSOR.FFN_GATE: (
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact "model.layers.{bid}.mlp.gate_proj", # llama-hf refact

View file

@ -354,6 +354,7 @@ enum llm_tensor {
LLM_TENSOR_FFN_GATE, LLM_TENSOR_FFN_GATE,
LLM_TENSOR_FFN_DOWN, LLM_TENSOR_FFN_DOWN,
LLM_TENSOR_FFN_UP, LLM_TENSOR_FFN_UP,
LLM_TENSOR_FFN_ACT,
LLM_TENSOR_FFN_DOWN_EXP, LLM_TENSOR_FFN_DOWN_EXP,
LLM_TENSOR_FFN_GATE_EXP, LLM_TENSOR_FFN_GATE_EXP,
LLM_TENSOR_FFN_UP_EXP, LLM_TENSOR_FFN_UP_EXP,
@ -473,6 +474,7 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" }, { LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" }, { LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" }, { LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
{ LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
}, },
}, },
{ {
@ -1285,6 +1287,7 @@ struct llama_hparams {
float f_clamp_kqv; float f_clamp_kqv;
float f_max_alibi_bias; float f_max_alibi_bias;
bool operator!=(const llama_hparams & other) const { bool operator!=(const llama_hparams & other) const {
if (this->vocab_only != other.vocab_only) return true; if (this->vocab_only != other.vocab_only) return true;
if (this->n_vocab != other.n_vocab) return true; if (this->n_vocab != other.n_vocab) return true;
@ -1388,6 +1391,7 @@ struct llama_layer {
// ff bias // ff bias
struct ggml_tensor * ffn_down_b; // b2 struct ggml_tensor * ffn_down_b; // b2
struct ggml_tensor * ffn_up_b; // b3 struct ggml_tensor * ffn_up_b; // b3
struct ggml_tensor * ffn_act;
}; };
struct llama_kv_cell { struct llama_kv_cell {
@ -3472,7 +3476,6 @@ static bool llm_load_tensors(
case LLM_ARCH_MPT: case LLM_ARCH_MPT:
{ {
model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU); model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
// output // output
{ {
ggml_backend_type backend_norm; ggml_backend_type backend_norm;
@ -3510,6 +3513,9 @@ static bool llm_load_tensors(
layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split); layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split); layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
// AWQ ScaleActivation layer
layer.ffn_act = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, backend, false);
} }
} break; } break;
case LLM_ARCH_STABLELM: case LLM_ARCH_STABLELM:
@ -4040,6 +4046,7 @@ static struct ggml_tensor * llm_build_ffn(
struct ggml_tensor * gate_b, struct ggml_tensor * gate_b,
struct ggml_tensor * down, struct ggml_tensor * down,
struct ggml_tensor * down_b, struct ggml_tensor * down_b,
struct ggml_tensor * act_scales,
llm_ffn_op_type type_op, llm_ffn_op_type type_op,
llm_ffn_gate_type type_gate, llm_ffn_gate_type type_gate,
const llm_build_cb & cb, const llm_build_cb & cb,
@ -4084,6 +4091,10 @@ static struct ggml_tensor * llm_build_ffn(
{ {
cur = ggml_gelu(ctx, cur); cur = ggml_gelu(ctx, cur);
cb(cur, "ffn_gelu", il); cb(cur, "ffn_gelu", il);
if (act_scales != NULL) {
cur = ggml_div(ctx, cur, act_scales);
cb(cur, "ffn_act", il);
}
} break; } break;
case LLM_FFN_RELU: case LLM_FFN_RELU:
{ {
@ -4402,6 +4413,7 @@ struct llm_build_context {
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL, model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il); LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} else { } else {
@ -4581,6 +4593,7 @@ struct llm_build_context {
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL, model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il); LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} }
@ -4695,6 +4708,7 @@ struct llm_build_context {
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up, NULL,
NULL, NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} }
@ -4799,6 +4813,7 @@ struct llm_build_context {
model.layers[il].ffn_up, model.layers[il].ffn_up_b, model.layers[il].ffn_up, model.layers[il].ffn_up_b,
NULL, NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, model.layers[il].ffn_down, model.layers[il].ffn_down_b,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} }
@ -5003,6 +5018,7 @@ struct llm_build_context {
model.layers[il].ffn_up, model.layers[il].ffn_up_b, model.layers[il].ffn_up, model.layers[il].ffn_up_b,
NULL, NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, model.layers[il].ffn_down, model.layers[il].ffn_down_b,
NULL,
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il); LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} }
@ -5089,6 +5105,7 @@ struct llm_build_context {
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL, model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il); LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} }
@ -5184,6 +5201,7 @@ struct llm_build_context {
model.layers[il].ffn_up, model.layers[il].ffn_up_b, model.layers[il].ffn_up, model.layers[il].ffn_up_b,
NULL, NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, model.layers[il].ffn_down, model.layers[il].ffn_down_b,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} }
@ -5269,11 +5287,11 @@ struct llm_build_context {
NULL, NULL,
LLM_NORM, cb, il); LLM_NORM, cb, il);
cb(cur, "ffn_norm", il); cb(cur, "ffn_norm", il);
cur = llm_build_ffn(ctx0, cur, cur = llm_build_ffn(ctx0, cur,
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up, NULL,
NULL, NULL, NULL, NULL,
model.layers[il].ffn_down, NULL, model.layers[il].ffn_down, NULL,
model.layers[il].ffn_act,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} }
@ -5382,6 +5400,7 @@ struct llm_build_context {
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL, model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il); LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} }
@ -5494,6 +5513,7 @@ struct llm_build_context {
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL, model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il); LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} }
@ -5601,6 +5621,7 @@ struct llm_build_context {
model.layers[il].ffn_up, model.layers[il].ffn_up_b, model.layers[il].ffn_up, model.layers[il].ffn_up_b,
NULL, NULL, NULL, NULL,
model.layers[il].ffn_down, model.layers[il].ffn_down_b, model.layers[il].ffn_down, model.layers[il].ffn_down_b,
NULL,
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il); LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
cb(ffn_output, "ffn_out", il); cb(ffn_output, "ffn_out", il);
} }
@ -5704,6 +5725,7 @@ struct llm_build_context {
model.layers[il].ffn_up, NULL, model.layers[il].ffn_up, NULL,
model.layers[il].ffn_gate, NULL, model.layers[il].ffn_gate, NULL,
model.layers[il].ffn_down, NULL, model.layers[il].ffn_down, NULL,
NULL,
LLM_FFN_SILU, LLM_FFN_PAR, cb, il); LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
cb(cur, "ffn_out", il); cb(cur, "ffn_out", il);
} }
@ -5888,6 +5910,7 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
{ "ffn_gate", OFFLOAD_FUNC }, { "ffn_gate", OFFLOAD_FUNC },
{ "ffn_gate_b", OFFLOAD_FUNC }, { "ffn_gate_b", OFFLOAD_FUNC },
{ "ffn_gate_par", OFFLOAD_FUNC }, { "ffn_gate_par", OFFLOAD_FUNC },
{ "ffn_act", OFFLOAD_FUNC },
{ "ffn_down", OFFLOAD_FUNC }, { "ffn_down", OFFLOAD_FUNC },
{ "ffn_down_b", OFFLOAD_FUNC }, { "ffn_down_b", OFFLOAD_FUNC },
{ "ffn_out", OFFLOAD_FUNC }, { "ffn_out", OFFLOAD_FUNC },
@ -9520,7 +9543,8 @@ struct llama_context * llama_new_context_with_model(
ctx->alloc = ggml_allocr_new_from_buffer(ctx->buf_alloc); ctx->alloc = ggml_allocr_new_from_buffer(ctx->buf_alloc);
#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST) #if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST)
if (model->n_gpu_layers > 0) { if (model->n_gpu_layers > 0) {
ggml_cuda_set_scratch_size(alloc_size); // the CPU buffer adds this padding in case the malloc buffer is not aligned, so we need to do the same for the GPU buffer, since we use the same offsets
ggml_cuda_set_scratch_size(alloc_size + 64);
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0); LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
// calculate total VRAM usage // calculate total VRAM usage

131
scripts/sync-ggml-am.sh Executable file
View file

@ -0,0 +1,131 @@
#!/bin/bash
#
# Synchronize ggml changes to llama.cpp
#
# Usage:
#
# $ cd /path/to/llama.cpp
# $ ./scripts/sync-ggml-am.sh
#
set -e
sd=$(dirname $0)
cd $sd/../
SRC_LLAMA=$(pwd)
SRC_GGML=$(cd ../ggml; pwd)
if [ ! -d $SRC_GGML ]; then
echo "ggml not found at $SRC_GGML"
exit 1
fi
lc=$(cat $SRC_LLAMA/scripts/sync-ggml.last)
echo "Syncing ggml changes since commit $lc"
cd $SRC_GGML
git log --oneline $lc..HEAD
git format-patch $lc --stdout -- \
include/ggml/ggml*.h \
src/ggml*.h \
src/ggml*.c \
src/ggml*.cpp \
src/ggml*.m \
src/ggml*.metal \
src/ggml*.cu \
tests/test-opt.cpp \
tests/test-grad0.cpp \
tests/test-quantize-fns.cpp \
tests/test-quantize-perf.cpp \
tests/test-backend-ops.cpp \
> $SRC_LLAMA/ggml-src.patch
# delete files if empty
if [ ! -s $SRC_LLAMA/ggml-src.patch ]; then
rm -v $SRC_LLAMA/ggml-src.patch
fi
cd $SRC_LLAMA
if [ -f $SRC_LLAMA/ggml-src.patch ]; then
# replace PR numbers
#
# Subject: some text (#1234)
# Subject: some text (ggml/1234)
cat ggml-src.patch | sed -e 's/^Subject: \(.*\) (#\([0-9]*\))/Subject: \1 (ggml\/\2)/' > ggml-src.patch.tmp
mv ggml-src.patch.tmp ggml-src.patch
cat ggml-src.patch | sed -e 's/^\(.*\) (#\([0-9]*\))$/\1 (ggml\/\2)/' > ggml-src.patch.tmp
mv ggml-src.patch.tmp ggml-src.patch
# replace filenames:
#
# src/ggml.c -> ggml.c
# src/ggml-alloc.c -> ggml-alloc.c
# src/ggml-backend-impl.h -> ggml-backend-impl.h
# src/ggml-backend.c -> ggml-backend.c
# src/ggml-cuda.cu -> ggml-cuda.cu
# src/ggml-cuda.h -> ggml-cuda.h
# src/ggml-impl.h -> ggml-impl.h
# src/ggml-metal.h -> ggml-metal.h
# src/ggml-metal.m -> ggml-metal.m
# src/ggml-metal.metal -> ggml-metal.metal
# src/ggml-mpi.h -> ggml-mpi.h
# src/ggml-mpi.c -> ggml-mpi.c
# src/ggml-opencl.cpp -> ggml-opencl.cpp
# src/ggml-opencl.h -> ggml-opencl.h
# src/ggml-quants.c -> ggml-quants.c
# src/ggml-quants.h -> ggml-quants.h
# include/ggml/ggml.h -> ggml.h
# include/ggml/ggml-alloc.h -> ggml-alloc.h
# include/ggml/ggml-backend.h -> ggml-backend.h
#
# tests/test-opt.cpp -> tests/test-opt.cpp
# tests/test-grad0.cpp -> tests/test-grad0.cpp
# tests/test-quantize-fns.cpp -> tests/test-quantize-fns.cpp
# tests/test-quantize-perf.cpp -> tests/test-quantize-perf.cpp
# tests/test-backend-ops.cpp -> tests/test-backend-ops.cpp
cat ggml-src.patch | sed \
-e 's/src\/ggml\.c/ggml.c/g' \
-e 's/src\/ggml-alloc\.c/ggml-alloc.c/g' \
-e 's/src\/ggml-backend-impl\.h/ggml-backend-impl.h/g' \
-e 's/src\/ggml-backend\.c/ggml-backend.c/g' \
-e 's/src\/ggml-cuda\.cu/ggml-cuda.cu/g' \
-e 's/src\/ggml-cuda\.h/ggml-cuda.h/g' \
-e 's/src\/ggml-impl\.h/ggml-impl.h/g' \
-e 's/src\/ggml-metal\.h/ggml-metal.h/g' \
-e 's/src\/ggml-metal\.m/ggml-metal.m/g' \
-e 's/src\/ggml-metal\.metal/ggml-metal.metal/g' \
-e 's/src\/ggml-mpi\.h/ggml-mpi.h/g' \
-e 's/src\/ggml-mpi\.c/ggml-mpi.c/g' \
-e 's/src\/ggml-opencl\.cpp/ggml-opencl.cpp/g' \
-e 's/src\/ggml-opencl\.h/ggml-opencl.h/g' \
-e 's/src\/ggml-quants\.c/ggml-quants.c/g' \
-e 's/src\/ggml-quants\.h/ggml-quants.h/g' \
-e 's/include\/ggml\/ggml\.h/ggml.h/g' \
-e 's/include\/ggml\/ggml-alloc\.h/ggml-alloc.h/g' \
-e 's/include\/ggml\/ggml-backend\.h/ggml-backend.h/g' \
-e 's/tests\/test-opt\.cpp/tests\/test-opt.cpp/g' \
-e 's/tests\/test-grad0\.cpp/tests\/test-grad0.cpp/g' \
-e 's/tests\/test-quantize-fns\.cpp/tests\/test-quantize-fns.cpp/g' \
-e 's/tests\/test-quantize-perf\.cpp/tests\/test-quantize-perf.cpp/g' \
-e 's/tests\/test-backend-ops\.cpp/tests\/test-backend-ops.cpp/g' \
> ggml-src.patch.tmp
mv ggml-src.patch.tmp ggml-src.patch
git am ggml-src.patch
rm -v $SRC_LLAMA/ggml-src.patch
fi
# update last commit
cd $SRC_GGML
git log -1 --format=%H > $SRC_LLAMA/scripts/sync-ggml.last
echo "Done"
exit 0

1
scripts/sync-ggml.last Normal file
View file

@ -0,0 +1 @@
76e7f47b69e8334384dc718480c496dafbd47999