llama : dynamic temperature sampling (#4972)

* implemented dynamic temperature sampling from koboldcpp

* removed trailing whitespace

* removed unused temp parameter in llama_sample_entropy

* exposed exponent_val in dynamic temp sampler

* added debug check for printf statements

* use nullptr in llama_sample_softmax call during llama_sample_entropy

this avoids counting the time taken stats twice

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>

* return earlier if there is only 1 candiate (i.e. max_entropy == 0)

* reformat 't' case in llama_sample_queue

Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>

* check for one or zero candidates case in llama_sample_entropy

---------

Co-authored-by: Georgi Gerganov <ggerganov@gmail.com>
Co-authored-by: Jared Van Bortel <cebtenzzre@gmail.com>
This commit is contained in:
l3utterfly 2024-01-26 05:06:22 +09:00 committed by GitHub
parent d292f4f204
commit 5eaf9964fc
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
4 changed files with 88 additions and 1 deletions

View file

@ -8151,6 +8151,73 @@ void llama_sample_typical(struct llama_context * ctx, llama_token_data_array * c
}
}
void llama_sample_entropy(struct llama_context * ctx, llama_token_data_array * candidates_p, float min_temp, float max_temp, float exponent_val) {
const int64_t t_start_sample_us = ggml_time_us();
// no need to do anything if there is only one (or zero) candidates
if(candidates_p->size <= 1) {
return;
}
// Calculate maximum possible entropy
float max_entropy = -logf(1.0f / candidates_p->size);
llama_sample_softmax(nullptr, candidates_p);
// Calculate entropy of the softmax probabilities
float entropy = 0.0f;
for (size_t i = 0; i < candidates_p->size; ++i) {
float prob = candidates_p->data[i].p;
if (prob > 0.0f) { // Ensure no log(0)
entropy -= prob * logf(prob);
}
}
// Normalize the entropy (max_entropy cannot be 0 here because we checked candidates_p->size != 1 above)
float normalized_entropy = entropy / max_entropy;
// Map the normalized entropy to the desired temperature range using the power function
float dyn_temp = min_temp + (max_temp - min_temp) * powf(normalized_entropy, exponent_val);
#ifdef DEBUG
LLAMA_LOG_INFO("Your text maxtemp value is: %f\n", max_temp);
LLAMA_LOG_INFO("Entropy: %f\n", entropy);
LLAMA_LOG_INFO("Max Possible Entropy: %f\n", max_entropy);
LLAMA_LOG_INFO("Normalized Entropy: %f\n", normalized_entropy);
LLAMA_LOG_INFO("Exponent: %f\n", exponent_val);
LLAMA_LOG_INFO("Dynamic Temperature (dyn_temp): %f\n", dyn_temp);
#endif
// Apply the dynamically calculated temperature scaling
for (size_t i = 0; i < candidates_p->size; ++i) {
candidates_p->data[i].logit /= dyn_temp;
}
// Re-compute softmax probabilities after scaling logits with dynamic temperature
double max_l_double = candidates_p->data[0].logit;
double cum_sum_double = 0.0;
for (size_t i = 0; i < candidates_p->size; ++i) {
double p = exp(candidates_p->data[i].logit - max_l_double);
candidates_p->data[i].p = p; // Store the scaled probability
cum_sum_double += p;
}
for (size_t i = 0; i < candidates_p->size; ++i) {
candidates_p->data[i].p /= cum_sum_double; // Re-normalize the probabilities
}
#ifdef DEBUG
// Print the updated top 25 probabilities after temperature scaling
LLAMA_LOG_INFO("\nUpdated Top 25 Probabilities After Dynamic Temperature Scaling (in percentages):\n");
for (size_t i = 0; i < 25 && i < candidates_p->size; ++i) {
LLAMA_LOG_INFO("Token %zu: %f%%\n", i + 1, candidates_p->data[i].p * 100.0f);
}
#endif
if (ctx) {
ctx->t_sample_us += ggml_time_us() - t_start_sample_us;
}
}
void llama_sample_temp(struct llama_context * ctx, llama_token_data_array * candidates_p, float temp) {
const int64_t t_start_sample_us = ggml_time_us();