use ggml_qnn_tensor_writer for all parameters
This commit is contained in:
parent
a5679ddd8e
commit
5fe7b87ba1
1 changed files with 20 additions and 141 deletions
161
ggml-qnn.cpp
161
ggml-qnn.cpp
|
@ -1991,7 +1991,6 @@ public:
|
|||
QNN_VER_PTR(*_qnn_tensor)->dimensions = _dimensions;
|
||||
QNN_VER_PTR(*_qnn_tensor)->rank = qnn_get_ggml_tensor_rank(tensor);
|
||||
QNN_VER_PTR(*_qnn_tensor)->dataType = qnn_data_type;
|
||||
|
||||
|
||||
if (is_npu) {
|
||||
qnn_instance * instance = ctx->instance;
|
||||
|
@ -2090,27 +2089,16 @@ static void ggml_qnn_add(ggml_backend_qnn_context * ctx, const ggml_tensor * src
|
|||
qnn_instance * instance = nullptr;
|
||||
std::string graph_name = "ggml_op_qnn_add";
|
||||
Qnn_GraphHandle_t graph_handle = nullptr;
|
||||
Qnn_Tensor_t * tensor_1 = nullptr;
|
||||
Qnn_Param_t qnn_params[] = {};
|
||||
enum ggml_op ggmlop = GGML_OP_ADD;
|
||||
Qnn_DataType_t src1_qnn_type = QNN_DATATYPE_FLOAT_32;
|
||||
|
||||
CHECK_PARAMS(ctx, src0, src1, dst);
|
||||
tensor_1 = (Qnn_Tensor_t *) src1->extra;
|
||||
instance = ctx->instance;
|
||||
QNN_INTERFACE_VER_TYPE qnn_raw_interface = ctx->raw_interface;
|
||||
|
||||
qnn_perf perf("ggml_qnn_add");
|
||||
perf.start();
|
||||
|
||||
QNN_VER_PTR(*tensor_1)->type = QNN_TENSOR_TYPE_APP_WRITE;
|
||||
|
||||
src1_qnn_type = qnn_datatype_from_ggml_datatype(src1->type);
|
||||
|
||||
uint32_t dimensions_input_1[] = {
|
||||
(uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2],
|
||||
(uint32_t) src1->ne[3]};
|
||||
|
||||
std::string map_entry = std::string(ggml_op_name(ggmlop));
|
||||
if (instance->_qnn_graph_map.find(map_entry) !=
|
||||
instance->_qnn_graph_map.end()) {
|
||||
|
@ -2119,8 +2107,6 @@ static void ggml_qnn_add(ggml_backend_qnn_context * ctx, const ggml_tensor * src
|
|||
graph_handle = std::get<0>(graph_item);
|
||||
}
|
||||
|
||||
uint32_t * tensor_1_dimensions = QNN_VER_PTR(*tensor_1)->dimensions;
|
||||
|
||||
if (!graph_initialized) {
|
||||
graph_name = graph_name + "_" + std::to_string(ctx->threads) +
|
||||
"_" + src0->name + "_" + src1->name;
|
||||
|
@ -2178,49 +2164,21 @@ static void ggml_qnn_add(ggml_backend_qnn_context * ctx, const ggml_tensor * src
|
|||
QNN_LOG_INFO("create qnn graph handle with graph name %s ok\n", graph_name.c_str());
|
||||
}
|
||||
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
QNN_VER_PTR(*tensor_1)->memType = QNN_TENSORMEMTYPE_MEMHANDLE;
|
||||
QNN_VER_PTR(*tensor_1)->clientBuf= {.data=nullptr, .dataSize=0};
|
||||
}
|
||||
|
||||
ggml_qnn_tensor_writer tensor_writer0(src0, graph_handle, ctx);
|
||||
if (!tensor_writer0.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_1);
|
||||
if (QNN_SUCCESS != error) {
|
||||
ggml_qnn_tensor_writer tensor_writer1(src1, graph_handle, ctx);
|
||||
if (!tensor_writer1.is_valid()) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
goto failure;
|
||||
}
|
||||
ggml_qnn_tensor_reader tensor_reader(dst, graph_handle, ctx);
|
||||
if (!tensor_writer0.is_valid()) {
|
||||
if (!tensor_reader.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
|
||||
QNN_VER_PTR(*tensor_1)->dimensions = dimensions_input_1;
|
||||
QNN_VER_PTR(*tensor_1)->rank = qnn_get_ggml_tensor_rank(src1);
|
||||
QNN_VER_PTR(*tensor_1)->dataType = src1_qnn_type;
|
||||
|
||||
if (ctx->device != QNN_BACKEND_NPU) {
|
||||
QNN_VER_PTR(*tensor_1)->clientBuf = {src1->data,
|
||||
qnn_get_ggml_tensor_data_size(src1)};
|
||||
} else {
|
||||
uint8_t * qnn_buffer_1 = nullptr;
|
||||
qnn_instance * instance = ctx->instance;
|
||||
|
||||
qnn_buffer_1 = static_cast<uint8_t *>(instance->alloc_rpcmem(
|
||||
ggml_nbytes(src1), 4));
|
||||
if (nullptr == qnn_buffer_1) {
|
||||
QNN_LOG_WARN("alloc rpcmem failure, %s\n", strerror(errno));
|
||||
goto failure;
|
||||
} else {
|
||||
QNN_LOG_INFO("alloc rpcmem successfully\n");
|
||||
}
|
||||
instance->register_rpcmem(qnn_buffer_1, tensor_1);
|
||||
memcpy(qnn_buffer_1, src1->data, ggml_nbytes(src1));
|
||||
}
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_writer0.get_qnn_tensor(), *tensor_1};
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_writer0.get_qnn_tensor(), *tensor_writer1.get_qnn_tensor()};
|
||||
Qnn_Tensor_t tensor_outputs[] = {*tensor_reader.get_qnn_tensor()};
|
||||
Qnn_OpConfig_t op_config = {
|
||||
(Qnn_OpConfigVersion_t) 1,
|
||||
|
@ -2256,33 +2214,18 @@ static void ggml_qnn_add(ggml_backend_qnn_context * ctx, const ggml_tensor * src
|
|||
goto failure;
|
||||
}
|
||||
|
||||
auto graph_item = std::make_tuple(graph_handle, tensor_writer0.get_qnn_tensor(), tensor_1, tensor_reader.get_qnn_tensor());
|
||||
auto graph_item = std::make_tuple(graph_handle,
|
||||
tensor_writer0.get_qnn_tensor(),
|
||||
tensor_writer1.get_qnn_tensor(),
|
||||
tensor_reader.get_qnn_tensor());
|
||||
instance->_qnn_graph_map[map_entry] = graph_item;
|
||||
} else {
|
||||
auto & graph_item = instance->_qnn_graph_map[map_entry];
|
||||
ggml_qnn_tensor_writer tensor_writer0(src0, std::get<1>(graph_item), ctx);
|
||||
tensor_1 = std::get<2>(graph_item);
|
||||
ggml_qnn_tensor_writer tensor_writer1(src1, std::get<2>(graph_item), ctx);
|
||||
ggml_qnn_tensor_reader tensor_reader(dst, std::get<3>(graph_item), ctx);
|
||||
|
||||
uint32_t dimensions_input_1[] = {
|
||||
(uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
|
||||
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3]};
|
||||
|
||||
QNN_VER_PTR(*tensor_1)->dimensions = dimensions_input_1;
|
||||
QNN_VER_PTR(*tensor_1)->rank = qnn_get_ggml_tensor_rank(src1);
|
||||
QNN_VER_PTR(*tensor_1)->dataType = src1_qnn_type;
|
||||
|
||||
if (ctx->device != QNN_BACKEND_NPU) {
|
||||
QNN_VER_PTR(*tensor_1)->clientBuf = {src1->data,
|
||||
qnn_get_ggml_tensor_data_size(src1)};
|
||||
} else {
|
||||
uint8_t * qnn_buffer_1 = static_cast<uint8_t *>(ctx->instance->get_rpcmem_from_memhandle(
|
||||
QNN_VER_PTR(*tensor_1)->memHandle));
|
||||
if (nullptr != qnn_buffer_1)
|
||||
memcpy(qnn_buffer_1, src1->data, ggml_nbytes(src1));
|
||||
}
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_writer0.get_qnn_tensor(), *tensor_1};
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_writer0.get_qnn_tensor(), *tensor_writer1.get_qnn_tensor()};
|
||||
Qnn_Tensor_t tensor_outputs[] = {*tensor_reader.get_qnn_tensor()};
|
||||
error = qnn_raw_interface.graphExecute(graph_handle,
|
||||
tensor_inputs,2,
|
||||
|
@ -2301,7 +2244,6 @@ static void ggml_qnn_add(ggml_backend_qnn_context * ctx, const ggml_tensor * src
|
|||
|
||||
failure:
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_DEBUG("tensor1 name %s", QNN_TENSOR_GET_NAME(*tensor_1));
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
src0->name, src0->type, ggml_type_name(src0->type),
|
||||
|
@ -2319,8 +2261,6 @@ failure:
|
|||
dst->nb[1], dst->nb[2]);
|
||||
}
|
||||
|
||||
QNN_VER_PTR(*tensor_1)->dimensions = tensor_1_dimensions;
|
||||
|
||||
perf.info();
|
||||
}
|
||||
|
||||
|
@ -2343,30 +2283,16 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context * ctx,
|
|||
qnn_instance * instance = nullptr;
|
||||
std::string graph_name = "ggml_op_qnn_mul_mat";
|
||||
Qnn_GraphHandle_t graph_handle = nullptr;
|
||||
Qnn_Tensor_t * tensor_1 = nullptr;
|
||||
Qnn_Param_t qnn_params[] = {};
|
||||
enum ggml_op ggmlop = GGML_OP_MUL_MAT;
|
||||
Qnn_DataType_t src1_qnn_type = QNN_DATATYPE_FLOAT_32;
|
||||
|
||||
CHECK_PARAMS(ctx, src0, src1, dst);
|
||||
tensor_1 = (Qnn_Tensor_t *) src1->extra;
|
||||
instance = ctx->instance;
|
||||
QNN_INTERFACE_VER_TYPE qnn_raw_interface = ctx->raw_interface;
|
||||
|
||||
qnn_perf perf("ggml_qnn_mul_mat");
|
||||
perf.start();
|
||||
|
||||
tensor_1 = (Qnn_Tensor_t *) src1->extra;
|
||||
instance = ctx->instance;
|
||||
|
||||
QNN_VER_PTR(*tensor_1)->type = QNN_TENSOR_TYPE_APP_WRITE;
|
||||
|
||||
src1_qnn_type = qnn_datatype_from_ggml_datatype(src1->type);
|
||||
|
||||
uint32_t dimensions_input_1[] = {
|
||||
(uint32_t) src1->ne[0], (uint32_t) src1->ne[1], (uint32_t) src1->ne[2],
|
||||
(uint32_t) src1->ne[3]};
|
||||
|
||||
std::string map_entry = std::string(ggml_op_name(ggmlop));
|
||||
if (instance->_qnn_graph_map.find(map_entry) !=
|
||||
instance->_qnn_graph_map.end()) {
|
||||
|
@ -2375,8 +2301,6 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context * ctx,
|
|||
graph_handle = std::get<0>(graph_item);
|
||||
}
|
||||
|
||||
uint32_t * tensor_1_dimensions = QNN_VER_PTR(*tensor_1)->dimensions;
|
||||
|
||||
//TODO: for scenarios of quantized data in src0
|
||||
// pass-1: dequantize src0 to FP32
|
||||
// pass-2: dq-src0 * src1
|
||||
|
@ -2436,49 +2360,20 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context * ctx,
|
|||
goto failure;
|
||||
}
|
||||
|
||||
if (ctx->device == QNN_BACKEND_NPU) {
|
||||
QNN_VER_PTR(*tensor_1)->memType = QNN_TENSORMEMTYPE_MEMHANDLE;
|
||||
QNN_VER_PTR(*tensor_1)->clientBuf= {.data=nullptr, .dataSize=0};
|
||||
}
|
||||
|
||||
ggml_qnn_tensor_writer tensor_writer0(src0, graph_handle, ctx);
|
||||
if (!tensor_writer0.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
error = qnn_raw_interface.tensorCreateGraphTensor(graph_handle, tensor_1);
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_INFO("error = %d\n", error);
|
||||
ggml_qnn_tensor_writer tensor_writer1(src1, graph_handle, ctx);
|
||||
if (!tensor_writer1.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
ggml_qnn_tensor_reader tensor_reader(dst, graph_handle, ctx);
|
||||
if (!tensor_writer0.is_valid()) {
|
||||
if (!tensor_reader.is_valid()) {
|
||||
goto failure;
|
||||
}
|
||||
|
||||
QNN_VER_PTR(*tensor_1)->dimensions = dimensions_input_1;
|
||||
QNN_VER_PTR(*tensor_1)->rank = qnn_get_ggml_tensor_rank(src1);
|
||||
QNN_VER_PTR(*tensor_1)->dataType = src1_qnn_type;
|
||||
|
||||
if (ctx->device != QNN_BACKEND_NPU) {
|
||||
QNN_VER_PTR(*tensor_1)->clientBuf = {src1->data,
|
||||
qnn_get_ggml_tensor_data_size(src1)};
|
||||
} else {
|
||||
uint8_t * qnn_buffer_1 = nullptr;
|
||||
qnn_instance * instance = ctx->instance;
|
||||
|
||||
qnn_buffer_1 = static_cast<uint8_t *>(instance->alloc_rpcmem(
|
||||
ggml_nbytes(src1), 4));
|
||||
if (nullptr == qnn_buffer_1) {
|
||||
QNN_LOG_WARN("alloc rpcmem failure, %s\n", strerror(errno));
|
||||
goto failure;
|
||||
} else {
|
||||
QNN_LOG_INFO("alloc rpcmem successfully\n");
|
||||
}
|
||||
instance->register_rpcmem(qnn_buffer_1, tensor_1);
|
||||
memcpy(qnn_buffer_1, src1->data, ggml_nbytes(src1));
|
||||
}
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_writer0.get_qnn_tensor(), *tensor_1};
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_writer0.get_qnn_tensor(), *tensor_writer1.get_qnn_tensor()};
|
||||
Qnn_Tensor_t tensor_outputs[] = {*tensor_reader.get_qnn_tensor()};
|
||||
Qnn_OpConfig_t op_config = {
|
||||
(Qnn_OpConfigVersion_t) 1,
|
||||
|
@ -2514,32 +2409,18 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context * ctx,
|
|||
goto failure;
|
||||
}
|
||||
|
||||
auto graph_item = std::make_tuple(graph_handle, tensor_writer0.get_qnn_tensor(), tensor_1, tensor_reader.get_qnn_tensor());
|
||||
auto graph_item = std::make_tuple(graph_handle,
|
||||
tensor_writer0.get_qnn_tensor(),
|
||||
tensor_writer1.get_qnn_tensor(),
|
||||
tensor_reader.get_qnn_tensor());
|
||||
instance->_qnn_graph_map[map_entry] = graph_item;
|
||||
} else {
|
||||
auto & graph_item= instance->_qnn_graph_map[map_entry];
|
||||
ggml_qnn_tensor_writer tensor_writer0(src0, std::get<1>(graph_item), ctx);
|
||||
tensor_1 = std::get<2>(graph_item);
|
||||
ggml_qnn_tensor_writer tensor_writer1(src1, std::get<2>(graph_item), ctx);
|
||||
ggml_qnn_tensor_reader tensor_reader(dst, std::get<3>(graph_item), ctx);
|
||||
|
||||
uint32_t dimensions_input_1[] = {
|
||||
(uint32_t) src1->ne[0], (uint32_t) src1->ne[1],
|
||||
(uint32_t) src1->ne[2], (uint32_t) src1->ne[3]};
|
||||
QNN_VER_PTR(*tensor_1)->dimensions = dimensions_input_1;
|
||||
QNN_VER_PTR(*tensor_1)->rank = qnn_get_ggml_tensor_rank(src1);
|
||||
QNN_VER_PTR(*tensor_1)->dataType = src1_qnn_type;
|
||||
|
||||
if (ctx->device != QNN_BACKEND_NPU) {
|
||||
QNN_VER_PTR(*tensor_1)->clientBuf = {src1->data,
|
||||
qnn_get_ggml_tensor_data_size(src1)};
|
||||
} else {
|
||||
uint8_t * qnn_buffer_1 = static_cast<uint8_t *>(ctx->instance->get_rpcmem_from_memhandle(
|
||||
QNN_VER_PTR(*tensor_1)->memHandle));
|
||||
if (nullptr != qnn_buffer_1)
|
||||
memcpy(qnn_buffer_1, src1->data, ggml_nbytes(src1));
|
||||
}
|
||||
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_writer0.get_qnn_tensor(), *tensor_1};
|
||||
Qnn_Tensor_t tensor_inputs[] = {*tensor_writer0.get_qnn_tensor(), *tensor_writer1.get_qnn_tensor()};
|
||||
Qnn_Tensor_t tensor_outputs[] = {*tensor_reader.get_qnn_tensor()};
|
||||
error = qnn_raw_interface.graphExecute(graph_handle,
|
||||
tensor_inputs, 2,
|
||||
|
@ -2558,7 +2439,6 @@ static void ggml_qnn_mul_mat(ggml_backend_qnn_context * ctx,
|
|||
|
||||
failure:
|
||||
if (QNN_SUCCESS != error) {
|
||||
QNN_LOG_DEBUG("tensor1 name %s", QNN_TENSOR_GET_NAME(*tensor_1));
|
||||
QNN_LOG_DEBUG("%15s: type = %i (%5s) ne = %5" PRIi64 " x %5" PRIi64
|
||||
" x %5" PRIi64 ", nb = (%5zi, %5zi, %5zi)\n",
|
||||
src0->name, src0->type, ggml_type_name(src0->type),
|
||||
|
@ -2575,7 +2455,6 @@ failure:
|
|||
dst->ne[1], dst->ne[2], dst->nb[0], dst->nb[1], dst->nb[2]);
|
||||
}
|
||||
|
||||
QNN_VER_PTR(*tensor_1)->dimensions = tensor_1_dimensions;
|
||||
perf.info();
|
||||
}
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue