Merge branch 'master' into phi-1
This commit is contained in:
commit
5d546a3c98
15 changed files with 857 additions and 605 deletions
|
@ -133,6 +133,7 @@ as the main playground for developing new features for the [ggml](https://github
|
||||||
- [withcatai/catai](https://github.com/withcatai/catai)
|
- [withcatai/catai](https://github.com/withcatai/catai)
|
||||||
- [semperai/amica](https://github.com/semperai/amica)
|
- [semperai/amica](https://github.com/semperai/amica)
|
||||||
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
|
- [psugihara/FreeChat](https://github.com/psugihara/FreeChat)
|
||||||
|
- [ptsochantaris/emeltal](https://github.com/ptsochantaris/emeltal)
|
||||||
|
|
||||||
---
|
---
|
||||||
|
|
||||||
|
|
116
awq-py/README.md
Normal file
116
awq-py/README.md
Normal file
|
@ -0,0 +1,116 @@
|
||||||
|
# AWQ: Activation-aware Weight Quantization for LLM - version apply to llamacpp
|
||||||
|
[[Paper](https://arxiv.org/abs/2306.00978)][[Original Repo](https://github.com/mit-han-lab/llm-awq)][[Easy-to-use Repo](https://github.com/casper-hansen/AutoAWQ)]
|
||||||
|
|
||||||
|
**Supported models:**
|
||||||
|
|
||||||
|
- [X] LLaMA
|
||||||
|
- [x] LLaMA 2
|
||||||
|
- [X] MPT
|
||||||
|
- [X] Mistral AI v0.1
|
||||||
|
- [ ] Bloom
|
||||||
|
- [ ] Mixtral MoE
|
||||||
|
|
||||||
|
**TODO:**
|
||||||
|
- [x] Update version work with both MPT and MPT-AWQ model
|
||||||
|
- [ ] Add OPT model
|
||||||
|
- [ ] Add Bloom model
|
||||||
|
- [ ] Add Mixtral MoE
|
||||||
|
- [ ] Support w3, w2
|
||||||
|
|
||||||
|
|
||||||
|
## Contents
|
||||||
|
|
||||||
|
- [Install](##Install)
|
||||||
|
- [Convert](##Convert)
|
||||||
|
- [Quantize](##Quantize)
|
||||||
|
- [Test](##Test)
|
||||||
|
- [Benchmark](##Benchmark)
|
||||||
|
- [Results](##Results)
|
||||||
|
|
||||||
|
## Install
|
||||||
|
Install requirements
|
||||||
|
```bash
|
||||||
|
pip install -r requirements.txt
|
||||||
|
```
|
||||||
|
Get the pre-computed AWQ search results for multiple model families, including LLaMA, LLaMA2, MPT, OPT
|
||||||
|
```bash
|
||||||
|
git clone https://huggingface.co/datasets/mit-han-lab/awq-model-zoo awq_cache
|
||||||
|
```
|
||||||
|
|
||||||
|
## Convert
|
||||||
|
Example for llama model
|
||||||
|
```bash
|
||||||
|
# For llama7b and llama2 models
|
||||||
|
python convert.py models/llama-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/llama_7b_fp16.gguf
|
||||||
|
# For mistral and mpt models
|
||||||
|
python convert-hf-to-gguf.py models/mpt-7b/ --awq-path awq_cache/llama-7b-w4-g128.pt --outfile models/mpt_7b_fp16.gguf
|
||||||
|
```
|
||||||
|
|
||||||
|
## Quantize
|
||||||
|
```bash
|
||||||
|
# We only benchmark and confirm the results on q4_0, q4_1, and q2_k types.
|
||||||
|
./quantize models/llama_7b_fp16.gguf models/llama_7b_q4_0.gguf q4_0
|
||||||
|
```
|
||||||
|
|
||||||
|
## Test
|
||||||
|
```bash
|
||||||
|
# For all models.
|
||||||
|
./build/bin/main -m models/llama_7b_q4_0.gguf -n 128 --prompt "Once upon a time"
|
||||||
|
```
|
||||||
|
|
||||||
|
## Benchmark
|
||||||
|
The perplexity measurements in table above are done against the `wikitext2` test dataset (https://paperswithcode.com/dataset/wikitext-2), with context length of 512.
|
||||||
|
```bash
|
||||||
|
# For llama and llama2, and mistral models.
|
||||||
|
./perplexity -m models/llama_7b_q4_0.gguf -f datasets/wikitext-2-raw/wiki.test.raw
|
||||||
|
```
|
||||||
|
|
||||||
|
## Results
|
||||||
|
Results are run on OpenBLAS (CPU) and CuBLAS (GPU) for fair comparison
|
||||||
|
We use three types of llamacpp quantization methods to work with our version, including q4_0, q4_1, and q2_k
|
||||||
|
|
||||||
|
### Llama 7B (Build with OpenBLAS)
|
||||||
|
|
||||||
|
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||||
|
|-----------:|--------------|-------:|-------:|-------:|-------:|
|
||||||
|
|Llama 7B | perplexity | 5.9066 | 6.1214 | 6.0643 | 6.5808 |
|
||||||
|
|Llama 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||||
|
|Llama 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||||
|
|AWQ-LLama 7B| perplexity | 5.9175 | 6.0252 | 5.9987 | 6.3692 |
|
||||||
|
|AWQ-LLama 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||||
|
|AWQ-LLama 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||||
|
|
||||||
|
|
||||||
|
### Llama2 7B (Build with CuBLAS)
|
||||||
|
|
||||||
|
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||||
|
|------------:|--------------|-------:|-------:|-------:|-------:|
|
||||||
|
|Llama2 7B | perplexity | 5.8664 | 6.0260 | 6.0656 | 6.4496 |
|
||||||
|
|Llama2 7B | file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||||
|
|Llama2 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||||
|
|AWQ-LLama2 7B| perplexity | 5.8801 | 6.0054 | 5.9849 | 6.3650 |
|
||||||
|
|AWQ-LLama2 7B| file size | 12.9G | 3.5G | 3.9G | 2.7G |
|
||||||
|
|AWQ-LLama2 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||||
|
|
||||||
|
|
||||||
|
### Mistral 7B v0.1 (Build with CuBLAS)
|
||||||
|
|
||||||
|
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||||
|
|-------------:|--------------|-------:|-------:|-------:|-------:|
|
||||||
|
|Mistral 7B | perplexity | 5.6931 | 5.8202 | 5.8268 | 6.1645 |
|
||||||
|
|Mistral 7B | file size | 14.5G | 4.1G | 4.5G | 3.1G |
|
||||||
|
|Mistral 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||||
|
|AWQ-Mistral 7B| perplexity | 5.6934 | 5.8020 | 5.7691 | 6.0426 |
|
||||||
|
|AWQ-Mistral 7B| file size | 14.5G | 4.1G | 4.5G | 3.1G |
|
||||||
|
|AWQ-Mistral 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||||
|
|
||||||
|
### MPT 7B (Build with OpenBLAS)
|
||||||
|
|
||||||
|
| Model | Measure | F16 | Q4_0 | Q4_1 | Q2_K |
|
||||||
|
|---------:|--------------|-------:|-------:|-------:|--------:|
|
||||||
|
|MPT 7B | perplexity | 8.4369 | 8.7956 | 8.6265 | 11.4913 |
|
||||||
|
|MPT 7B | file size | 13.7G | 3.9G | 4.3G | 2.8G |
|
||||||
|
|MPT 7B | bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
||||||
|
|AWQ-MPT 7B| perplexity | 8.4944 | 8.7053 | 8.6750 | 10.2873|
|
||||||
|
|AWQ-MPT 7B| file size | 13.7G | 3.9G | 4.3G | 2.8G |
|
||||||
|
|AWQ-MPT 7B| bits/weight | 16.0 | 4.5 | 5.0 | 2.6 |
|
254
awq-py/awq/apply_awq.py
Normal file
254
awq-py/awq/apply_awq.py
Normal file
|
@ -0,0 +1,254 @@
|
||||||
|
"""
|
||||||
|
Implements the AWQ for llama.cpp use cases.
|
||||||
|
Original paper: https://arxiv.org/abs/2306.00978
|
||||||
|
|
||||||
|
This code is based on versions of the AWQ implementation found in the following repositories:
|
||||||
|
* https://github.com/mit-han-lab/llm-awq
|
||||||
|
* https://github.com/casper-hansen/AutoAWQ
|
||||||
|
"""
|
||||||
|
|
||||||
|
import os
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
|
||||||
|
from transformers import AutoModelForCausalLM, AutoConfig
|
||||||
|
from transformers.models.bloom.modeling_bloom import BloomGelu
|
||||||
|
from transformers.models.llama.modeling_llama import LlamaRMSNorm
|
||||||
|
from transformers.activations import GELUActivation
|
||||||
|
|
||||||
|
|
||||||
|
class ScaledActivation(nn.Module):
|
||||||
|
"""
|
||||||
|
ScaledActivation module wraps an existing activation function and applies a
|
||||||
|
scale factor to its output.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
module (nn.Module): The activation function to be scaled.
|
||||||
|
scales (torch.Tensor): A tensor of size (num_features,) containing the initial
|
||||||
|
scale factors for each feature.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
torch.Tensor: The scaled output of the activation function.
|
||||||
|
"""
|
||||||
|
|
||||||
|
def __init__(self, module, scales):
|
||||||
|
super().__init__()
|
||||||
|
self.act = module
|
||||||
|
self.scales = nn.Parameter(scales.data)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
return self.act(x) / self.scales.view(1, 1, -1).to(x.device)
|
||||||
|
|
||||||
|
|
||||||
|
def set_op_by_name(layer, name, new_module):
|
||||||
|
"""
|
||||||
|
Set the new module for given module's name.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
layer (nn.Module): The layer in which to replace the submodule.
|
||||||
|
name (str): The path to the submodule to be replaced, using dot notation
|
||||||
|
to access nested modules.
|
||||||
|
new_module (nn.Module): The new module to replace the existing one.
|
||||||
|
"""
|
||||||
|
levels = name.split(".")
|
||||||
|
if len(levels) > 1:
|
||||||
|
mod_ = layer
|
||||||
|
for l_idx in range(len(levels) - 1):
|
||||||
|
if levels[l_idx].isdigit():
|
||||||
|
mod_ = mod_[int(levels[l_idx])]
|
||||||
|
else:
|
||||||
|
mod_ = getattr(mod_, levels[l_idx])
|
||||||
|
setattr(mod_, levels[-1], new_module)
|
||||||
|
else:
|
||||||
|
setattr(layer, name, new_module)
|
||||||
|
|
||||||
|
|
||||||
|
def get_op_by_name(module, op_name):
|
||||||
|
"""
|
||||||
|
Retrieves a submodule within a given layer based on its name.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
module (nn.Module): The layer containing the submodule to find.
|
||||||
|
op_name (str): The name of the submodule.
|
||||||
|
|
||||||
|
Returns:
|
||||||
|
nn.Module: The requested submodule found within the given layer.
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
ValueError: If the specified submodule cannot be found within the layer.
|
||||||
|
"""
|
||||||
|
for name, m in module.named_modules():
|
||||||
|
if name == op_name:
|
||||||
|
return m
|
||||||
|
raise ValueError(f"Cannot find op {op_name} in module {module}")
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def scale_ln_fcs(ln, fcs, scales):
|
||||||
|
"""
|
||||||
|
Scales the weights of a LayerNorm and a list of fully-connected layers proportionally.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
ln (nn.LayerNorm): The LayerNorm module to be scaled.
|
||||||
|
fcs (List[nn.Linear]): A list of fully-connected layers to be scaled.
|
||||||
|
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||||
|
"""
|
||||||
|
|
||||||
|
if not isinstance(fcs, list):
|
||||||
|
fcs = [fcs]
|
||||||
|
|
||||||
|
scales = scales.to(ln.weight.device)
|
||||||
|
|
||||||
|
ln.weight.div_(scales)
|
||||||
|
if hasattr(ln, "bias") and ln.bias is not None:
|
||||||
|
ln.bias.div_(scales)
|
||||||
|
|
||||||
|
for fc in fcs:
|
||||||
|
fc.weight.mul_(scales.view(1, -1))
|
||||||
|
|
||||||
|
for p in ln.parameters():
|
||||||
|
assert torch.isnan(p).sum() == 0
|
||||||
|
for fc in fcs:
|
||||||
|
for p in fc.parameters():
|
||||||
|
assert torch.isnan(p).sum() == 0
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def scale_fc_fc(fc1, fc2, scales):
|
||||||
|
"""
|
||||||
|
Scales the weights of two fully-connected layers in a specific pattern.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
fc1 (nn.Linear): The first fully-connected layer to be scaled.
|
||||||
|
fc2 (nn.Linear): The second fully-connected layer to be scaled.
|
||||||
|
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||||
|
"""
|
||||||
|
assert isinstance(fc1, nn.Linear)
|
||||||
|
assert isinstance(fc2, nn.Linear)
|
||||||
|
|
||||||
|
scales = scales.to(fc1.weight.device)
|
||||||
|
|
||||||
|
fc1.weight[-scales.size(0):].div_(scales.view(-1, 1))
|
||||||
|
if fc1.bias is not None:
|
||||||
|
fc1.bias.div_(scales.view(-1))
|
||||||
|
|
||||||
|
fc2.weight.mul_(scales.view(1, -1))
|
||||||
|
|
||||||
|
for p in fc1.parameters():
|
||||||
|
assert torch.isnan(p).sum() == 0
|
||||||
|
for p in fc2.parameters():
|
||||||
|
assert torch.isnan(p).sum() == 0
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def scale_gelu_fc(gelu, fc, scales):
|
||||||
|
"""
|
||||||
|
Scales the weight of a GELU activation and a fully-connected layer proportionally.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
gelu (Union[nn.GELU, BloomGelu, GELUActivation]): The GELU activation module to be scaled.
|
||||||
|
fc (nn.Linear): The fully-connected layer to be scaled.
|
||||||
|
scales (torch.Tensor): A 1D tensor of size (num_features,).
|
||||||
|
|
||||||
|
Raises:
|
||||||
|
TypeError: If the `gelu` module is not of type `nn.GELU`, `BloomGelu`, or `GELUActivation`.
|
||||||
|
TypeError: If the `fc` module is not of type `nn.Linear`.
|
||||||
|
"""
|
||||||
|
assert isinstance(gelu, (nn.GELU, BloomGelu, GELUActivation))
|
||||||
|
assert isinstance(fc, nn.Linear)
|
||||||
|
|
||||||
|
fc.weight.mul_(scales.view(1, -1).to(fc.weight.device))
|
||||||
|
|
||||||
|
for p in fc.parameters():
|
||||||
|
assert torch.isnan(p).sum() == 0
|
||||||
|
|
||||||
|
|
||||||
|
def apply_scale(module, scales_list, input_feat_dict=None):
|
||||||
|
"""
|
||||||
|
Applies different scaling strategies to layers based on their type and hierarchy within a given module.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
module (nn.Module): The module containing the layers to be scaled.
|
||||||
|
scales_list (List[Tuple[str, List[str], torch.Tensor]]): A list of tuples containing:
|
||||||
|
* prev_op_name (str): The name of the preceding operation or module,
|
||||||
|
relative to which the layers to be scaled are located.
|
||||||
|
* layer_names (List[str]): A list of names of the layers to be scaled, relative to the preceding operation.
|
||||||
|
* scales (torch.Tensor): A 1D tensor of size (num_features,) containing the scaling factors for each feature.
|
||||||
|
input_feat_dict (Optional[Dict[str, torch.Tensor]]): A dictionary mapping layer names to their corresponding
|
||||||
|
input features (optional).
|
||||||
|
"""
|
||||||
|
for prev_op_name, layer_names, scales in scales_list:
|
||||||
|
prev_op = get_op_by_name(module, prev_op_name)
|
||||||
|
layers = [get_op_by_name(module, name) for name in layer_names]
|
||||||
|
|
||||||
|
prev_op.cuda()
|
||||||
|
for layer in layers:
|
||||||
|
layer.cuda()
|
||||||
|
scales.cuda()
|
||||||
|
|
||||||
|
if isinstance(prev_op, nn.Linear):
|
||||||
|
assert len(layers) == 1
|
||||||
|
scale_fc_fc(prev_op, layers[0], scales)
|
||||||
|
elif isinstance(prev_op, (nn.LayerNorm, LlamaRMSNorm)) or "rmsnorm" in str(prev_op.__class__).lower():
|
||||||
|
scale_ln_fcs(prev_op, layers, scales)
|
||||||
|
elif isinstance(prev_op, (nn.GELU, BloomGelu, GELUActivation)):
|
||||||
|
new_module = ScaledActivation(prev_op, scales)
|
||||||
|
set_op_by_name(module, prev_op_name, new_module)
|
||||||
|
scale_gelu_fc(prev_op, layers[0], scales)
|
||||||
|
else:
|
||||||
|
raise NotImplementedError(f"prev_op {type(prev_op)} not supported yet!")
|
||||||
|
|
||||||
|
# apply the scaling to input feat if given; prepare it for clipping
|
||||||
|
if input_feat_dict is not None:
|
||||||
|
for layer_name in layer_names:
|
||||||
|
inp = input_feat_dict[layer_name]
|
||||||
|
inp.div_(scales.view(1, -1).to(inp.device))
|
||||||
|
|
||||||
|
prev_op.cpu()
|
||||||
|
for layer in layers:
|
||||||
|
layer.cpu()
|
||||||
|
scales.cpu()
|
||||||
|
|
||||||
|
|
||||||
|
@torch.no_grad()
|
||||||
|
def apply_clip(module, clip_list):
|
||||||
|
"""
|
||||||
|
Applies element-wise clipping to the weight of a specific layer within a given module.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
module (nn.Module): The module containing the layer to be clipped.
|
||||||
|
clip_list (List[Tuple[str, torch.Tensor]]): A list of tuples containing:
|
||||||
|
* name (str): The name of the layer to be clipped, relative to the root of the module.
|
||||||
|
* max_val (torch.Tensor): A 1D or 2D tensor defining the upper bound for each element of the layer's weight.
|
||||||
|
"""
|
||||||
|
for name, max_val in clip_list:
|
||||||
|
layer = get_op_by_name(module, name)
|
||||||
|
layer.cuda()
|
||||||
|
max_val = max_val.to(layer.weight.device)
|
||||||
|
org_shape = layer.weight.shape
|
||||||
|
layer.weight.data = layer.weight.data.reshape(*max_val.shape[:2], -1)
|
||||||
|
layer.weight.data = torch.clamp(layer.weight.data, -max_val, max_val)
|
||||||
|
layer.weight.data = layer.weight.data.reshape(org_shape)
|
||||||
|
layer.cpu()
|
||||||
|
|
||||||
|
|
||||||
|
def add_scale_weights(model_path, scale_path, tmp_path):
|
||||||
|
"""
|
||||||
|
Adds pre-computed Activation Weight Quantization (AWQ) results to a model,
|
||||||
|
including scaling factors and clipping bounds.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
model_path (str): Path to the pre-trained model to be equipped with AWQ.
|
||||||
|
scale_path (str): Path to the AWQ scale factors (.pt file).
|
||||||
|
tmp_path (str): Path to the temporary directory where the equipped model will be saved.
|
||||||
|
"""
|
||||||
|
config = AutoConfig.from_pretrained(model_path, trust_remote_code=True)
|
||||||
|
model = AutoModelForCausalLM.from_pretrained(
|
||||||
|
model_path, config=config, trust_remote_code=True
|
||||||
|
)
|
||||||
|
model.eval()
|
||||||
|
awq_results = torch.load(str(scale_path), map_location="cpu")
|
||||||
|
apply_scale(model, awq_results["scale"])
|
||||||
|
apply_clip(model, awq_results["clip"])
|
||||||
|
model.save_pretrained(str(tmp_path))
|
||||||
|
os.system(f"cp {str(model_path)}/tokenizer* {str(tmp_path)}")
|
2
awq-py/requirements.txt
Normal file
2
awq-py/requirements.txt
Normal file
|
@ -0,0 +1,2 @@
|
||||||
|
torch>=2.0.0
|
||||||
|
transformers>=4.32.0
|
|
@ -45,7 +45,7 @@ class Model:
|
||||||
self.part_names = self._get_part_names()
|
self.part_names = self._get_part_names()
|
||||||
self.hparams = Model.load_hparams(self.dir_model)
|
self.hparams = Model.load_hparams(self.dir_model)
|
||||||
self.model_arch = self._get_model_architecture()
|
self.model_arch = self._get_model_architecture()
|
||||||
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess)
|
self.gguf_writer = gguf.GGUFWriter(fname_out, gguf.MODEL_ARCH_NAMES[self.model_arch], endianess=self.endianess, use_temp_file=False)
|
||||||
|
|
||||||
def set_vocab(self):
|
def set_vocab(self):
|
||||||
self._set_vocab_gpt2()
|
self._set_vocab_gpt2()
|
||||||
|
@ -58,7 +58,7 @@ class Model:
|
||||||
from safetensors import safe_open
|
from safetensors import safe_open
|
||||||
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
|
ctx = cast(ContextManager[Any], safe_open(self.dir_model / part_name, framework="pt", device="cpu"))
|
||||||
else:
|
else:
|
||||||
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", mmap=True, weights_only=True))
|
ctx = contextlib.nullcontext(torch.load(str(self.dir_model / part_name), map_location="cpu", weights_only=True))
|
||||||
|
|
||||||
with ctx as model_part:
|
with ctx as model_part:
|
||||||
for name in model_part.keys():
|
for name in model_part.keys():
|
||||||
|
@ -463,7 +463,11 @@ class MPTModel(Model):
|
||||||
data = data_torch.squeeze().numpy()
|
data = data_torch.squeeze().numpy()
|
||||||
|
|
||||||
# map tensor names
|
# map tensor names
|
||||||
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
if "scales" in name:
|
||||||
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias", ".scales"))
|
||||||
|
new_name = new_name.replace("scales", "act.scales")
|
||||||
|
else:
|
||||||
|
new_name = tensor_map.get_name(name, try_suffixes=(".weight", ".bias"))
|
||||||
if new_name is None:
|
if new_name is None:
|
||||||
print(f"Can not map tensor {name!r}")
|
print(f"Can not map tensor {name!r}")
|
||||||
sys.exit()
|
sys.exit()
|
||||||
|
@ -1094,6 +1098,9 @@ def parse_args() -> argparse.Namespace:
|
||||||
"--vocab-only", action="store_true",
|
"--vocab-only", action="store_true",
|
||||||
help="extract only the vocab",
|
help="extract only the vocab",
|
||||||
)
|
)
|
||||||
|
parser.add_argument(
|
||||||
|
"--awq-path", type=Path, default=None,
|
||||||
|
help="Path to scale awq cache file")
|
||||||
parser.add_argument(
|
parser.add_argument(
|
||||||
"--outfile", type=Path,
|
"--outfile", type=Path,
|
||||||
help="path to write to; default: based on input",
|
help="path to write to; default: based on input",
|
||||||
|
@ -1114,6 +1121,20 @@ def parse_args() -> argparse.Namespace:
|
||||||
args = parse_args()
|
args = parse_args()
|
||||||
|
|
||||||
dir_model = args.model
|
dir_model = args.model
|
||||||
|
|
||||||
|
if args.awq_path:
|
||||||
|
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
|
||||||
|
from awq.apply_awq import add_scale_weights
|
||||||
|
tmp_model_path = args.model / "weighted_model"
|
||||||
|
dir_model = tmp_model_path
|
||||||
|
if tmp_model_path.is_dir():
|
||||||
|
print(f"{tmp_model_path} exists as a weighted model.")
|
||||||
|
else:
|
||||||
|
tmp_model_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
print("Saving new weighted model ...")
|
||||||
|
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
||||||
|
print(f"Saved weighted model at {tmp_model_path}.")
|
||||||
|
|
||||||
if not dir_model.is_dir():
|
if not dir_model.is_dir():
|
||||||
print(f'Error: {args.model} is not a directory', file=sys.stderr)
|
print(f'Error: {args.model} is not a directory', file=sys.stderr)
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
24
convert.py
24
convert.py
|
@ -357,6 +357,7 @@ class VocabLoader:
|
||||||
for tok in self.tokenizer.all_special_tokens
|
for tok in self.tokenizer.all_special_tokens
|
||||||
}
|
}
|
||||||
self.special_ids: set[int] = set(self.tokenizer.all_special_ids)
|
self.special_ids: set[int] = set(self.tokenizer.all_special_ids)
|
||||||
|
self.reverse_vocab = {id: encoded_tok for encoded_tok, id in self.tokenizer.get_vocab().items()}
|
||||||
self.vocab_size_base: int = self.tokenizer.vocab_size
|
self.vocab_size_base: int = self.tokenizer.vocab_size
|
||||||
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_dict)
|
self.vocab_size: int = self.vocab_size_base + len(self.added_tokens_dict)
|
||||||
self.fname_tokenizer: Path = fname_tokenizer
|
self.fname_tokenizer: Path = fname_tokenizer
|
||||||
|
@ -370,15 +371,13 @@ class VocabLoader:
|
||||||
self.spm = None
|
self.spm = None
|
||||||
|
|
||||||
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
def hf_tokens(self) -> Iterable[tuple[bytes, float, gguf.TokenType]]:
|
||||||
tokenizer = self.tokenizer
|
|
||||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.get_vocab().items()}
|
|
||||||
added_tokens_ids = set(self.added_tokens_dict.values())
|
added_tokens_ids = set(self.added_tokens_dict.values())
|
||||||
|
|
||||||
for i in range(self.vocab_size_base):
|
for i in range(self.vocab_size_base):
|
||||||
if i in added_tokens_ids:
|
if i in added_tokens_ids:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
text = reverse_vocab[i].encode("utf-8")
|
text = self.reverse_vocab[i].encode("utf-8")
|
||||||
yield text, self.get_token_score(i), self.get_token_type(i)
|
yield text, self.get_token_score(i), self.get_token_type(i)
|
||||||
|
|
||||||
def get_token_type(self, token_id: int) -> gguf.TokenType:
|
def get_token_type(self, token_id: int) -> gguf.TokenType:
|
||||||
|
@ -394,10 +393,13 @@ class VocabLoader:
|
||||||
if self.spm.is_byte(token_id):
|
if self.spm.is_byte(token_id):
|
||||||
toktype = gguf.TokenType.BYTE
|
toktype = gguf.TokenType.BYTE
|
||||||
else:
|
else:
|
||||||
|
token = self.reverse_vocab[token_id]
|
||||||
if token_id == self.unk_token_id:
|
if token_id == self.unk_token_id:
|
||||||
toktype = gguf.TokenType.UNKNOWN
|
toktype = gguf.TokenType.UNKNOWN
|
||||||
if token_id in self.special_ids:
|
elif token_id in self.special_ids:
|
||||||
toktype = gguf.TokenType.CONTROL
|
toktype = gguf.TokenType.CONTROL
|
||||||
|
elif len(token) == 6 and token.startswith("<0x") and token.endswith(">"):
|
||||||
|
toktype = gguf.TokenType.BYTE
|
||||||
|
|
||||||
return toktype
|
return toktype
|
||||||
|
|
||||||
|
@ -1185,6 +1187,7 @@ def main(args_in: list[str] | None = None) -> None:
|
||||||
# We currently only support Q8_0 output on little endian systems.
|
# We currently only support Q8_0 output on little endian systems.
|
||||||
output_choices.append("q8_0")
|
output_choices.append("q8_0")
|
||||||
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
parser = argparse.ArgumentParser(description="Convert a LLaMa model to a GGML compatible file")
|
||||||
|
parser.add_argument("--awq-path", type=Path, help="Path to scale awq cache file", default=None)
|
||||||
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
parser.add_argument("--dump", action="store_true", help="don't convert, just show what's in the model")
|
||||||
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
parser.add_argument("--dump-single", action="store_true", help="don't convert, just show what's in a single model file")
|
||||||
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||||
|
@ -1198,6 +1201,19 @@ def main(args_in: list[str] | None = None) -> None:
|
||||||
parser.add_argument("--padvocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
parser.add_argument("--padvocab", action="store_true", help="add pad tokens when model vocab expects more than tokenizer metadata provides")
|
||||||
|
|
||||||
args = parser.parse_args(args_in)
|
args = parser.parse_args(args_in)
|
||||||
|
if args.awq_path:
|
||||||
|
sys.path.insert(1, str(Path(__file__).parent / 'awq-py'))
|
||||||
|
from awq.apply_awq import add_scale_weights
|
||||||
|
tmp_model_path = args.model / "weighted_model"
|
||||||
|
if tmp_model_path.is_dir():
|
||||||
|
print(f"{tmp_model_path} exists as a weighted model.")
|
||||||
|
else:
|
||||||
|
tmp_model_path.mkdir(parents=True, exist_ok=True)
|
||||||
|
print("Saving new weighted model ...")
|
||||||
|
add_scale_weights(str(args.model), str(args.awq_path), str(tmp_model_path))
|
||||||
|
print(f"Saved weighted model at {tmp_model_path}.")
|
||||||
|
args.model = tmp_model_path
|
||||||
|
|
||||||
if args.dump_single:
|
if args.dump_single:
|
||||||
model_plus = lazy_load_file(args.model)
|
model_plus = lazy_load_file(args.model)
|
||||||
do_dump_model(model_plus)
|
do_dump_model(model_plus)
|
||||||
|
|
|
@ -196,13 +196,13 @@ static const char * LLM_TENSOR_FFN_DOWN = "blk.%d.ffn_down";
|
||||||
static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
|
static const char * LLM_TENSOR_FFN_UP = "blk.%d.ffn_up";
|
||||||
|
|
||||||
static void print_params(struct my_llama_hparams * params) {
|
static void print_params(struct my_llama_hparams * params) {
|
||||||
printf("%s: n_vocab: %u\n", __func__, params->n_vocab);
|
printf("%s: n_vocab : %u\n", __func__, params->n_vocab);
|
||||||
printf("%s: n_ctx: %u\n", __func__, params->n_ctx);
|
printf("%s: n_ctx : %u\n", __func__, params->n_ctx);
|
||||||
printf("%s: n_embd: %u\n", __func__, params->n_embd);
|
printf("%s: n_embd : %u\n", __func__, params->n_embd);
|
||||||
printf("%s: n_ff: %u\n", __func__, params->n_ff);
|
printf("%s: n_ff : %u\n", __func__, params->n_ff);
|
||||||
printf("%s: n_head: %u\n", __func__, params->n_head);
|
printf("%s: n_head : %u\n", __func__, params->n_head);
|
||||||
printf("%s: n_head_kv: %u\n", __func__, params->n_head_kv);
|
printf("%s: n_head_kv : %u\n", __func__, params->n_head_kv);
|
||||||
printf("%s: n_layer: %u\n", __func__, params->n_layer);
|
printf("%s: n_layer : %u\n", __func__, params->n_layer);
|
||||||
printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps);
|
printf("%s: norm_rms_eps : %f\n", __func__, params->f_norm_rms_eps);
|
||||||
printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base);
|
printf("%s: rope_freq_base : %f\n", __func__, params->rope_freq_base);
|
||||||
printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale);
|
printf("%s: rope_freq_scale : %f\n", __func__, params->rope_freq_scale);
|
||||||
|
|
484
ggml-cuda.cu
484
ggml-cuda.cu
File diff suppressed because it is too large
Load diff
363
ggml-quants.c
363
ggml-quants.c
|
@ -407,6 +407,18 @@ inline static ggml_int8x16x4_t ggml_vld1q_s8_x4(const int8_t * ptr) {
|
||||||
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
#define ggml_vld1q_s8_x4 vld1q_s8_x4
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
|
#if !defined(__ARM_FEATURE_DOTPROD)
|
||||||
|
|
||||||
|
inline static int32x4_t vdotq_s32(int32x4_t acc, int8x16_t a, int8x16_t b) {
|
||||||
|
const int16x8_t p0 = vmull_s8(vget_low_s8 (a), vget_low_s8 (b));
|
||||||
|
const int16x8_t p1 = vmull_s8(vget_high_s8(a), vget_high_s8(b));
|
||||||
|
|
||||||
|
return vaddq_s32(acc, vaddq_s32(vpaddlq_s16(p0), vpaddlq_s16(p1)));
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
||||||
#endif
|
#endif
|
||||||
|
|
||||||
#if defined(__ARM_NEON) || defined(__wasm_simd128__)
|
#if defined(__ARM_NEON) || defined(__wasm_simd128__)
|
||||||
|
@ -2468,32 +2480,12 @@ void ggml_vec_dot_q4_0_q8_0(int n, float * restrict s, const void * restrict vx,
|
||||||
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
||||||
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
// dot product into int32x4_t
|
// dot product into int32x4_t
|
||||||
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
|
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0ls, v1_0l), v0_0hs, v1_0h);
|
||||||
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
|
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1ls, v1_1l), v0_1hs, v1_1h);
|
||||||
|
|
||||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
||||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
||||||
#else
|
|
||||||
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0ls), vget_low_s8 (v1_0l));
|
|
||||||
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0ls), vget_high_s8(v1_0l));
|
|
||||||
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hs), vget_low_s8 (v1_0h));
|
|
||||||
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hs), vget_high_s8(v1_0h));
|
|
||||||
|
|
||||||
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1ls), vget_low_s8 (v1_1l));
|
|
||||||
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1ls), vget_high_s8(v1_1l));
|
|
||||||
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hs), vget_low_s8 (v1_1h));
|
|
||||||
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hs), vget_high_s8(v1_1h));
|
|
||||||
|
|
||||||
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
|
||||||
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
|
||||||
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
|
||||||
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
|
||||||
|
|
||||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
|
||||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
|
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
|
||||||
|
@ -2776,32 +2768,12 @@ void ggml_vec_dot_q4_1_q8_1(const int n, float * restrict s, const void * restri
|
||||||
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
||||||
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
// dot product into int32x4_t
|
// dot product into int32x4_t
|
||||||
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
|
const int32x4_t p_0 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_0l, v1_0l), v0_0h, v1_0h);
|
||||||
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
|
const int32x4_t p_1 = vdotq_s32(vdotq_s32(vdupq_n_s32(0), v0_1l, v1_1l), v0_1h, v1_1h);
|
||||||
|
|
||||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(p_0), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
||||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(p_1), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
||||||
#else
|
|
||||||
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0l), vget_low_s8 (v1_0l));
|
|
||||||
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0l), vget_high_s8(v1_0l));
|
|
||||||
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0h), vget_low_s8 (v1_0h));
|
|
||||||
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0h), vget_high_s8(v1_0h));
|
|
||||||
|
|
||||||
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1l), vget_low_s8 (v1_1l));
|
|
||||||
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1l), vget_high_s8(v1_1l));
|
|
||||||
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1h), vget_low_s8 (v1_1h));
|
|
||||||
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1h), vget_high_s8(v1_1h));
|
|
||||||
|
|
||||||
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
|
||||||
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
|
||||||
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
|
||||||
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
|
||||||
|
|
||||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
|
||||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
|
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs;
|
||||||
|
@ -2963,32 +2935,12 @@ void ggml_vec_dot_q5_0_q8_0(const int n, float * restrict s, const void * restri
|
||||||
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
||||||
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
||||||
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
|
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
|
||||||
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
||||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
||||||
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
|
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
|
||||||
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
||||||
#else
|
|
||||||
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
|
|
||||||
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
|
|
||||||
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
|
|
||||||
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
|
|
||||||
|
|
||||||
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
|
|
||||||
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
|
|
||||||
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
|
|
||||||
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
|
|
||||||
|
|
||||||
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
|
||||||
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
|
||||||
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
|
||||||
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
|
||||||
|
|
||||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
|
||||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
|
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
|
||||||
|
@ -3275,32 +3227,12 @@ void ggml_vec_dot_q5_1_q8_1(const int n, float * restrict s, const void * restri
|
||||||
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
const int8x16_t v1_1l = vld1q_s8(y1->qs);
|
||||||
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
const int8x16_t v1_1h = vld1q_s8(y1->qs + 16);
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
||||||
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
|
vdotq_s32(vdupq_n_s32(0), v0_0lf, v1_0l),
|
||||||
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
vdotq_s32(vdupq_n_s32(0), v0_0hf, v1_0h))), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
||||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
||||||
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
|
vdotq_s32(vdupq_n_s32(0), v0_1lf, v1_1l),
|
||||||
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
vdotq_s32(vdupq_n_s32(0), v0_1hf, v1_1h))), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
||||||
#else
|
|
||||||
const int16x8_t pl0l = vmull_s8(vget_low_s8 (v0_0lf), vget_low_s8 (v1_0l));
|
|
||||||
const int16x8_t pl0h = vmull_s8(vget_high_s8(v0_0lf), vget_high_s8(v1_0l));
|
|
||||||
const int16x8_t ph0l = vmull_s8(vget_low_s8 (v0_0hf), vget_low_s8 (v1_0h));
|
|
||||||
const int16x8_t ph0h = vmull_s8(vget_high_s8(v0_0hf), vget_high_s8(v1_0h));
|
|
||||||
|
|
||||||
const int16x8_t pl1l = vmull_s8(vget_low_s8 (v0_1lf), vget_low_s8 (v1_1l));
|
|
||||||
const int16x8_t pl1h = vmull_s8(vget_high_s8(v0_1lf), vget_high_s8(v1_1l));
|
|
||||||
const int16x8_t ph1l = vmull_s8(vget_low_s8 (v0_1hf), vget_low_s8 (v1_1h));
|
|
||||||
const int16x8_t ph1h = vmull_s8(vget_high_s8(v0_1hf), vget_high_s8(v1_1h));
|
|
||||||
|
|
||||||
const int32x4_t pl0 = vaddq_s32(vpaddlq_s16(pl0l), vpaddlq_s16(pl0h));
|
|
||||||
const int32x4_t ph0 = vaddq_s32(vpaddlq_s16(ph0l), vpaddlq_s16(ph0h));
|
|
||||||
const int32x4_t pl1 = vaddq_s32(vpaddlq_s16(pl1l), vpaddlq_s16(pl1h));
|
|
||||||
const int32x4_t ph1 = vaddq_s32(vpaddlq_s16(ph1l), vpaddlq_s16(ph1h));
|
|
||||||
|
|
||||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(pl0, ph0)), GGML_FP16_TO_FP32(x0->d)*y0->d);
|
|
||||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(pl1, ph1)), GGML_FP16_TO_FP32(x1->d)*y1->d);
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
|
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1) + summs0 + summs1;
|
||||||
|
@ -3550,7 +3482,6 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri
|
||||||
const int8x16_t y1_0 = vld1q_s8(y1->qs);
|
const int8x16_t y1_0 = vld1q_s8(y1->qs);
|
||||||
const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
|
const int8x16_t y1_1 = vld1q_s8(y1->qs + 16);
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(
|
||||||
vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
|
vdotq_s32(vdupq_n_s32(0), x0_0, y0_0),
|
||||||
vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
vdotq_s32(vdupq_n_s32(0), x0_1, y0_1))), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
||||||
|
@ -3558,26 +3489,6 @@ void ggml_vec_dot_q8_0_q8_0(const int n, float * restrict s, const void * restri
|
||||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(
|
||||||
vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
|
vdotq_s32(vdupq_n_s32(0), x1_0, y1_0),
|
||||||
vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
vdotq_s32(vdupq_n_s32(0), x1_1, y1_1))), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
||||||
|
|
||||||
#else
|
|
||||||
const int16x8_t p0_0 = vmull_s8(vget_low_s8 (x0_0), vget_low_s8 (y0_0));
|
|
||||||
const int16x8_t p0_1 = vmull_s8(vget_high_s8(x0_0), vget_high_s8(y0_0));
|
|
||||||
const int16x8_t p0_2 = vmull_s8(vget_low_s8 (x0_1), vget_low_s8 (y0_1));
|
|
||||||
const int16x8_t p0_3 = vmull_s8(vget_high_s8(x0_1), vget_high_s8(y0_1));
|
|
||||||
|
|
||||||
const int16x8_t p1_0 = vmull_s8(vget_low_s8 (x1_0), vget_low_s8 (y1_0));
|
|
||||||
const int16x8_t p1_1 = vmull_s8(vget_high_s8(x1_0), vget_high_s8(y1_0));
|
|
||||||
const int16x8_t p1_2 = vmull_s8(vget_low_s8 (x1_1), vget_low_s8 (y1_1));
|
|
||||||
const int16x8_t p1_3 = vmull_s8(vget_high_s8(x1_1), vget_high_s8(y1_1));
|
|
||||||
|
|
||||||
const int32x4_t p0 = vaddq_s32(vpaddlq_s16(p0_0), vpaddlq_s16(p0_1));
|
|
||||||
const int32x4_t p1 = vaddq_s32(vpaddlq_s16(p0_2), vpaddlq_s16(p0_3));
|
|
||||||
const int32x4_t p2 = vaddq_s32(vpaddlq_s16(p1_0), vpaddlq_s16(p1_1));
|
|
||||||
const int32x4_t p3 = vaddq_s32(vpaddlq_s16(p1_2), vpaddlq_s16(p1_3));
|
|
||||||
|
|
||||||
sumv0 = vmlaq_n_f32(sumv0, vcvtq_f32_s32(vaddq_s32(p0, p1)), GGML_FP16_TO_FP32(x0->d)*GGML_FP16_TO_FP32(y0->d));
|
|
||||||
sumv1 = vmlaq_n_f32(sumv1, vcvtq_f32_s32(vaddq_s32(p2, p3)), GGML_FP16_TO_FP32(x1->d)*GGML_FP16_TO_FP32(y1->d));
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
|
*s = vaddvq_f32(sumv0) + vaddvq_f32(sumv1);
|
||||||
|
@ -3650,12 +3561,10 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
const int nb = n / QK_K;
|
const int nb = n / QK_K;
|
||||||
|
|
||||||
#ifdef __ARM_NEON
|
#ifdef __ARM_NEON
|
||||||
|
|
||||||
const uint8x16_t m3 = vdupq_n_u8(0x3);
|
const uint8x16_t m3 = vdupq_n_u8(0x3);
|
||||||
const uint8x16_t m4 = vdupq_n_u8(0xF);
|
const uint8x16_t m4 = vdupq_n_u8(0xF);
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
const int32x4_t vzero = vdupq_n_s32(0);
|
const int32x4_t vzero = vdupq_n_s32(0);
|
||||||
#endif
|
|
||||||
|
|
||||||
ggml_int8x16x2_t q2bytes;
|
ggml_int8x16x2_t q2bytes;
|
||||||
uint8_t aux[16];
|
uint8_t aux[16];
|
||||||
|
@ -3663,7 +3572,6 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
float sum = 0;
|
float sum = 0;
|
||||||
|
|
||||||
for (int i = 0; i < nb; ++i) {
|
for (int i = 0; i < nb; ++i) {
|
||||||
|
|
||||||
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
const float d = y[i].d * GGML_FP16_TO_FP32(x[i].d);
|
||||||
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
const float dmin = -y[i].d * GGML_FP16_TO_FP32(x[i].dmin);
|
||||||
|
|
||||||
|
@ -3689,20 +3597,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
|
|
||||||
// We use this macro instead of a function call because for some reason
|
// We use this macro instead of a function call because for some reason
|
||||||
// the code runs 2-3% slower, even if the function is declared inline
|
// the code runs 2-3% slower, even if the function is declared inline
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
#define MULTIPLY_ACCUM_WITH_SCALE(index)\
|
#define MULTIPLY_ACCUM_WITH_SCALE(index)\
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
|
isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * aux[is+(index)];\
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
|
isum += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * aux[is+1+(index)];
|
||||||
#else
|
|
||||||
#define MULTIPLY_ACCUM_WITH_SCALE(index)\
|
|
||||||
{\
|
|
||||||
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),\
|
|
||||||
vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));\
|
|
||||||
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),\
|
|
||||||
vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));\
|
|
||||||
isum += vaddvq_s16(p1) * aux[is+(index)] + vaddvq_s16(p2) * aux[is+1+(index)];\
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
|
|
||||||
#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
|
#define SHIFT_MULTIPLY_ACCUM_WITH_SCALE(shift, index)\
|
||||||
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
|
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;\
|
||||||
|
@ -3710,26 +3607,23 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
|
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits.val[1], (shift)), m3));\
|
||||||
MULTIPLY_ACCUM_WITH_SCALE((index));
|
MULTIPLY_ACCUM_WITH_SCALE((index));
|
||||||
|
|
||||||
|
|
||||||
for (int j = 0; j < QK_K/128; ++j) {
|
for (int j = 0; j < QK_K/128; ++j) {
|
||||||
|
|
||||||
const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
|
const ggml_uint8x16x2_t q2bits = ggml_vld1q_u8_x2(q2); q2 += 32;
|
||||||
|
|
||||||
ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
ggml_int8x16x2_t q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
||||||
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
|
q2bytes.val[0] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[0], m3));
|
||||||
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
|
q2bytes.val[1] = vreinterpretq_s8_u8(vandq_u8(q2bits.val[1], m3));
|
||||||
|
|
||||||
MULTIPLY_ACCUM_WITH_SCALE(0);
|
MULTIPLY_ACCUM_WITH_SCALE(0);
|
||||||
|
|
||||||
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
|
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(2, 2);
|
||||||
|
|
||||||
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
|
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(4, 4);
|
||||||
|
|
||||||
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
|
SHIFT_MULTIPLY_ACCUM_WITH_SCALE(6, 6);
|
||||||
|
|
||||||
is += 8;
|
is += 8;
|
||||||
}
|
}
|
||||||
sum += d * isum;
|
|
||||||
|
|
||||||
|
sum += d * isum;
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = sum;
|
*s = sum;
|
||||||
|
@ -4043,11 +3937,9 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
const int nb = n / QK_K;
|
const int nb = n / QK_K;
|
||||||
|
|
||||||
#ifdef __ARM_NEON
|
#ifdef __ARM_NEON
|
||||||
|
|
||||||
const uint8x16_t m3 = vdupq_n_u8(0x3);
|
const uint8x16_t m3 = vdupq_n_u8(0x3);
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
const int32x4_t vzero = vdupq_n_s32(0);
|
const int32x4_t vzero = vdupq_n_s32(0);
|
||||||
#endif
|
|
||||||
|
|
||||||
ggml_int8x16x4_t q2bytes;
|
ggml_int8x16x4_t q2bytes;
|
||||||
|
|
||||||
|
@ -4081,28 +3973,12 @@ void ggml_vec_dot_q2_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
|
q2bytes.val[2] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 4), m3));
|
||||||
q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
|
q2bytes.val[3] = vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q2bits, 6), m3));
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
|
isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[0], q8bytes.val[0])) * scales[0];
|
||||||
isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
|
isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[1], q8bytes.val[1])) * scales[1];
|
||||||
isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
|
isum1 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[2], q8bytes.val[2])) * scales[2];
|
||||||
isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
|
isum2 += vaddvq_s32(vdotq_s32(vzero, q2bytes.val[3], q8bytes.val[3])) * scales[3];
|
||||||
#else
|
|
||||||
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q2bytes.val[0]), vget_high_s8(q8bytes.val[0])));
|
|
||||||
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q2bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
|
||||||
isum1 += vaddvq_s16(p1) * scales[0];
|
|
||||||
isum2 += vaddvq_s16(p2) * scales[1];
|
|
||||||
|
|
||||||
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
|
|
||||||
vmull_s8(vget_high_s8(q2bytes.val[2]), vget_high_s8(q8bytes.val[2])));
|
|
||||||
const int16x8_t p4 = vaddq_s16(vmull_s8(vget_low_s8 (q2bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
|
|
||||||
vmull_s8(vget_high_s8(q2bytes.val[3]), vget_high_s8(q8bytes.val[3])));
|
|
||||||
isum1 += vaddvq_s16(p3) * scales[2];
|
|
||||||
isum2 += vaddvq_s16(p4) * scales[3];
|
|
||||||
#endif
|
|
||||||
sum += d * (isum1 + isum2);
|
sum += d * (isum1 + isum2);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = sum;
|
*s = sum;
|
||||||
|
@ -4328,9 +4204,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
uint32_t utmp[4];
|
uint32_t utmp[4];
|
||||||
|
|
||||||
const uint8x16_t m3b = vdupq_n_u8(0x3);
|
const uint8x16_t m3b = vdupq_n_u8(0x3);
|
||||||
#ifdef __ARM_FEATURE_DOTPROD
|
|
||||||
const int32x4_t vzero = vdupq_n_s32(0);
|
const int32x4_t vzero = vdupq_n_s32(0);
|
||||||
#endif
|
|
||||||
|
|
||||||
const uint8x16_t m0 = vdupq_n_u8(1);
|
const uint8x16_t m0 = vdupq_n_u8(1);
|
||||||
const uint8x16_t m1 = vshlq_n_u8(m0, 1);
|
const uint8x16_t m1 = vshlq_n_u8(m0, 1);
|
||||||
|
@ -4382,22 +4256,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
|
q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 2), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
|
||||||
q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
|
q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 2), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_1.val[0])) * scale[0];
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_1.val[1])) * scale[1];
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_1.val[2])) * scale[2];
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_1.val[3])) * scale[3];
|
||||||
#else
|
|
||||||
int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_1.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_1.val[0])));
|
|
||||||
int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_1.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_1.val[1])));
|
|
||||||
int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_1.val[2])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_1.val[2])));
|
|
||||||
int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_1.val[3])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_1.val[3])));
|
|
||||||
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
|
|
||||||
#endif
|
|
||||||
scale += 4;
|
scale += 4;
|
||||||
|
|
||||||
q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
|
q3h.val[0] = vbicq_u8(m2, qhbits.val[0]);
|
||||||
|
@ -4410,22 +4273,11 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
|
q3bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[0], 6), m3b)), vreinterpretq_s8_u8(q3h.val[2]));
|
||||||
q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
|
q3bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vandq_u8(vshrq_n_u8(q3bits.val[1], 6), m3b)), vreinterpretq_s8_u8(q3h.val[3]));
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes_2.val[0])) * scale[0];
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes_2.val[1])) * scale[1];
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes_2.val[2])) * scale[2];
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes_2.val[3])) * scale[3];
|
||||||
#else
|
|
||||||
p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes_2.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes_2.val[0])));
|
|
||||||
p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes_2.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes_2.val[1])));
|
|
||||||
p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes_2.val[2])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes_2.val[2])));
|
|
||||||
p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes_2.val[3])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes_2.val[3])));
|
|
||||||
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1] + vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
|
|
||||||
#endif
|
|
||||||
scale += 4;
|
scale += 4;
|
||||||
|
|
||||||
if (j == 0) {
|
if (j == 0) {
|
||||||
|
@ -4864,10 +4716,7 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
const int nb = n / QK_K;
|
const int nb = n / QK_K;
|
||||||
|
|
||||||
#ifdef __ARM_NEON
|
#ifdef __ARM_NEON
|
||||||
|
const int32x4_t vzero = vdupq_n_s32(0);
|
||||||
#ifdef __ARM_FEATURE_DOTPROD
|
|
||||||
const int32x4_t vzero = vdupq_n_s32(0);
|
|
||||||
#endif
|
|
||||||
|
|
||||||
const uint8x16_t m3b = vdupq_n_u8(0x3);
|
const uint8x16_t m3b = vdupq_n_u8(0x3);
|
||||||
const uint8x16_t mh = vdupq_n_u8(4);
|
const uint8x16_t mh = vdupq_n_u8(4);
|
||||||
|
@ -4908,22 +4757,10 @@ void ggml_vec_dot_q3_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
|
q3bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(vshrq_n_u8(q3bits, 4), m3b), q3h.val[2]));
|
||||||
q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
|
q3bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q3bits, 6), q3h.val[3]));
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[0], q8bytes.val[0])) * scales[0];
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[1], q8bytes.val[1])) * scales[2];
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[2], q8bytes.val[2])) * scales[1];
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
|
isum += vaddvq_s32(vdotq_s32(vzero, q3bytes.val[3], q8bytes.val[3])) * scales[3];
|
||||||
#else
|
|
||||||
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[0]), vget_high_s8(q8bytes.val[0])));
|
|
||||||
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
|
||||||
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[2]), vget_high_s8(q8bytes.val[2])));
|
|
||||||
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q3bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
|
|
||||||
vmull_s8(vget_high_s8(q3bytes.val[3]), vget_high_s8(q8bytes.val[3])));
|
|
||||||
isum += vaddvq_s16(p0) * scales[0] + vaddvq_s16(p1) * scales[2] + vaddvq_s16(p2) * scales[1] + vaddvq_s16(p3) * scales[3];
|
|
||||||
#endif
|
|
||||||
|
|
||||||
sum += d * isum;
|
sum += d * isum;
|
||||||
|
|
||||||
|
@ -5228,11 +5065,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
uint32_t utmp[4];
|
uint32_t utmp[4];
|
||||||
|
|
||||||
#ifdef __ARM_NEON
|
#ifdef __ARM_NEON
|
||||||
|
|
||||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||||
#ifdef __ARM_FEATURE_DOTPROD
|
|
||||||
const int32x4_t mzero = vdupq_n_s32(0);
|
const int32x4_t mzero = vdupq_n_s32(0);
|
||||||
#endif
|
|
||||||
|
|
||||||
ggml_int8x16x2_t q4bytes;
|
ggml_int8x16x2_t q4bytes;
|
||||||
ggml_int8x16x2_t q8bytes;
|
ggml_int8x16x2_t q8bytes;
|
||||||
|
@ -5269,10 +5103,8 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
int32_t sumi2 = 0;
|
int32_t sumi2 = 0;
|
||||||
|
|
||||||
for (int j = 0; j < QK_K/64; ++j) {
|
for (int j = 0; j < QK_K/64; ++j) {
|
||||||
|
|
||||||
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
|
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4); q4 += 32;
|
||||||
|
|
||||||
#ifdef __ARM_FEATURE_DOTPROD
|
|
||||||
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
||||||
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
|
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
|
||||||
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
|
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
|
||||||
|
@ -5287,26 +5119,6 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
|
const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[0]), q4bytes.val[1], q8bytes.val[1]);
|
||||||
|
|
||||||
sumi2 += vaddvq_s32(p2) * scales[2*j+1];
|
sumi2 += vaddvq_s32(p2) * scales[2*j+1];
|
||||||
#else
|
|
||||||
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
|
||||||
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
|
|
||||||
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
|
|
||||||
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
|
|
||||||
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
|
||||||
sumi1 += vaddvq_s16(vaddq_s16(p0, p1)) * scales[2*j+0];
|
|
||||||
|
|
||||||
q8bytes = ggml_vld1q_s8_x2(q8); q8 += 32;
|
|
||||||
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
|
|
||||||
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
|
|
||||||
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
|
|
||||||
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
|
||||||
sumi2 += vaddvq_s16(vaddq_s16(p2, p3)) * scales[2*j+1];
|
|
||||||
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
sumf += d * (sumi1 + sumi2);
|
sumf += d * (sumi1 + sumi2);
|
||||||
|
@ -5603,12 +5415,9 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
const int nb = n / QK_K;
|
const int nb = n / QK_K;
|
||||||
|
|
||||||
#ifdef __ARM_NEON
|
#ifdef __ARM_NEON
|
||||||
|
|
||||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||||
|
|
||||||
#ifdef __ARM_FEATURE_DOTPROD
|
|
||||||
const int32x4_t mzero = vdupq_n_s32(0);
|
const int32x4_t mzero = vdupq_n_s32(0);
|
||||||
#endif
|
|
||||||
|
|
||||||
float sumf = 0;
|
float sumf = 0;
|
||||||
|
|
||||||
|
@ -5636,7 +5445,6 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
|
|
||||||
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
|
const ggml_uint8x16x2_t q4bits = ggml_vld1q_u8_x2(q4);
|
||||||
|
|
||||||
#ifdef __ARM_FEATURE_DOTPROD
|
|
||||||
q8bytes = ggml_vld1q_s8_x4(q8);
|
q8bytes = ggml_vld1q_s8_x4(q8);
|
||||||
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
|
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
|
||||||
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
|
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
|
||||||
|
@ -5650,27 +5458,7 @@ void ggml_vec_dot_q4_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
|
const int32x4_t p2 = vdotq_s32(vdotq_s32(mzero, q4bytes.val[0], q8bytes.val[2]), q4bytes.val[1], q8bytes.val[3]);
|
||||||
const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
|
const int32_t sumi2 = vaddvq_s32(p2) * scales[1];
|
||||||
|
|
||||||
#else
|
|
||||||
q8bytes = ggml_vld1q_s8_x4(q8);
|
|
||||||
q4bytes.val[0] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[0], m4b));
|
|
||||||
q4bytes.val[1] = vreinterpretq_s8_u8(vandq_u8 (q4bits.val[1], m4b));
|
|
||||||
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[0])));
|
|
||||||
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
|
||||||
int32_t sumi1 = vaddvq_s16(vaddq_s16(p0, p1)) * scales[0];
|
|
||||||
|
|
||||||
q4bytes.val[0] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[0], 4));
|
|
||||||
q4bytes.val[1] = vreinterpretq_s8_u8(vshrq_n_u8(q4bits.val[1], 4));
|
|
||||||
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[0]), vget_low_s8 (q8bytes.val[2])),
|
|
||||||
vmull_s8(vget_high_s8(q4bytes.val[0]), vget_high_s8(q8bytes.val[2])));
|
|
||||||
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q4bytes.val[1]), vget_low_s8 (q8bytes.val[3])),
|
|
||||||
vmull_s8(vget_high_s8(q4bytes.val[1]), vget_high_s8(q8bytes.val[3])));
|
|
||||||
int32_t sumi2 = vaddvq_s16(vaddq_s16(p2, p3)) * scales[1];
|
|
||||||
|
|
||||||
#endif
|
|
||||||
sumf += d * (sumi1 + sumi2);
|
sumf += d * (sumi1 + sumi2);
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = sumf - sum_mins;
|
*s = sumf - sum_mins;
|
||||||
|
@ -5875,15 +5663,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
|
|
||||||
uint32_t utmp[4];
|
uint32_t utmp[4];
|
||||||
|
|
||||||
|
|
||||||
#ifdef __ARM_NEON
|
#ifdef __ARM_NEON
|
||||||
|
|
||||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||||
const uint8x16_t mone = vdupq_n_u8(1);
|
const uint8x16_t mone = vdupq_n_u8(1);
|
||||||
const uint8x16_t mtwo = vdupq_n_u8(2);
|
const uint8x16_t mtwo = vdupq_n_u8(2);
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
const int32x4_t mzero = vdupq_n_s32(0);
|
const int32x4_t mzero = vdupq_n_s32(0);
|
||||||
#endif
|
|
||||||
|
|
||||||
ggml_int8x16x4_t q5bytes;
|
ggml_int8x16x4_t q5bytes;
|
||||||
|
|
||||||
|
@ -5938,28 +5722,11 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
|
q5bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[0], 4), q5h.val[2]));
|
||||||
q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
|
q5bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q5bits.val[1], 4), q5h.val[3]));
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
|
|
||||||
sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
|
sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]), q5bytes.val[1], q8bytes.val[1])) * *scales++;
|
||||||
sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
|
sumi += vaddvq_s32(vdotq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]), q5bytes.val[3], q8bytes.val[3])) * *scales++;
|
||||||
#else
|
|
||||||
|
|
||||||
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
|
|
||||||
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
|
||||||
sumi += vaddvq_s16(vaddq_s16(p0, p1)) * *scales++;
|
|
||||||
|
|
||||||
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
|
|
||||||
vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
|
|
||||||
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
|
|
||||||
vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
|
|
||||||
sumi += vaddvq_s16(vaddq_s16(p2, p3)) * *scales++;
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
|
|
||||||
sumf += d * sumi - dmin * sumi_mins;
|
sumf += d * sumi - dmin * sumi_mins;
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = sumf;
|
*s = sumf;
|
||||||
|
@ -6311,12 +6078,9 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
const int nb = n / QK_K;
|
const int nb = n / QK_K;
|
||||||
|
|
||||||
#ifdef __ARM_NEON
|
#ifdef __ARM_NEON
|
||||||
|
|
||||||
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
const uint8x16_t m4b = vdupq_n_u8(0xf);
|
||||||
const uint8x16_t mh = vdupq_n_u8(16);
|
const uint8x16_t mh = vdupq_n_u8(16);
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
const int32x4_t mzero = vdupq_n_s32(0);
|
const int32x4_t mzero = vdupq_n_s32(0);
|
||||||
#endif
|
|
||||||
|
|
||||||
ggml_int8x16x4_t q5bytes;
|
ggml_int8x16x4_t q5bytes;
|
||||||
ggml_uint8x16x4_t q5h;
|
ggml_uint8x16x4_t q5h;
|
||||||
|
@ -6348,32 +6112,12 @@ void ggml_vec_dot_q5_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
|
q5bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[0], 4)), vreinterpretq_s8_u8(q5h.val[2]));
|
||||||
q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
|
q5bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vshrq_n_u8(q5bits.val[1], 4)), vreinterpretq_s8_u8(q5h.val[3]));
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
|
|
||||||
int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
|
int32_t sumi1 = sc[0] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[0], q8bytes.val[0]));
|
||||||
int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
|
int32_t sumi2 = sc[1] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[1], q8bytes.val[1]));
|
||||||
int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
|
int32_t sumi3 = sc[2] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[2], q8bytes.val[2]));
|
||||||
int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
|
int32_t sumi4 = sc[3] * vaddvq_s32(vdotq_s32(mzero, q5bytes.val[3], q8bytes.val[3]));
|
||||||
|
|
||||||
sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
|
sumf += d * (sumi1 + sumi2 + sumi3 + sumi4);
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
const int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q5bytes.val[0]), vget_high_s8(q8bytes.val[0])));
|
|
||||||
const int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q5bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
|
||||||
int32_t sumi = sc[0] * vaddvq_s16(p0) + sc[1] * vaddvq_s16(p1);
|
|
||||||
|
|
||||||
const int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
|
|
||||||
vmull_s8(vget_high_s8(q5bytes.val[2]), vget_high_s8(q8bytes.val[2])));
|
|
||||||
const int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q5bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
|
|
||||||
vmull_s8(vget_high_s8(q5bytes.val[3]), vget_high_s8(q8bytes.val[3])));
|
|
||||||
sumi += sc[2] * vaddvq_s16(p2) + sc[3] * vaddvq_s16(p3);
|
|
||||||
|
|
||||||
sumf += d*sumi;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
|
|
||||||
*s = sumf;
|
*s = sumf;
|
||||||
|
@ -6600,13 +6344,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
const int nb = n / QK_K;
|
const int nb = n / QK_K;
|
||||||
|
|
||||||
#ifdef __ARM_NEON
|
#ifdef __ARM_NEON
|
||||||
|
|
||||||
float sum = 0;
|
float sum = 0;
|
||||||
|
|
||||||
const uint8x16_t m4b = vdupq_n_u8(0xF);
|
const uint8x16_t m4b = vdupq_n_u8(0xF);
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
const int32x4_t vzero = vdupq_n_s32(0);
|
const int32x4_t vzero = vdupq_n_s32(0);
|
||||||
#endif
|
|
||||||
//const int8x16_t m32s = vdupq_n_s8(32);
|
//const int8x16_t m32s = vdupq_n_s8(32);
|
||||||
|
|
||||||
const uint8x16_t mone = vdupq_n_u8(3);
|
const uint8x16_t mone = vdupq_n_u8(3);
|
||||||
|
@ -6658,31 +6399,13 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
|
q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[2], m4b), q6h.val[2]));
|
||||||
q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
|
q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vandq_u8(q6bits.val[3], m4b), q6h.val[3]));
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
|
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
|
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
|
||||||
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
|
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
|
||||||
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
|
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
|
||||||
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
|
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
|
||||||
|
|
||||||
scale += 4;
|
scale += 4;
|
||||||
|
|
||||||
#else
|
|
||||||
|
|
||||||
int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
|
|
||||||
int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
|
||||||
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
|
|
||||||
scale += 2;
|
|
||||||
|
|
||||||
int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
|
|
||||||
int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
|
|
||||||
isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
|
|
||||||
scale += 2;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
|
q8bytes = ggml_vld1q_s8_x4(q8); q8 += 64;
|
||||||
|
|
||||||
shifted = vshrq_n_u8(qhbits.val[0], 4);
|
shifted = vshrq_n_u8(qhbits.val[0], 4);
|
||||||
|
@ -6703,34 +6426,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
|
q6bytes.val[2] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[2], 4), q6h.val[2]));
|
||||||
q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
|
q6bytes.val[3] = vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[3], 4), q6h.val[3]));
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
|
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
|
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
|
||||||
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
|
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
|
||||||
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
|
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
|
||||||
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
|
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
|
||||||
scale += 4;
|
scale += 4;
|
||||||
|
|
||||||
//for (int l = 0; l < 4; ++l) {
|
|
||||||
// const int32x4_t p = vdotq_s32(vzero, q6bytes.val[l], q8bytes.val[l]);
|
|
||||||
// isum += vaddvq_s32(p) * *scale++;
|
|
||||||
//}
|
|
||||||
#else
|
|
||||||
p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
|
|
||||||
p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
|
||||||
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
|
|
||||||
scale += 2;
|
|
||||||
|
|
||||||
p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
|
|
||||||
p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
|
|
||||||
isum += vaddvq_s16(p2) * scale[0] + vaddvq_s16(p3) * scale[1];
|
|
||||||
scale += 2;
|
|
||||||
#endif
|
|
||||||
|
|
||||||
}
|
}
|
||||||
//sum += isum * d_all * y[i].d;
|
//sum += isum * d_all * y[i].d;
|
||||||
sum += d_all * y[i].d * (isum - 32 * isum_mins);
|
sum += d_all * y[i].d * (isum - 32 * isum_mins);
|
||||||
|
@ -7076,14 +6776,11 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
const int nb = n / QK_K;
|
const int nb = n / QK_K;
|
||||||
|
|
||||||
#ifdef __ARM_NEON
|
#ifdef __ARM_NEON
|
||||||
|
|
||||||
float sum = 0;
|
float sum = 0;
|
||||||
|
|
||||||
const uint8x16_t m4b = vdupq_n_u8(0xF);
|
const uint8x16_t m4b = vdupq_n_u8(0xF);
|
||||||
const int8x16_t m32s = vdupq_n_s8(32);
|
const int8x16_t m32s = vdupq_n_s8(32);
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
const int32x4_t vzero = vdupq_n_s32(0);
|
const int32x4_t vzero = vdupq_n_s32(0);
|
||||||
#endif
|
|
||||||
|
|
||||||
const uint8x16_t mone = vdupq_n_u8(3);
|
const uint8x16_t mone = vdupq_n_u8(3);
|
||||||
|
|
||||||
|
@ -7119,26 +6816,10 @@ void ggml_vec_dot_q6_K_q8_K(const int n, float * restrict s, const void * restri
|
||||||
q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
|
q6bytes.val[2] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[0], 4), q6h.val[2])), m32s);
|
||||||
q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
|
q6bytes.val[3] = vsubq_s8(vreinterpretq_s8_u8(vorrq_u8(vshrq_n_u8(q6bits.val[1], 4), q6h.val[3])), m32s);
|
||||||
|
|
||||||
#if defined(__ARM_FEATURE_DOTPROD)
|
|
||||||
|
|
||||||
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
|
isum += vaddvq_s32(vdotq_s32(vzero, q6bytes.val[0], q8bytes.val[0])) * scale[0] +
|
||||||
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
|
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[1], q8bytes.val[1])) * scale[1] +
|
||||||
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
|
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[2], q8bytes.val[2])) * scale[2] +
|
||||||
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
|
vaddvq_s32(vdotq_s32(vzero, q6bytes.val[3], q8bytes.val[3])) * scale[3];
|
||||||
#else
|
|
||||||
|
|
||||||
int16x8_t p0 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[0]), vget_low_s8 (q8bytes.val[0])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[0]), vget_high_s8(q8bytes.val[0])));
|
|
||||||
int16x8_t p1 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[1]), vget_low_s8 (q8bytes.val[1])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[1]), vget_high_s8(q8bytes.val[1])));
|
|
||||||
isum += vaddvq_s16(p0) * scale[0] + vaddvq_s16(p1) * scale[1];
|
|
||||||
|
|
||||||
int16x8_t p2 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[2]), vget_low_s8 (q8bytes.val[2])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[2]), vget_high_s8(q8bytes.val[2])));
|
|
||||||
int16x8_t p3 = vaddq_s16(vmull_s8(vget_low_s8 (q6bytes.val[3]), vget_low_s8 (q8bytes.val[3])),
|
|
||||||
vmull_s8(vget_high_s8(q6bytes.val[3]), vget_high_s8(q8bytes.val[3])));
|
|
||||||
isum += vaddvq_s16(p2) * scale[2] + vaddvq_s16(p3) * scale[3];
|
|
||||||
#endif
|
|
||||||
|
|
||||||
sum += isum * d_all * y[i].d;
|
sum += isum * d_all * y[i].d;
|
||||||
|
|
||||||
|
|
7
ggml.c
7
ggml.c
|
@ -4041,7 +4041,6 @@ static struct ggml_tensor * ggml_group_norm_impl(
|
||||||
result->op = GGML_OP_GROUP_NORM;
|
result->op = GGML_OP_GROUP_NORM;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
result->src[0] = a;
|
result->src[0] = a;
|
||||||
result->src[1] = NULL; // TODO: maybe store epsilon here?
|
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
@ -5541,7 +5540,6 @@ static struct ggml_tensor * ggml_upscale_impl(
|
||||||
result->op_params[0] = scale_factor;
|
result->op_params[0] = scale_factor;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
result->src[0] = a;
|
result->src[0] = a;
|
||||||
result->src[1] = NULL;
|
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
@ -5846,7 +5844,6 @@ struct ggml_tensor * ggml_get_rel_pos(
|
||||||
result->op = GGML_OP_GET_REL_POS;
|
result->op = GGML_OP_GET_REL_POS;
|
||||||
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
result->grad = is_node ? ggml_dup_tensor(ctx, result) : NULL;
|
||||||
result->src[0] = a;
|
result->src[0] = a;
|
||||||
result->src[1] = NULL;
|
|
||||||
|
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
@ -17456,9 +17453,9 @@ static void ggml_opt_acc_grad(int np, struct ggml_tensor * const ps[], float * g
|
||||||
}
|
}
|
||||||
|
|
||||||
//
|
//
|
||||||
// ADAM
|
// Using AdamW - ref: https://arxiv.org/pdf/1711.05101v3.pdf
|
||||||
//
|
//
|
||||||
// ref: https://arxiv.org/pdf/1412.6980.pdf
|
// (Original Adam - ref: https://arxiv.org/pdf/1412.6980.pdf)
|
||||||
//
|
//
|
||||||
|
|
||||||
static enum ggml_opt_result ggml_opt_adam(
|
static enum ggml_opt_result ggml_opt_adam(
|
||||||
|
|
|
@ -120,6 +120,7 @@ class MODEL_TENSOR(IntEnum):
|
||||||
FFN_GATE = auto()
|
FFN_GATE = auto()
|
||||||
FFN_DOWN = auto()
|
FFN_DOWN = auto()
|
||||||
FFN_UP = auto()
|
FFN_UP = auto()
|
||||||
|
FFN_ACT = auto()
|
||||||
FFN_GATE_EXP = auto()
|
FFN_GATE_EXP = auto()
|
||||||
FFN_DOWN_EXP = auto()
|
FFN_DOWN_EXP = auto()
|
||||||
FFN_UP_EXP = auto()
|
FFN_UP_EXP = auto()
|
||||||
|
@ -169,6 +170,7 @@ TENSOR_NAMES: dict[MODEL_TENSOR, str] = {
|
||||||
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
MODEL_TENSOR.FFN_GATE: "blk.{bid}.ffn_gate",
|
||||||
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
MODEL_TENSOR.FFN_DOWN: "blk.{bid}.ffn_down",
|
||||||
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
MODEL_TENSOR.FFN_UP: "blk.{bid}.ffn_up",
|
||||||
|
MODEL_TENSOR.FFN_ACT: "blk.{bid}.ffn",
|
||||||
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
|
MODEL_TENSOR.FFN_GATE_EXP: "blk.{bid}.ffn_gate.{xid}",
|
||||||
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
|
MODEL_TENSOR.FFN_DOWN_EXP: "blk.{bid}.ffn_down.{xid}",
|
||||||
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
|
MODEL_TENSOR.FFN_UP_EXP: "blk.{bid}.ffn_up.{xid}",
|
||||||
|
@ -269,6 +271,7 @@ MODEL_TENSORS: dict[MODEL_ARCH, list[MODEL_TENSOR]] = {
|
||||||
MODEL_TENSOR.FFN_NORM,
|
MODEL_TENSOR.FFN_NORM,
|
||||||
MODEL_TENSOR.FFN_DOWN,
|
MODEL_TENSOR.FFN_DOWN,
|
||||||
MODEL_TENSOR.FFN_UP,
|
MODEL_TENSOR.FFN_UP,
|
||||||
|
MODEL_TENSOR.FFN_ACT,
|
||||||
],
|
],
|
||||||
MODEL_ARCH.GPTJ: [
|
MODEL_ARCH.GPTJ: [
|
||||||
MODEL_TENSOR.TOKEN_EMBD,
|
MODEL_TENSOR.TOKEN_EMBD,
|
||||||
|
|
|
@ -188,6 +188,11 @@ class TensorNameMap:
|
||||||
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
|
"model.layers.{bid}.block_sparse_moe.experts.{xid}.w3", # mixtral
|
||||||
),
|
),
|
||||||
|
|
||||||
|
# AWQ-activation gate
|
||||||
|
MODEL_TENSOR.FFN_ACT: (
|
||||||
|
"transformer.blocks.{bid}.ffn.act", # mpt
|
||||||
|
),
|
||||||
|
|
||||||
# Feed-forward gate
|
# Feed-forward gate
|
||||||
MODEL_TENSOR.FFN_GATE: (
|
MODEL_TENSOR.FFN_GATE: (
|
||||||
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
"model.layers.{bid}.mlp.gate_proj", # llama-hf refact
|
||||||
|
|
30
llama.cpp
30
llama.cpp
|
@ -354,6 +354,7 @@ enum llm_tensor {
|
||||||
LLM_TENSOR_FFN_GATE,
|
LLM_TENSOR_FFN_GATE,
|
||||||
LLM_TENSOR_FFN_DOWN,
|
LLM_TENSOR_FFN_DOWN,
|
||||||
LLM_TENSOR_FFN_UP,
|
LLM_TENSOR_FFN_UP,
|
||||||
|
LLM_TENSOR_FFN_ACT,
|
||||||
LLM_TENSOR_FFN_DOWN_EXP,
|
LLM_TENSOR_FFN_DOWN_EXP,
|
||||||
LLM_TENSOR_FFN_GATE_EXP,
|
LLM_TENSOR_FFN_GATE_EXP,
|
||||||
LLM_TENSOR_FFN_UP_EXP,
|
LLM_TENSOR_FFN_UP_EXP,
|
||||||
|
@ -473,6 +474,7 @@ static std::map<llm_arch, std::map<llm_tensor, std::string>> LLM_TENSOR_NAMES =
|
||||||
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
{ LLM_TENSOR_ATTN_OUT, "blk.%d.attn_output" },
|
||||||
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
{ LLM_TENSOR_FFN_DOWN, "blk.%d.ffn_down" },
|
||||||
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
{ LLM_TENSOR_FFN_UP, "blk.%d.ffn_up" },
|
||||||
|
{ LLM_TENSOR_FFN_ACT, "blk.%d.ffn.act" },
|
||||||
},
|
},
|
||||||
},
|
},
|
||||||
{
|
{
|
||||||
|
@ -1285,6 +1287,7 @@ struct llama_hparams {
|
||||||
float f_clamp_kqv;
|
float f_clamp_kqv;
|
||||||
float f_max_alibi_bias;
|
float f_max_alibi_bias;
|
||||||
|
|
||||||
|
|
||||||
bool operator!=(const llama_hparams & other) const {
|
bool operator!=(const llama_hparams & other) const {
|
||||||
if (this->vocab_only != other.vocab_only) return true;
|
if (this->vocab_only != other.vocab_only) return true;
|
||||||
if (this->n_vocab != other.n_vocab) return true;
|
if (this->n_vocab != other.n_vocab) return true;
|
||||||
|
@ -1388,6 +1391,7 @@ struct llama_layer {
|
||||||
// ff bias
|
// ff bias
|
||||||
struct ggml_tensor * ffn_down_b; // b2
|
struct ggml_tensor * ffn_down_b; // b2
|
||||||
struct ggml_tensor * ffn_up_b; // b3
|
struct ggml_tensor * ffn_up_b; // b3
|
||||||
|
struct ggml_tensor * ffn_act;
|
||||||
};
|
};
|
||||||
|
|
||||||
struct llama_kv_cell {
|
struct llama_kv_cell {
|
||||||
|
@ -3472,7 +3476,6 @@ static bool llm_load_tensors(
|
||||||
case LLM_ARCH_MPT:
|
case LLM_ARCH_MPT:
|
||||||
{
|
{
|
||||||
model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
model.tok_embd = ml.create_tensor(ctx, tn(LLM_TENSOR_TOKEN_EMBD, "weight"), {n_embd, n_vocab}, GGML_BACKEND_CPU);
|
||||||
|
|
||||||
// output
|
// output
|
||||||
{
|
{
|
||||||
ggml_backend_type backend_norm;
|
ggml_backend_type backend_norm;
|
||||||
|
@ -3510,6 +3513,9 @@ static bool llm_load_tensors(
|
||||||
|
|
||||||
layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
|
layer.ffn_down = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_DOWN, "weight", i), { n_ff, n_embd}, backend_split);
|
||||||
layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
layer.ffn_up = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_UP, "weight", i), {n_embd, n_ff}, backend_split);
|
||||||
|
|
||||||
|
// AWQ ScaleActivation layer
|
||||||
|
layer.ffn_act = ml.create_tensor(ctx, tn(LLM_TENSOR_FFN_ACT, "scales", i), {n_ff}, backend, false);
|
||||||
}
|
}
|
||||||
} break;
|
} break;
|
||||||
case LLM_ARCH_STABLELM:
|
case LLM_ARCH_STABLELM:
|
||||||
|
@ -4040,6 +4046,7 @@ static struct ggml_tensor * llm_build_ffn(
|
||||||
struct ggml_tensor * gate_b,
|
struct ggml_tensor * gate_b,
|
||||||
struct ggml_tensor * down,
|
struct ggml_tensor * down,
|
||||||
struct ggml_tensor * down_b,
|
struct ggml_tensor * down_b,
|
||||||
|
struct ggml_tensor * act_scales,
|
||||||
llm_ffn_op_type type_op,
|
llm_ffn_op_type type_op,
|
||||||
llm_ffn_gate_type type_gate,
|
llm_ffn_gate_type type_gate,
|
||||||
const llm_build_cb & cb,
|
const llm_build_cb & cb,
|
||||||
|
@ -4084,6 +4091,10 @@ static struct ggml_tensor * llm_build_ffn(
|
||||||
{
|
{
|
||||||
cur = ggml_gelu(ctx, cur);
|
cur = ggml_gelu(ctx, cur);
|
||||||
cb(cur, "ffn_gelu", il);
|
cb(cur, "ffn_gelu", il);
|
||||||
|
if (act_scales != NULL) {
|
||||||
|
cur = ggml_div(ctx, cur, act_scales);
|
||||||
|
cb(cur, "ffn_act", il);
|
||||||
|
}
|
||||||
} break;
|
} break;
|
||||||
case LLM_FFN_RELU:
|
case LLM_FFN_RELU:
|
||||||
{
|
{
|
||||||
|
@ -4402,6 +4413,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, NULL,
|
model.layers[il].ffn_up, NULL,
|
||||||
model.layers[il].ffn_gate, NULL,
|
model.layers[il].ffn_gate, NULL,
|
||||||
model.layers[il].ffn_down, NULL,
|
model.layers[il].ffn_down, NULL,
|
||||||
|
NULL,
|
||||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
} else {
|
} else {
|
||||||
|
@ -4581,6 +4593,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, NULL,
|
model.layers[il].ffn_up, NULL,
|
||||||
model.layers[il].ffn_gate, NULL,
|
model.layers[il].ffn_gate, NULL,
|
||||||
model.layers[il].ffn_down, NULL,
|
model.layers[il].ffn_down, NULL,
|
||||||
|
NULL,
|
||||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -4695,6 +4708,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, NULL,
|
model.layers[il].ffn_up, NULL,
|
||||||
NULL, NULL,
|
NULL, NULL,
|
||||||
model.layers[il].ffn_down, NULL,
|
model.layers[il].ffn_down, NULL,
|
||||||
|
NULL,
|
||||||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -4799,6 +4813,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
||||||
NULL, NULL,
|
NULL, NULL,
|
||||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
||||||
|
NULL,
|
||||||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -5003,6 +5018,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
||||||
NULL, NULL,
|
NULL, NULL,
|
||||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
||||||
|
NULL,
|
||||||
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
|
LLM_FFN_RELU_SQR, LLM_FFN_SEQ, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -5089,6 +5105,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, NULL,
|
model.layers[il].ffn_up, NULL,
|
||||||
model.layers[il].ffn_gate, NULL,
|
model.layers[il].ffn_gate, NULL,
|
||||||
model.layers[il].ffn_down, NULL,
|
model.layers[il].ffn_down, NULL,
|
||||||
|
NULL,
|
||||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -5184,6 +5201,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
||||||
NULL, NULL,
|
NULL, NULL,
|
||||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
||||||
|
NULL,
|
||||||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -5269,11 +5287,11 @@ struct llm_build_context {
|
||||||
NULL,
|
NULL,
|
||||||
LLM_NORM, cb, il);
|
LLM_NORM, cb, il);
|
||||||
cb(cur, "ffn_norm", il);
|
cb(cur, "ffn_norm", il);
|
||||||
|
|
||||||
cur = llm_build_ffn(ctx0, cur,
|
cur = llm_build_ffn(ctx0, cur,
|
||||||
model.layers[il].ffn_up, NULL,
|
model.layers[il].ffn_up, NULL,
|
||||||
NULL, NULL,
|
NULL, NULL,
|
||||||
model.layers[il].ffn_down, NULL,
|
model.layers[il].ffn_down, NULL,
|
||||||
|
model.layers[il].ffn_act,
|
||||||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -5382,6 +5400,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, NULL,
|
model.layers[il].ffn_up, NULL,
|
||||||
model.layers[il].ffn_gate, NULL,
|
model.layers[il].ffn_gate, NULL,
|
||||||
model.layers[il].ffn_down, NULL,
|
model.layers[il].ffn_down, NULL,
|
||||||
|
NULL,
|
||||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -5494,6 +5513,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, NULL,
|
model.layers[il].ffn_up, NULL,
|
||||||
model.layers[il].ffn_gate, NULL,
|
model.layers[il].ffn_gate, NULL,
|
||||||
model.layers[il].ffn_down, NULL,
|
model.layers[il].ffn_down, NULL,
|
||||||
|
NULL,
|
||||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -5601,6 +5621,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
model.layers[il].ffn_up, model.layers[il].ffn_up_b,
|
||||||
NULL, NULL,
|
NULL, NULL,
|
||||||
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
model.layers[il].ffn_down, model.layers[il].ffn_down_b,
|
||||||
|
NULL,
|
||||||
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
LLM_FFN_GELU, LLM_FFN_SEQ, cb, il);
|
||||||
cb(ffn_output, "ffn_out", il);
|
cb(ffn_output, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -5704,6 +5725,7 @@ struct llm_build_context {
|
||||||
model.layers[il].ffn_up, NULL,
|
model.layers[il].ffn_up, NULL,
|
||||||
model.layers[il].ffn_gate, NULL,
|
model.layers[il].ffn_gate, NULL,
|
||||||
model.layers[il].ffn_down, NULL,
|
model.layers[il].ffn_down, NULL,
|
||||||
|
NULL,
|
||||||
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
LLM_FFN_SILU, LLM_FFN_PAR, cb, il);
|
||||||
cb(cur, "ffn_out", il);
|
cb(cur, "ffn_out", il);
|
||||||
}
|
}
|
||||||
|
@ -5888,6 +5910,7 @@ static const std::unordered_map<const char *, llm_offload_func_e> k_offload_map
|
||||||
{ "ffn_gate", OFFLOAD_FUNC },
|
{ "ffn_gate", OFFLOAD_FUNC },
|
||||||
{ "ffn_gate_b", OFFLOAD_FUNC },
|
{ "ffn_gate_b", OFFLOAD_FUNC },
|
||||||
{ "ffn_gate_par", OFFLOAD_FUNC },
|
{ "ffn_gate_par", OFFLOAD_FUNC },
|
||||||
|
{ "ffn_act", OFFLOAD_FUNC },
|
||||||
{ "ffn_down", OFFLOAD_FUNC },
|
{ "ffn_down", OFFLOAD_FUNC },
|
||||||
{ "ffn_down_b", OFFLOAD_FUNC },
|
{ "ffn_down_b", OFFLOAD_FUNC },
|
||||||
{ "ffn_out", OFFLOAD_FUNC },
|
{ "ffn_out", OFFLOAD_FUNC },
|
||||||
|
@ -9520,7 +9543,8 @@ struct llama_context * llama_new_context_with_model(
|
||||||
ctx->alloc = ggml_allocr_new_from_buffer(ctx->buf_alloc);
|
ctx->alloc = ggml_allocr_new_from_buffer(ctx->buf_alloc);
|
||||||
#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST)
|
#if defined(GGML_USE_CUBLAS) && !defined(LLAMA_GGML_BACKEND_CUDA_TEST)
|
||||||
if (model->n_gpu_layers > 0) {
|
if (model->n_gpu_layers > 0) {
|
||||||
ggml_cuda_set_scratch_size(alloc_size);
|
// the CPU buffer adds this padding in case the malloc buffer is not aligned, so we need to do the same for the GPU buffer, since we use the same offsets
|
||||||
|
ggml_cuda_set_scratch_size(alloc_size + 64);
|
||||||
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
|
LLAMA_LOG_INFO("%s: VRAM scratch buffer: %.2f MiB\n", __func__, alloc_size / 1024.0 / 1024.0);
|
||||||
|
|
||||||
// calculate total VRAM usage
|
// calculate total VRAM usage
|
||||||
|
|
131
scripts/sync-ggml-am.sh
Executable file
131
scripts/sync-ggml-am.sh
Executable file
|
@ -0,0 +1,131 @@
|
||||||
|
#!/bin/bash
|
||||||
|
#
|
||||||
|
# Synchronize ggml changes to llama.cpp
|
||||||
|
#
|
||||||
|
# Usage:
|
||||||
|
#
|
||||||
|
# $ cd /path/to/llama.cpp
|
||||||
|
# $ ./scripts/sync-ggml-am.sh
|
||||||
|
#
|
||||||
|
|
||||||
|
set -e
|
||||||
|
|
||||||
|
sd=$(dirname $0)
|
||||||
|
cd $sd/../
|
||||||
|
|
||||||
|
SRC_LLAMA=$(pwd)
|
||||||
|
SRC_GGML=$(cd ../ggml; pwd)
|
||||||
|
|
||||||
|
if [ ! -d $SRC_GGML ]; then
|
||||||
|
echo "ggml not found at $SRC_GGML"
|
||||||
|
exit 1
|
||||||
|
fi
|
||||||
|
|
||||||
|
lc=$(cat $SRC_LLAMA/scripts/sync-ggml.last)
|
||||||
|
echo "Syncing ggml changes since commit $lc"
|
||||||
|
|
||||||
|
cd $SRC_GGML
|
||||||
|
|
||||||
|
git log --oneline $lc..HEAD
|
||||||
|
|
||||||
|
git format-patch $lc --stdout -- \
|
||||||
|
include/ggml/ggml*.h \
|
||||||
|
src/ggml*.h \
|
||||||
|
src/ggml*.c \
|
||||||
|
src/ggml*.cpp \
|
||||||
|
src/ggml*.m \
|
||||||
|
src/ggml*.metal \
|
||||||
|
src/ggml*.cu \
|
||||||
|
tests/test-opt.cpp \
|
||||||
|
tests/test-grad0.cpp \
|
||||||
|
tests/test-quantize-fns.cpp \
|
||||||
|
tests/test-quantize-perf.cpp \
|
||||||
|
tests/test-backend-ops.cpp \
|
||||||
|
> $SRC_LLAMA/ggml-src.patch
|
||||||
|
|
||||||
|
# delete files if empty
|
||||||
|
if [ ! -s $SRC_LLAMA/ggml-src.patch ]; then
|
||||||
|
rm -v $SRC_LLAMA/ggml-src.patch
|
||||||
|
fi
|
||||||
|
|
||||||
|
cd $SRC_LLAMA
|
||||||
|
|
||||||
|
if [ -f $SRC_LLAMA/ggml-src.patch ]; then
|
||||||
|
# replace PR numbers
|
||||||
|
#
|
||||||
|
# Subject: some text (#1234)
|
||||||
|
# Subject: some text (ggml/1234)
|
||||||
|
cat ggml-src.patch | sed -e 's/^Subject: \(.*\) (#\([0-9]*\))/Subject: \1 (ggml\/\2)/' > ggml-src.patch.tmp
|
||||||
|
mv ggml-src.patch.tmp ggml-src.patch
|
||||||
|
|
||||||
|
cat ggml-src.patch | sed -e 's/^\(.*\) (#\([0-9]*\))$/\1 (ggml\/\2)/' > ggml-src.patch.tmp
|
||||||
|
mv ggml-src.patch.tmp ggml-src.patch
|
||||||
|
|
||||||
|
# replace filenames:
|
||||||
|
#
|
||||||
|
# src/ggml.c -> ggml.c
|
||||||
|
# src/ggml-alloc.c -> ggml-alloc.c
|
||||||
|
# src/ggml-backend-impl.h -> ggml-backend-impl.h
|
||||||
|
# src/ggml-backend.c -> ggml-backend.c
|
||||||
|
# src/ggml-cuda.cu -> ggml-cuda.cu
|
||||||
|
# src/ggml-cuda.h -> ggml-cuda.h
|
||||||
|
# src/ggml-impl.h -> ggml-impl.h
|
||||||
|
# src/ggml-metal.h -> ggml-metal.h
|
||||||
|
# src/ggml-metal.m -> ggml-metal.m
|
||||||
|
# src/ggml-metal.metal -> ggml-metal.metal
|
||||||
|
# src/ggml-mpi.h -> ggml-mpi.h
|
||||||
|
# src/ggml-mpi.c -> ggml-mpi.c
|
||||||
|
# src/ggml-opencl.cpp -> ggml-opencl.cpp
|
||||||
|
# src/ggml-opencl.h -> ggml-opencl.h
|
||||||
|
# src/ggml-quants.c -> ggml-quants.c
|
||||||
|
# src/ggml-quants.h -> ggml-quants.h
|
||||||
|
# include/ggml/ggml.h -> ggml.h
|
||||||
|
# include/ggml/ggml-alloc.h -> ggml-alloc.h
|
||||||
|
# include/ggml/ggml-backend.h -> ggml-backend.h
|
||||||
|
#
|
||||||
|
# tests/test-opt.cpp -> tests/test-opt.cpp
|
||||||
|
# tests/test-grad0.cpp -> tests/test-grad0.cpp
|
||||||
|
# tests/test-quantize-fns.cpp -> tests/test-quantize-fns.cpp
|
||||||
|
# tests/test-quantize-perf.cpp -> tests/test-quantize-perf.cpp
|
||||||
|
# tests/test-backend-ops.cpp -> tests/test-backend-ops.cpp
|
||||||
|
|
||||||
|
cat ggml-src.patch | sed \
|
||||||
|
-e 's/src\/ggml\.c/ggml.c/g' \
|
||||||
|
-e 's/src\/ggml-alloc\.c/ggml-alloc.c/g' \
|
||||||
|
-e 's/src\/ggml-backend-impl\.h/ggml-backend-impl.h/g' \
|
||||||
|
-e 's/src\/ggml-backend\.c/ggml-backend.c/g' \
|
||||||
|
-e 's/src\/ggml-cuda\.cu/ggml-cuda.cu/g' \
|
||||||
|
-e 's/src\/ggml-cuda\.h/ggml-cuda.h/g' \
|
||||||
|
-e 's/src\/ggml-impl\.h/ggml-impl.h/g' \
|
||||||
|
-e 's/src\/ggml-metal\.h/ggml-metal.h/g' \
|
||||||
|
-e 's/src\/ggml-metal\.m/ggml-metal.m/g' \
|
||||||
|
-e 's/src\/ggml-metal\.metal/ggml-metal.metal/g' \
|
||||||
|
-e 's/src\/ggml-mpi\.h/ggml-mpi.h/g' \
|
||||||
|
-e 's/src\/ggml-mpi\.c/ggml-mpi.c/g' \
|
||||||
|
-e 's/src\/ggml-opencl\.cpp/ggml-opencl.cpp/g' \
|
||||||
|
-e 's/src\/ggml-opencl\.h/ggml-opencl.h/g' \
|
||||||
|
-e 's/src\/ggml-quants\.c/ggml-quants.c/g' \
|
||||||
|
-e 's/src\/ggml-quants\.h/ggml-quants.h/g' \
|
||||||
|
-e 's/include\/ggml\/ggml\.h/ggml.h/g' \
|
||||||
|
-e 's/include\/ggml\/ggml-alloc\.h/ggml-alloc.h/g' \
|
||||||
|
-e 's/include\/ggml\/ggml-backend\.h/ggml-backend.h/g' \
|
||||||
|
-e 's/tests\/test-opt\.cpp/tests\/test-opt.cpp/g' \
|
||||||
|
-e 's/tests\/test-grad0\.cpp/tests\/test-grad0.cpp/g' \
|
||||||
|
-e 's/tests\/test-quantize-fns\.cpp/tests\/test-quantize-fns.cpp/g' \
|
||||||
|
-e 's/tests\/test-quantize-perf\.cpp/tests\/test-quantize-perf.cpp/g' \
|
||||||
|
-e 's/tests\/test-backend-ops\.cpp/tests\/test-backend-ops.cpp/g' \
|
||||||
|
> ggml-src.patch.tmp
|
||||||
|
mv ggml-src.patch.tmp ggml-src.patch
|
||||||
|
|
||||||
|
git am ggml-src.patch
|
||||||
|
|
||||||
|
rm -v $SRC_LLAMA/ggml-src.patch
|
||||||
|
fi
|
||||||
|
|
||||||
|
# update last commit
|
||||||
|
cd $SRC_GGML
|
||||||
|
git log -1 --format=%H > $SRC_LLAMA/scripts/sync-ggml.last
|
||||||
|
|
||||||
|
echo "Done"
|
||||||
|
|
||||||
|
exit 0
|
1
scripts/sync-ggml.last
Normal file
1
scripts/sync-ggml.last
Normal file
|
@ -0,0 +1 @@
|
||||||
|
76e7f47b69e8334384dc718480c496dafbd47999
|
Loading…
Add table
Add a link
Reference in a new issue