Merge branch 'master' into vulkan_llvmpipe

This commit is contained in:
Eve 2024-12-14 01:33:59 +00:00 committed by GitHub
commit 6110a9b36e
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
66 changed files with 10277 additions and 694 deletions

View file

@ -8,11 +8,11 @@ arg1="$1"
shift
if [[ "$arg1" == '--convert' || "$arg1" == '-c' ]]; then
python3 ./convert_hf_to_gguf.py "$@"
exec python3 ./convert_hf_to_gguf.py "$@"
elif [[ "$arg1" == '--quantize' || "$arg1" == '-q' ]]; then
./llama-quantize "$@"
exec ./llama-quantize "$@"
elif [[ "$arg1" == '--run' || "$arg1" == '-r' ]]; then
./llama-cli "$@"
exec ./llama-cli "$@"
elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Converting PTH to GGML..."
for i in `ls $1/$2/ggml-model-f16.bin*`; do
@ -20,11 +20,11 @@ elif [[ "$arg1" == '--all-in-one' || "$arg1" == '-a' ]]; then
echo "Skip model quantization, it already exists: ${i/f16/q4_0}"
else
echo "Converting PTH to GGML: $i into ${i/f16/q4_0}..."
./llama-quantize "$i" "${i/f16/q4_0}" q4_0
exec ./llama-quantize "$i" "${i/f16/q4_0}" q4_0
fi
done
elif [[ "$arg1" == '--server' || "$arg1" == '-s' ]]; then
./llama-server "$@"
exec ./llama-server "$@"
else
echo "Unknown command: $arg1"
echo "Available commands: "

View file

@ -668,6 +668,8 @@ jobs:
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
- build: 'msvc-arm64'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-msvc.cmake -DGGML_NATIVE=OFF -DLLAMA_BUILD_SERVER=ON -DBUILD_SHARED_LIBS=ON'
- build: 'llvm-arm64-opencl-adreno'
defines: '-G "Ninja Multi-Config" -D CMAKE_TOOLCHAIN_FILE=cmake/arm64-windows-llvm.cmake -DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" -DGGML_OPENCL=ON -DGGML_OPENCL_USE_ADRENO_KERNELS=ON'
steps:
- name: Clone
@ -709,6 +711,28 @@ jobs:
run: |
choco install ninja
- name: Install OpenCL Headers and Libs
id: install_opencl
if: ${{ matrix.build == 'llvm-arm64-opencl-adreno' }}
run: |
git clone https://github.com/KhronosGroup/OpenCL-Headers
cd OpenCL-Headers
mkdir build && cd build
cmake .. `
-DBUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_TESTING=OFF `
-DOPENCL_HEADERS_BUILD_CXX_TESTS=OFF `
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build . --target install
git clone https://github.com/KhronosGroup/OpenCL-ICD-Loader
cd OpenCL-ICD-Loader
mkdir build-arm64-release && cd build-arm64-release
cmake .. `
-A arm64 `
-DCMAKE_PREFIX_PATH="$env:RUNNER_TEMP/opencl-arm64-release" `
-DCMAKE_INSTALL_PREFIX="$env:RUNNER_TEMP/opencl-arm64-release"
cmake --build . --target install --config release
- name: Build
id: cmake_build
run: |
@ -738,7 +762,7 @@ jobs:
- name: Test
id: cmake_test
# not all machines have native AVX-512
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
if: ${{ matrix.build != 'msvc-arm64' && matrix.build != 'llvm-arm64' && matrix.build != 'llvm-arm64-opencl-adreno' && matrix.build != 'kompute-x64' && matrix.build != 'vulkan-x64' && (matrix.build != 'avx512-x64' || env.HAS_AVX512F == '1') }}
run: |
cd build
ctest -L main -C Release --verbose --timeout 900

View file

@ -1,3 +1,5 @@
# collaborators can optionally add themselves here to indicate their availability for reviewing related PRs
ci/ @ggerganov
/ci/ @ggerganov
/.devops/ @ngxson
/examples/server/ @ngxson

View file

@ -433,6 +433,20 @@ To learn more about model quantization, [read this documentation](examples/quant
</details>
## [`llama-run`](examples/run)
#### A comprehensive example for running `llama.cpp` models. Useful for inferencing. Used with RamaLama [^3].
- <details>
<summary>Run a model with a specific prompt (by default it's pulled from Ollama registry)</summary>
```bash
llama-run granite-code
```
</details>
[^3]: [https://github.com/containers/ramalama](RamaLama)
## [`llama-simple`](examples/simple)

View file

@ -81,7 +81,7 @@ set(LLAMA_COMMON_EXTRA_LIBS build_info)
# Use curl to download model url
if (LLAMA_CURL)
find_package(CURL REQUIRED)
add_definitions(-DLLAMA_USE_CURL)
target_compile_definitions(${TARGET} PUBLIC LLAMA_USE_CURL)
include_directories(${CURL_INCLUDE_DIRS})
find_library(CURL_LIBRARY curl REQUIRED)
set(LLAMA_COMMON_EXTRA_LIBS ${LLAMA_COMMON_EXTRA_LIBS} ${CURL_LIBRARY})

View file

@ -145,6 +145,35 @@ static void common_params_handle_model_default(common_params & params) {
}
}
const std::vector<ggml_type> kv_cache_types = {
GGML_TYPE_F32,
GGML_TYPE_F16,
GGML_TYPE_BF16,
GGML_TYPE_Q8_0,
GGML_TYPE_Q4_0,
GGML_TYPE_Q4_1,
GGML_TYPE_IQ4_NL,
GGML_TYPE_Q5_0,
GGML_TYPE_Q5_1,
};
static ggml_type kv_cache_type_from_str(const std::string & s) {
for (const auto & type : kv_cache_types) {
if (ggml_type_name(type) == s) {
return type;
}
}
throw std::runtime_error("Unsupported cache type: " + s);
}
static std::string get_all_kv_cache_types() {
std::ostringstream msg;
for (const auto & type : kv_cache_types) {
msg << ggml_type_name(type) << (&type == &kv_cache_types.back() ? "" : ", ");
}
return msg.str();
}
//
// CLI argument parsing functions
//
@ -1174,18 +1203,28 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
).set_env("LLAMA_ARG_NO_KV_OFFLOAD"));
add_opt(common_arg(
{"-ctk", "--cache-type-k"}, "TYPE",
string_format("KV cache data type for K (default: %s)", params.cache_type_k.c_str()),
string_format(
"KV cache data type for K\n"
"allowed values: %s\n"
"(default: %s)",
get_all_kv_cache_types().c_str(),
ggml_type_name(params.cache_type_k)
),
[](common_params & params, const std::string & value) {
// TODO: get the type right here
params.cache_type_k = value;
params.cache_type_k = kv_cache_type_from_str(value);
}
).set_env("LLAMA_ARG_CACHE_TYPE_K"));
add_opt(common_arg(
{"-ctv", "--cache-type-v"}, "TYPE",
string_format("KV cache data type for V (default: %s)", params.cache_type_v.c_str()),
string_format(
"KV cache data type for V\n"
"allowed values: %s\n"
"(default: %s)",
get_all_kv_cache_types().c_str(),
ggml_type_name(params.cache_type_v)
),
[](common_params & params, const std::string & value) {
// TODO: get the type right here
params.cache_type_v = value;
params.cache_type_v = kv_cache_type_from_str(value);
}
).set_env("LLAMA_ARG_CACHE_TYPE_V"));
add_opt(common_arg(
@ -2083,35 +2122,35 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
[](common_params & params, int value) {
params.speculative.n_max = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MAX"));
add_opt(common_arg(
{"--draft-min", "--draft-n-min"}, "N",
string_format("minimum number of draft tokens to use for speculative decoding (default: %d)", params.speculative.n_min),
[](common_params & params, int value) {
params.speculative.n_min = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_LOOKUP, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_MIN"));
add_opt(common_arg(
{"--draft-p-split"}, "P",
string_format("speculative decoding split probability (default: %.1f)", (double)params.speculative.p_split),
[](common_params & params, const std::string & value) {
params.speculative.p_split = std::stof(value);
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE}).set_env("LLAMA_ARG_DRAFT_P_SPLIT"));
add_opt(common_arg(
{"--draft-p-min"}, "P",
string_format("minimum speculative decoding probability (greedy) (default: %.1f)", (double)params.speculative.p_min),
[](common_params & params, const std::string & value) {
params.speculative.p_min = std::stof(value);
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_DRAFT_P_MIN"));
add_opt(common_arg(
{"-cd", "--ctx-size-draft"}, "N",
string_format("size of the prompt context for the draft model (default: %d, 0 = loaded from model)", params.speculative.n_ctx),
[](common_params & params, int value) {
params.speculative.n_ctx = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_CTX_SIZE_DRAFT"));
add_opt(common_arg(
{"-devd", "--device-draft"}, "<dev1,dev2,..>",
"comma-separated list of devices to use for offloading the draft model (none = don't offload)\n"
@ -2131,14 +2170,14 @@ common_params_context common_params_parser_init(common_params & params, llama_ex
fprintf(stderr, "warning: consult docs/build.md for compilation instructions\n");
}
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_N_GPU_LAYERS_DRAFT"));
add_opt(common_arg(
{"-md", "--model-draft"}, "FNAME",
"draft model for speculative decoding (default: unused)",
[](common_params & params, const std::string & value) {
params.speculative.model = value;
}
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}));
).set_examples({LLAMA_EXAMPLE_SPECULATIVE, LLAMA_EXAMPLE_SERVER}).set_env("LLAMA_ARG_MODEL_DRAFT"));
return ctx_arg;
}

View file

@ -1015,38 +1015,6 @@ struct llama_model_params common_model_params_to_llama(common_params & params) {
return mparams;
}
static ggml_type kv_cache_type_from_str(const std::string & s) {
if (s == "f32") {
return GGML_TYPE_F32;
}
if (s == "f16") {
return GGML_TYPE_F16;
}
if (s == "bf16") {
return GGML_TYPE_BF16;
}
if (s == "q8_0") {
return GGML_TYPE_Q8_0;
}
if (s == "q4_0") {
return GGML_TYPE_Q4_0;
}
if (s == "q4_1") {
return GGML_TYPE_Q4_1;
}
if (s == "iq4_nl") {
return GGML_TYPE_IQ4_NL;
}
if (s == "q5_0") {
return GGML_TYPE_Q5_0;
}
if (s == "q5_1") {
return GGML_TYPE_Q5_1;
}
throw std::runtime_error("Unsupported cache type: " + s);
}
struct llama_context_params common_context_params_to_llama(const common_params & params) {
auto cparams = llama_context_default_params();
@ -1081,8 +1049,8 @@ struct llama_context_params common_context_params_to_llama(const common_params &
cparams.pooling_type = LLAMA_POOLING_TYPE_RANK;
}
cparams.type_k = kv_cache_type_from_str(params.cache_type_k);
cparams.type_v = kv_cache_type_from_str(params.cache_type_v);
cparams.type_k = params.cache_type_k;
cparams.type_v = params.cache_type_v;
return cparams;
}
@ -1108,12 +1076,6 @@ struct ggml_threadpool_params ggml_threadpool_params_from_cpu_params(const cpu_p
#define CURL_MAX_RETRY 3
#define CURL_RETRY_DELAY_SECONDS 2
static bool starts_with(const std::string & str, const std::string & prefix) {
// While we wait for C++20's std::string::starts_with...
return str.rfind(prefix, 0) == 0;
}
static bool curl_perform_with_retry(const std::string& url, CURL* curl, int max_attempts, int retry_delay_seconds) {
int remaining_attempts = max_attempts;

View file

@ -37,9 +37,9 @@ using llama_tokens = std::vector<llama_token>;
// build info
extern int LLAMA_BUILD_NUMBER;
extern char const * LLAMA_COMMIT;
extern char const * LLAMA_COMPILER;
extern char const * LLAMA_BUILD_TARGET;
extern const char * LLAMA_COMMIT;
extern const char * LLAMA_COMPILER;
extern const char * LLAMA_BUILD_TARGET;
struct common_control_vector_load_info;
@ -286,8 +286,8 @@ struct common_params {
bool warmup = true; // warmup run
bool check_tensors = false; // validate tensor data
std::string cache_type_k = "f16"; // KV cache data type for the K
std::string cache_type_v = "f16"; // KV cache data type for the V
ggml_type cache_type_k = GGML_TYPE_F16; // KV cache data type for the K
ggml_type cache_type_v = GGML_TYPE_F16; // KV cache data type for the V
// multimodal models (see examples/llava)
std::string mmproj = ""; // path to multimodal projector // NOLINT
@ -437,6 +437,11 @@ std::vector<std::string> string_split<std::string>(const std::string & input, ch
return parts;
}
static bool string_starts_with(const std::string & str,
const std::string & prefix) { // While we wait for C++20's std::string::starts_with...
return str.rfind(prefix, 0) == 0;
}
bool string_parse_kv_override(const char * data, std::vector<llama_model_kv_override> & overrides);
void string_process_escapes(std::string & input);

View file

@ -20,7 +20,12 @@ else()
add_subdirectory(batched)
add_subdirectory(embedding)
add_subdirectory(eval-callback)
add_subdirectory(gbnf-validator)
if (NOT WIN32)
# disabled on Windows because it uses internal functions not exported with LLAMA_API
add_subdirectory(gbnf-validator)
endif()
add_subdirectory(gguf-hash)
add_subdirectory(gguf-split)
add_subdirectory(gguf)
@ -46,12 +51,16 @@ else()
add_subdirectory(speculative)
add_subdirectory(speculative-simple)
add_subdirectory(tokenize)
add_subdirectory(gen-docs)
if (NOT GGML_BACKEND_DL)
# these examples use the backends directly and cannot be built with dynamic loading
add_subdirectory(convert-llama2c-to-ggml)
add_subdirectory(cvector-generator)
add_subdirectory(export-lora)
add_subdirectory(quantize-stats)
if (NOT WIN32)
# disabled on Windows because it uses internal functions not exported with LLAMA_API
add_subdirectory(quantize-stats)
endif()
add_subdirectory(llava)
if (GGML_RPC)
add_subdirectory(rpc)

View file

@ -287,7 +287,7 @@ struct split_strategy {
}
void print_info() {
printf("n_split: %ld\n", ctx_outs.size());
printf("n_split: %zu\n", ctx_outs.size());
int i_split = 0;
for (auto & ctx_out : ctx_outs) {
// re-calculate the real gguf size for each split (= metadata size + total size of all tensors)
@ -297,7 +297,7 @@ struct split_strategy {
total_size += ggml_nbytes(t);
}
total_size = total_size / 1000 / 1000; // convert to megabytes
printf("split %05d: n_tensors = %d, total_size = %ldM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
printf("split %05d: n_tensors = %d, total_size = %zuM\n", i_split + 1, gguf_get_n_tensors(ctx_out), total_size);
i_split++;
}
}

View file

@ -1521,7 +1521,7 @@ int main(int argc, char ** argv) {
for (const auto & inst : params_instances) {
params_idx++;
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: starting\n", params_idx, params_count);
fprintf(stderr, "llama-bench: benchmark %d/%zu: starting\n", params_idx, params_count);
}
// keep the same model between tests when possible
if (!lmodel || !prev_inst || !inst.equal_mparams(*prev_inst)) {
@ -1573,14 +1573,14 @@ int main(int argc, char ** argv) {
// warmup run
if (t.n_prompt > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup prompt run\n", params_idx, params_count);
fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup prompt run\n", params_idx, params_count);
}
//test_prompt(ctx, std::min(t.n_batch, std::min(t.n_prompt, 32)), 0, t.n_batch, t.n_threads);
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: warmup generation run\n", params_idx, params_count);
fprintf(stderr, "llama-bench: benchmark %d/%zu: warmup generation run\n", params_idx, params_count);
}
test_gen(ctx, 1, t.n_threads);
}
@ -1592,14 +1592,14 @@ int main(int argc, char ** argv) {
if (t.n_prompt > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: prompt run %d/%d\n", params_idx, params_count,
fprintf(stderr, "llama-bench: benchmark %d/%zu: prompt run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_prompt(ctx, t.n_prompt, t.n_batch, t.n_threads);
}
if (t.n_gen > 0) {
if (params.progress) {
fprintf(stderr, "llama-bench: benchmark %d/%ld: generation run %d/%d\n", params_idx, params_count,
fprintf(stderr, "llama-bench: benchmark %d/%zu: generation run %d/%d\n", params_idx, params_count,
i + 1, params.reps);
}
test_gen(ctx, t.n_gen, t.n_threads);

View file

@ -143,7 +143,7 @@ int main(int argc, char ** argv) {
std::vector<chunk> file_chunk = chunk_file(context_file, params.chunk_size, params.chunk_separator);
chunks.insert(chunks.end(), file_chunk.begin(), file_chunk.end());
}
LOG_INF("Number of chunks: %ld\n", chunks.size());
LOG_INF("Number of chunks: %zu\n", chunks.size());
llama_backend_init();
llama_numa_init(params.numa);

View file

@ -1,5 +1,5 @@
set(TARGET llama-run)
add_executable(${TARGET} run.cpp)
install(TARGETS ${TARGET} RUNTIME)
target_link_libraries(${TARGET} PRIVATE llama ${CMAKE_THREAD_LIBS_INIT})
target_link_libraries(${TARGET} PRIVATE common llama ${CMAKE_THREAD_LIBS_INIT})
target_compile_features(${TARGET} PRIVATE cxx_std_17)

View file

@ -3,5 +3,45 @@
The purpose of this example is to demonstrate a minimal usage of llama.cpp for running models.
```bash
./llama-run Meta-Llama-3.1-8B-Instruct.gguf
llama-run granite-code
...
```bash
llama-run -h
Description:
Runs a llm
Usage:
llama-run [options] model [prompt]
Options:
-c, --context-size <value>
Context size (default: 2048)
-n, --ngl <value>
Number of GPU layers (default: 0)
-h, --help
Show help message
Commands:
model
Model is a string with an optional prefix of
huggingface:// (hf://), ollama://, https:// or file://.
If no protocol is specified and a file exists in the specified
path, file:// is assumed, otherwise if a file does not exist in
the specified path, ollama:// is assumed. Models that are being
pulled are downloaded with .partial extension while being
downloaded and then renamed as the file without the .partial
extension when complete.
Examples:
llama-run llama3
llama-run ollama://granite-code
llama-run ollama://smollm:135m
llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf
llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf
llama-run https://example.com/some-file1.gguf
llama-run some-file2.gguf
llama-run file://some-file3.gguf
llama-run --ngl 99 some-file4.gguf
llama-run --ngl 99 some-file5.gguf Hello World
...

View file

@ -1,128 +1,350 @@
#if defined(_WIN32)
#include <windows.h>
# include <windows.h>
#else
#include <unistd.h>
# include <unistd.h>
#endif
#include <climits>
#if defined(LLAMA_USE_CURL)
# include <curl/curl.h>
#endif
#include <cstdarg>
#include <cstdio>
#include <cstring>
#include <filesystem>
#include <iostream>
#include <sstream>
#include <string>
#include <unordered_map>
#include <vector>
#include "common.h"
#include "json.hpp"
#include "llama-cpp.h"
typedef std::unique_ptr<char[]> char_array_ptr;
#define printe(...) \
do { \
fprintf(stderr, __VA_ARGS__); \
} while (0)
struct Argument {
std::string flag;
std::string help_text;
};
class Opt {
public:
int init(int argc, const char ** argv) {
construct_help_str_();
// Parse arguments
if (parse(argc, argv)) {
printe("Error: Failed to parse arguments.\n");
help();
return 1;
}
struct Options {
std::string model_path, prompt_non_interactive;
int ngl = 99;
int n_ctx = 2048;
};
// If help is requested, show help and exit
if (help_) {
help();
return 2;
}
class ArgumentParser {
public:
ArgumentParser(const char * program_name) : program_name(program_name) {}
void add_argument(const std::string & flag, std::string & var, const std::string & help_text = "") {
string_args[flag] = &var;
arguments.push_back({flag, help_text});
return 0; // Success
}
void add_argument(const std::string & flag, int & var, const std::string & help_text = "") {
int_args[flag] = &var;
arguments.push_back({flag, help_text});
std::string model_;
std::string user_;
int context_size_ = 2048, ngl_ = -1;
private:
std::string help_str_;
bool help_ = false;
void construct_help_str_() {
help_str_ =
"Description:\n"
" Runs a llm\n"
"\n"
"Usage:\n"
" llama-run [options] model [prompt]\n"
"\n"
"Options:\n"
" -c, --context-size <value>\n"
" Context size (default: " +
std::to_string(context_size_);
help_str_ +=
")\n"
" -n, --ngl <value>\n"
" Number of GPU layers (default: " +
std::to_string(ngl_);
help_str_ +=
")\n"
" -h, --help\n"
" Show help message\n"
"\n"
"Commands:\n"
" model\n"
" Model is a string with an optional prefix of \n"
" huggingface:// (hf://), ollama://, https:// or file://.\n"
" If no protocol is specified and a file exists in the specified\n"
" path, file:// is assumed, otherwise if a file does not exist in\n"
" the specified path, ollama:// is assumed. Models that are being\n"
" pulled are downloaded with .partial extension while being\n"
" downloaded and then renamed as the file without the .partial\n"
" extension when complete.\n"
"\n"
"Examples:\n"
" llama-run llama3\n"
" llama-run ollama://granite-code\n"
" llama-run ollama://smollm:135m\n"
" llama-run hf://QuantFactory/SmolLM-135M-GGUF/SmolLM-135M.Q2_K.gguf\n"
" llama-run huggingface://bartowski/SmolLM-1.7B-Instruct-v0.2-GGUF/SmolLM-1.7B-Instruct-v0.2-IQ3_M.gguf\n"
" llama-run https://example.com/some-file1.gguf\n"
" llama-run some-file2.gguf\n"
" llama-run file://some-file3.gguf\n"
" llama-run --ngl 99 some-file4.gguf\n"
" llama-run --ngl 99 some-file5.gguf Hello World\n";
}
int parse(int argc, const char ** argv) {
int positional_args_i = 0;
for (int i = 1; i < argc; ++i) {
std::string arg = argv[i];
if (string_args.count(arg)) {
if (i + 1 < argc) {
*string_args[arg] = argv[++i];
} else {
fprintf(stderr, "error: missing value for %s\n", arg.c_str());
print_usage();
if (strcmp(argv[i], "-c") == 0 || strcmp(argv[i], "--context-size") == 0) {
if (i + 1 >= argc) {
return 1;
}
} else if (int_args.count(arg)) {
if (i + 1 < argc) {
if (parse_int_arg(argv[++i], *int_args[arg]) != 0) {
fprintf(stderr, "error: invalid value for %s: %s\n", arg.c_str(), argv[i]);
print_usage();
return 1;
}
} else {
fprintf(stderr, "error: missing value for %s\n", arg.c_str());
print_usage();
context_size_ = std::atoi(argv[++i]);
} else if (strcmp(argv[i], "-n") == 0 || strcmp(argv[i], "--ngl") == 0) {
if (i + 1 >= argc) {
return 1;
}
ngl_ = std::atoi(argv[++i]);
} else if (strcmp(argv[i], "-h") == 0 || strcmp(argv[i], "--help") == 0) {
help_ = true;
return 0;
} else if (!positional_args_i) {
++positional_args_i;
model_ = argv[i];
} else if (positional_args_i == 1) {
++positional_args_i;
user_ = argv[i];
} else {
fprintf(stderr, "error: unrecognized argument %s\n", arg.c_str());
print_usage();
return 1;
user_ += " " + std::string(argv[i]);
}
}
if (string_args["-m"]->empty()) {
fprintf(stderr, "error: -m is required\n");
print_usage();
return model_.empty(); // model_ is the only required value
}
void help() const { printf("%s", help_str_.c_str()); }
};
struct progress_data {
size_t file_size = 0;
std::chrono::steady_clock::time_point start_time = std::chrono::steady_clock::now();
bool printed = false;
};
struct FileDeleter {
void operator()(FILE * file) const {
if (file) {
fclose(file);
}
}
};
typedef std::unique_ptr<FILE, FileDeleter> FILE_ptr;
#ifdef LLAMA_USE_CURL
class CurlWrapper {
public:
int init(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
const bool progress, std::string * response_str = nullptr) {
std::string output_file_partial;
curl = curl_easy_init();
if (!curl) {
return 1;
}
progress_data data;
FILE_ptr out;
if (!output_file.empty()) {
output_file_partial = output_file + ".partial";
out.reset(fopen(output_file_partial.c_str(), "ab"));
}
set_write_options(response_str, out);
data.file_size = set_resume_point(output_file_partial);
set_progress_options(progress, data);
set_headers(headers);
perform(url);
if (!output_file.empty()) {
std::filesystem::rename(output_file_partial, output_file);
}
return 0;
}
private:
const char * program_name;
std::unordered_map<std::string, std::string *> string_args;
std::unordered_map<std::string, int *> int_args;
std::vector<Argument> arguments;
~CurlWrapper() {
if (chunk) {
curl_slist_free_all(chunk);
}
int parse_int_arg(const char * arg, int & value) {
char * end;
const long val = std::strtol(arg, &end, 10);
if (*end == '\0' && val >= INT_MIN && val <= INT_MAX) {
value = static_cast<int>(val);
if (curl) {
curl_easy_cleanup(curl);
}
}
private:
CURL * curl = nullptr;
struct curl_slist * chunk = nullptr;
void set_write_options(std::string * response_str, const FILE_ptr & out) {
if (response_str) {
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, capture_data);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, response_str);
} else {
curl_easy_setopt(curl, CURLOPT_WRITEFUNCTION, write_data);
curl_easy_setopt(curl, CURLOPT_WRITEDATA, out.get());
}
}
size_t set_resume_point(const std::string & output_file) {
size_t file_size = 0;
if (std::filesystem::exists(output_file)) {
file_size = std::filesystem::file_size(output_file);
curl_easy_setopt(curl, CURLOPT_RESUME_FROM_LARGE, static_cast<curl_off_t>(file_size));
}
return file_size;
}
void set_progress_options(bool progress, progress_data & data) {
if (progress) {
curl_easy_setopt(curl, CURLOPT_NOPROGRESS, 0L);
curl_easy_setopt(curl, CURLOPT_XFERINFODATA, &data);
curl_easy_setopt(curl, CURLOPT_XFERINFOFUNCTION, progress_callback);
}
}
void set_headers(const std::vector<std::string> & headers) {
if (!headers.empty()) {
if (chunk) {
curl_slist_free_all(chunk);
chunk = 0;
}
for (const auto & header : headers) {
chunk = curl_slist_append(chunk, header.c_str());
}
curl_easy_setopt(curl, CURLOPT_HTTPHEADER, chunk);
}
}
void perform(const std::string & url) {
CURLcode res;
curl_easy_setopt(curl, CURLOPT_URL, url.c_str());
curl_easy_setopt(curl, CURLOPT_FOLLOWLOCATION, 1L);
curl_easy_setopt(curl, CURLOPT_DEFAULT_PROTOCOL, "https");
curl_easy_setopt(curl, CURLOPT_FAILONERROR, 1L);
res = curl_easy_perform(curl);
if (res != CURLE_OK) {
printe("curl_easy_perform() failed: %s\n", curl_easy_strerror(res));
}
}
static std::string human_readable_time(double seconds) {
int hrs = static_cast<int>(seconds) / 3600;
int mins = (static_cast<int>(seconds) % 3600) / 60;
int secs = static_cast<int>(seconds) % 60;
std::ostringstream out;
if (hrs > 0) {
out << hrs << "h " << std::setw(2) << std::setfill('0') << mins << "m " << std::setw(2) << std::setfill('0')
<< secs << "s";
} else if (mins > 0) {
out << mins << "m " << std::setw(2) << std::setfill('0') << secs << "s";
} else {
out << secs << "s";
}
return out.str();
}
static std::string human_readable_size(curl_off_t size) {
static const char * suffix[] = { "B", "KB", "MB", "GB", "TB" };
char length = sizeof(suffix) / sizeof(suffix[0]);
int i = 0;
double dbl_size = size;
if (size > 1024) {
for (i = 0; (size / 1024) > 0 && i < length - 1; i++, size /= 1024) {
dbl_size = size / 1024.0;
}
}
std::ostringstream out;
out << std::fixed << std::setprecision(2) << dbl_size << " " << suffix[i];
return out.str();
}
static int progress_callback(void * ptr, curl_off_t total_to_download, curl_off_t now_downloaded, curl_off_t,
curl_off_t) {
progress_data * data = static_cast<progress_data *>(ptr);
if (total_to_download <= 0) {
return 0;
}
return 1;
}
void print_usage() const {
printf("\nUsage:\n");
printf(" %s [OPTIONS]\n\n", program_name);
printf("Options:\n");
for (const auto & arg : arguments) {
printf(" %-10s %s\n", arg.flag.c_str(), arg.help_text.c_str());
total_to_download += data->file_size;
const curl_off_t now_downloaded_plus_file_size = now_downloaded + data->file_size;
const curl_off_t percentage = (now_downloaded_plus_file_size * 100) / total_to_download;
const curl_off_t pos = (percentage / 5);
std::string progress_bar;
for (int i = 0; i < 20; ++i) {
progress_bar.append((i < pos) ? "" : " ");
}
printf("\n");
// Calculate download speed and estimated time to completion
const auto now = std::chrono::steady_clock::now();
const std::chrono::duration<double> elapsed_seconds = now - data->start_time;
const double speed = now_downloaded / elapsed_seconds.count();
const double estimated_time = (total_to_download - now_downloaded) / speed;
printe("\r%ld%% |%s| %s/%s %.2f MB/s %s ", percentage, progress_bar.c_str(),
human_readable_size(now_downloaded).c_str(), human_readable_size(total_to_download).c_str(),
speed / (1024 * 1024), human_readable_time(estimated_time).c_str());
fflush(stderr);
data->printed = true;
return 0;
}
// Function to write data to a file
static size_t write_data(void * ptr, size_t size, size_t nmemb, void * stream) {
FILE * out = static_cast<FILE *>(stream);
return fwrite(ptr, size, nmemb, out);
}
// Function to capture data into a string
static size_t capture_data(void * ptr, size_t size, size_t nmemb, void * stream) {
std::string * str = static_cast<std::string *>(stream);
str->append(static_cast<char *>(ptr), size * nmemb);
return size * nmemb;
}
};
#endif
class LlamaData {
public:
llama_model_ptr model;
llama_sampler_ptr sampler;
llama_context_ptr context;
public:
llama_model_ptr model;
llama_sampler_ptr sampler;
llama_context_ptr context;
std::vector<llama_chat_message> messages;
std::vector<std::string> msg_strs;
std::vector<char> fmtted;
int init(const Options & opt) {
model = initialize_model(opt.model_path, opt.ngl);
int init(Opt & opt) {
model = initialize_model(opt);
if (!model) {
return 1;
}
context = initialize_context(model, opt.n_ctx);
context = initialize_context(model, opt.context_size_);
if (!context) {
return 1;
}
@ -131,15 +353,123 @@ class LlamaData {
return 0;
}
private:
// Initializes the model and returns a unique pointer to it
llama_model_ptr initialize_model(const std::string & model_path, const int ngl) {
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = ngl;
private:
#ifdef LLAMA_USE_CURL
int download(const std::string & url, const std::vector<std::string> & headers, const std::string & output_file,
const bool progress, std::string * response_str = nullptr) {
CurlWrapper curl;
if (curl.init(url, headers, output_file, progress, response_str)) {
return 1;
}
llama_model_ptr model(llama_load_model_from_file(model_path.c_str(), model_params));
return 0;
}
#else
int download(const std::string &, const std::vector<std::string> &, const std::string &, const bool,
std::string * = nullptr) {
printe("%s: llama.cpp built without libcurl, downloading from an url not supported.\n", __func__);
return 1;
}
#endif
int huggingface_dl(const std::string & model, const std::vector<std::string> headers, const std::string & bn) {
// Find the second occurrence of '/' after protocol string
size_t pos = model.find('/');
pos = model.find('/', pos + 1);
if (pos == std::string::npos) {
return 1;
}
const std::string hfr = model.substr(0, pos);
const std::string hff = model.substr(pos + 1);
const std::string url = "https://huggingface.co/" + hfr + "/resolve/main/" + hff;
return download(url, headers, bn, true);
}
int ollama_dl(std::string & model, const std::vector<std::string> headers, const std::string & bn) {
if (model.find('/') == std::string::npos) {
model = "library/" + model;
}
std::string model_tag = "latest";
size_t colon_pos = model.find(':');
if (colon_pos != std::string::npos) {
model_tag = model.substr(colon_pos + 1);
model = model.substr(0, colon_pos);
}
std::string manifest_url = "https://registry.ollama.ai/v2/" + model + "/manifests/" + model_tag;
std::string manifest_str;
const int ret = download(manifest_url, headers, "", false, &manifest_str);
if (ret) {
return ret;
}
nlohmann::json manifest = nlohmann::json::parse(manifest_str);
std::string layer;
for (const auto & l : manifest["layers"]) {
if (l["mediaType"] == "application/vnd.ollama.image.model") {
layer = l["digest"];
break;
}
}
std::string blob_url = "https://registry.ollama.ai/v2/" + model + "/blobs/" + layer;
return download(blob_url, headers, bn, true);
}
std::string basename(const std::string & path) {
const size_t pos = path.find_last_of("/\\");
if (pos == std::string::npos) {
return path;
}
return path.substr(pos + 1);
}
int remove_proto(std::string & model_) {
const std::string::size_type pos = model_.find("://");
if (pos == std::string::npos) {
return 1;
}
model_ = model_.substr(pos + 3); // Skip past "://"
return 0;
}
int resolve_model(std::string & model_) {
const std::string bn = basename(model_);
const std::vector<std::string> headers = { "--header",
"Accept: application/vnd.docker.distribution.manifest.v2+json" };
int ret = 0;
if (string_starts_with(model_, "file://") || std::filesystem::exists(bn)) {
remove_proto(model_);
} else if (string_starts_with(model_, "hf://") || string_starts_with(model_, "huggingface://")) {
remove_proto(model_);
ret = huggingface_dl(model_, headers, bn);
} else if (string_starts_with(model_, "ollama://")) {
remove_proto(model_);
ret = ollama_dl(model_, headers, bn);
} else if (string_starts_with(model_, "https://")) {
download(model_, headers, bn, true);
} else {
ret = ollama_dl(model_, headers, bn);
}
model_ = bn;
return ret;
}
// Initializes the model and returns a unique pointer to it
llama_model_ptr initialize_model(Opt & opt) {
ggml_backend_load_all();
llama_model_params model_params = llama_model_default_params();
model_params.n_gpu_layers = opt.ngl_ >= 0 ? opt.ngl_ : model_params.n_gpu_layers;
resolve_model(opt.model_);
llama_model_ptr model(llama_load_model_from_file(opt.model_.c_str(), model_params));
if (!model) {
fprintf(stderr, "%s: error: unable to load model\n", __func__);
printe("%s: error: unable to load model from file: %s\n", __func__, opt.model_.c_str());
}
return model;
@ -148,12 +478,11 @@ class LlamaData {
// Initializes the context with the specified parameters
llama_context_ptr initialize_context(const llama_model_ptr & model, const int n_ctx) {
llama_context_params ctx_params = llama_context_default_params();
ctx_params.n_ctx = n_ctx;
ctx_params.n_batch = n_ctx;
ctx_params.n_ctx = n_ctx;
ctx_params.n_batch = n_ctx;
llama_context_ptr context(llama_new_context_with_model(model.get(), ctx_params));
if (!context) {
fprintf(stderr, "%s: error: failed to create the llama_context\n", __func__);
printe("%s: error: failed to create the llama_context\n", __func__);
}
return context;
@ -170,23 +499,22 @@ class LlamaData {
}
};
// Add a message to `messages` and store its content in `owned_content`
static void add_message(const char * role, const std::string & text, LlamaData & llama_data,
std::vector<char_array_ptr> & owned_content) {
char_array_ptr content(new char[text.size() + 1]);
std::strcpy(content.get(), text.c_str());
llama_data.messages.push_back({role, content.get()});
owned_content.push_back(std::move(content));
// Add a message to `messages` and store its content in `msg_strs`
static void add_message(const char * role, const std::string & text, LlamaData & llama_data) {
llama_data.msg_strs.push_back(std::move(text));
llama_data.messages.push_back({ role, llama_data.msg_strs.back().c_str() });
}
// Function to apply the chat template and resize `formatted` if needed
static int apply_chat_template(const LlamaData & llama_data, std::vector<char> & formatted, const bool append) {
int result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
llama_data.messages.size(), append, formatted.data(), formatted.size());
if (result > static_cast<int>(formatted.size())) {
formatted.resize(result);
static int apply_chat_template(LlamaData & llama_data, const bool append) {
int result = llama_chat_apply_template(
llama_data.model.get(), nullptr, llama_data.messages.data(), llama_data.messages.size(), append,
append ? llama_data.fmtted.data() : nullptr, append ? llama_data.fmtted.size() : 0);
if (append && result > static_cast<int>(llama_data.fmtted.size())) {
llama_data.fmtted.resize(result);
result = llama_chat_apply_template(llama_data.model.get(), nullptr, llama_data.messages.data(),
llama_data.messages.size(), append, formatted.data(), formatted.size());
llama_data.messages.size(), append, llama_data.fmtted.data(),
llama_data.fmtted.size());
}
return result;
@ -199,7 +527,8 @@ static int tokenize_prompt(const llama_model_ptr & model, const std::string & pr
prompt_tokens.resize(n_prompt_tokens);
if (llama_tokenize(model.get(), prompt.c_str(), prompt.size(), prompt_tokens.data(), prompt_tokens.size(), true,
true) < 0) {
GGML_ABORT("failed to tokenize the prompt\n");
printe("failed to tokenize the prompt\n");
return -1;
}
return n_prompt_tokens;
@ -207,11 +536,11 @@ static int tokenize_prompt(const llama_model_ptr & model, const std::string & pr
// Check if we have enough space in the context to evaluate this batch
static int check_context_size(const llama_context_ptr & ctx, const llama_batch & batch) {
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx = llama_n_ctx(ctx.get());
const int n_ctx_used = llama_get_kv_cache_used_cells(ctx.get());
if (n_ctx_used + batch.n_tokens > n_ctx) {
printf("\033[0m\n");
fprintf(stderr, "context size exceeded\n");
printe("context size exceeded\n");
return 1;
}
@ -221,9 +550,10 @@ static int check_context_size(const llama_context_ptr & ctx, const llama_batch &
// convert the token to a string
static int convert_token_to_string(const llama_model_ptr & model, const llama_token token_id, std::string & piece) {
char buf[256];
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
int n = llama_token_to_piece(model.get(), token_id, buf, sizeof(buf), 0, true);
if (n < 0) {
GGML_ABORT("failed to convert token to piece\n");
printe("failed to convert token to piece\n");
return 1;
}
piece = std::string(buf, n);
@ -238,19 +568,19 @@ static void print_word_and_concatenate_to_response(const std::string & piece, st
// helper function to evaluate a prompt and generate a response
static int generate(LlamaData & llama_data, const std::string & prompt, std::string & response) {
std::vector<llama_token> prompt_tokens;
const int n_prompt_tokens = tokenize_prompt(llama_data.model, prompt, prompt_tokens);
if (n_prompt_tokens < 0) {
std::vector<llama_token> tokens;
if (tokenize_prompt(llama_data.model, prompt, tokens) < 0) {
return 1;
}
// prepare a batch for the prompt
llama_batch batch = llama_batch_get_one(prompt_tokens.data(), prompt_tokens.size());
llama_batch batch = llama_batch_get_one(tokens.data(), tokens.size());
llama_token new_token_id;
while (true) {
check_context_size(llama_data.context, batch);
if (llama_decode(llama_data.context.get(), batch)) {
GGML_ABORT("failed to decode\n");
printe("failed to decode\n");
return 1;
}
// sample the next token, check is it an end of generation?
@ -273,22 +603,9 @@ static int generate(LlamaData & llama_data, const std::string & prompt, std::str
return 0;
}
static int parse_arguments(const int argc, const char ** argv, Options & opt) {
ArgumentParser parser(argv[0]);
parser.add_argument("-m", opt.model_path, "model");
parser.add_argument("-p", opt.prompt_non_interactive, "prompt");
parser.add_argument("-c", opt.n_ctx, "context_size");
parser.add_argument("-ngl", opt.ngl, "n_gpu_layers");
if (parser.parse(argc, argv)) {
return 1;
}
return 0;
}
static int read_user_input(std::string & user) {
std::getline(std::cin, user);
return user.empty(); // Indicate an error or empty input
return user.empty(); // Should have data in happy path
}
// Function to generate a response based on the prompt
@ -296,7 +613,7 @@ static int generate_response(LlamaData & llama_data, const std::string & prompt,
// Set response color
printf("\033[33m");
if (generate(llama_data, prompt, response)) {
fprintf(stderr, "failed to generate response\n");
printe("failed to generate response\n");
return 1;
}
@ -306,11 +623,10 @@ static int generate_response(LlamaData & llama_data, const std::string & prompt,
}
// Helper function to apply the chat template and handle errors
static int apply_chat_template_with_error_handling(const LlamaData & llama_data, std::vector<char> & formatted,
const bool is_user_input, int & output_length) {
const int new_len = apply_chat_template(llama_data, formatted, is_user_input);
static int apply_chat_template_with_error_handling(LlamaData & llama_data, const bool append, int & output_length) {
const int new_len = apply_chat_template(llama_data, append);
if (new_len < 0) {
fprintf(stderr, "failed to apply the chat template\n");
printe("failed to apply the chat template\n");
return -1;
}
@ -319,56 +635,63 @@ static int apply_chat_template_with_error_handling(const LlamaData & llama_data,
}
// Helper function to handle user input
static bool handle_user_input(std::string & user_input, const std::string & prompt_non_interactive) {
if (!prompt_non_interactive.empty()) {
user_input = prompt_non_interactive;
return true; // No need for interactive input
static int handle_user_input(std::string & user_input, const std::string & user_) {
if (!user_.empty()) {
user_input = user_;
return 0; // No need for interactive input
}
printf("\033[32m> \033[0m");
return !read_user_input(user_input); // Returns false if input ends the loop
printf(
"\r "
"\r\033[32m> \033[0m");
return read_user_input(user_input); // Returns true if input ends the loop
}
// Function to tokenize the prompt
static int chat_loop(LlamaData & llama_data, std::string & prompt_non_interactive) {
std::vector<char_array_ptr> owned_content;
std::vector<char> fmtted(llama_n_ctx(llama_data.context.get()));
static int chat_loop(LlamaData & llama_data, const std::string & user_) {
int prev_len = 0;
llama_data.fmtted.resize(llama_n_ctx(llama_data.context.get()));
while (true) {
// Get user input
std::string user_input;
if (!handle_user_input(user_input, prompt_non_interactive)) {
break;
while (handle_user_input(user_input, user_)) {
}
add_message("user", prompt_non_interactive.empty() ? user_input : prompt_non_interactive, llama_data,
owned_content);
add_message("user", user_.empty() ? user_input : user_, llama_data);
int new_len;
if (apply_chat_template_with_error_handling(llama_data, fmtted, true, new_len) < 0) {
if (apply_chat_template_with_error_handling(llama_data, true, new_len) < 0) {
return 1;
}
std::string prompt(fmtted.begin() + prev_len, fmtted.begin() + new_len);
std::string prompt(llama_data.fmtted.begin() + prev_len, llama_data.fmtted.begin() + new_len);
std::string response;
if (generate_response(llama_data, prompt, response)) {
return 1;
}
if (!user_.empty()) {
break;
}
add_message("assistant", response, llama_data);
if (apply_chat_template_with_error_handling(llama_data, false, prev_len) < 0) {
return 1;
}
}
return 0;
}
static void log_callback(const enum ggml_log_level level, const char * text, void *) {
if (level == GGML_LOG_LEVEL_ERROR) {
fprintf(stderr, "%s", text);
printe("%s", text);
}
}
static bool is_stdin_a_terminal() {
#if defined(_WIN32)
HANDLE hStdin = GetStdHandle(STD_INPUT_HANDLE);
DWORD mode;
DWORD mode;
return GetConsoleMode(hStdin, &mode);
#else
return isatty(STDIN_FILENO);
@ -382,17 +705,20 @@ static std::string read_pipe_data() {
}
int main(int argc, const char ** argv) {
Options opt;
if (parse_arguments(argc, argv, opt)) {
Opt opt;
const int ret = opt.init(argc, argv);
if (ret == 2) {
return 0;
} else if (ret) {
return 1;
}
if (!is_stdin_a_terminal()) {
if (!opt.prompt_non_interactive.empty()) {
opt.prompt_non_interactive += "\n\n";
if (!opt.user_.empty()) {
opt.user_ += "\n\n";
}
opt.prompt_non_interactive += read_pipe_data();
opt.user_ += read_pipe_data();
}
llama_log_set(log_callback, nullptr);
@ -401,7 +727,7 @@ int main(int argc, const char ** argv) {
return 1;
}
if (chat_loop(llama_data, opt.prompt_non_interactive)) {
if (chat_loop(llama_data, opt.user_)) {
return 1;
}

View file

@ -62,8 +62,8 @@ The project is under active development, and we are [looking for feedback and co
| `--yarn-beta-fast N` | YaRN: low correction dim or beta (default: 32.0)<br/>(env: LLAMA_ARG_YARN_BETA_FAST) |
| `-dkvc, --dump-kv-cache` | verbose print of the KV cache |
| `-nkvo, --no-kv-offload` | disable KV offload<br/>(env: LLAMA_ARG_NO_KV_OFFLOAD) |
| `-ctk, --cache-type-k TYPE` | KV cache data type for K (default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
| `-ctv, --cache-type-v TYPE` | KV cache data type for V (default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V) |
| `-ctk, --cache-type-k TYPE` | KV cache data type for K<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_K) |
| `-ctv, --cache-type-v TYPE` | KV cache data type for V<br/>allowed values: f32, f16, bf16, q8_0, q4_0, q4_1, iq4_nl, q5_0, q5_1<br/>(default: f16)<br/>(env: LLAMA_ARG_CACHE_TYPE_V) |
| `-dt, --defrag-thold N` | KV cache defragmentation threshold (default: 0.1, < 0 - disabled)<br/>(env: LLAMA_ARG_DEFRAG_THOLD) |
| `-np, --parallel N` | number of parallel sequences to decode (default: 1)<br/>(env: LLAMA_ARG_N_PARALLEL) |
| `--mlock` | force system to keep model in RAM rather than swapping or compressing<br/>(env: LLAMA_ARG_MLOCK) |
@ -138,6 +138,7 @@ The project is under active development, and we are [looking for feedback and co
| -------- | ----------- |
| `--no-context-shift` | disables context shift on inifinite text generation (default: disabled)<br/>(env: LLAMA_ARG_NO_CONTEXT_SHIFT) |
| `-sp, --special` | special tokens output enabled (default: false) |
| `--no-warmup` | skip warming up the model with an empty run |
| `--spm-infill` | use Suffix/Prefix/Middle pattern for infill (instead of Prefix/Suffix/Middle) as some models prefer this. (default: disabled) |
| `--pooling {none,mean,cls,last,rank}` | pooling type for embeddings, use model default if unspecified<br/>(env: LLAMA_ARG_POOLING) |
| `-cb, --cont-batching` | enable continuous batching (a.k.a dynamic batching) (default: enabled)<br/>(env: LLAMA_ARG_CONT_BATCHING) |
@ -146,7 +147,7 @@ The project is under active development, and we are [looking for feedback and co
| `--host HOST` | ip address to listen (default: 127.0.0.1)<br/>(env: LLAMA_ARG_HOST) |
| `--port PORT` | port to listen (default: 8080)<br/>(env: LLAMA_ARG_PORT) |
| `--path PATH` | path to serve static files from (default: )<br/>(env: LLAMA_ARG_STATIC_PATH) |
| `--no-webui` | disable the Web UI<br/>(env: LLAMA_ARG_NO_WEBUI) |
| `--no-webui` | Disable the Web UI (default: enabled)<br/>(env: LLAMA_ARG_NO_WEBUI) |
| `--embedding, --embeddings` | restrict to only support embedding use case; use only with dedicated embedding models (default: disabled)<br/>(env: LLAMA_ARG_EMBEDDINGS) |
| `--reranking, --rerank` | enable reranking endpoint on server (default: disabled)<br/>(env: LLAMA_ARG_RERANKING) |
| `--api-key KEY` | API key to use for authentication (default: none)<br/>(env: LLAMA_API_KEY) |
@ -164,13 +165,13 @@ The project is under active development, and we are [looking for feedback and co
| `--chat-template JINJA_TEMPLATE` | set custom jinja chat template (default: template taken from model's metadata)<br/>if suffix/prefix are specified, template will be disabled<br/>list of built-in templates:<br/>chatglm3, chatglm4, chatml, command-r, deepseek, deepseek2, exaone3, gemma, granite, llama2, llama2-sys, llama2-sys-bos, llama2-sys-strip, llama3, minicpm, mistral-v1, mistral-v3, mistral-v3-tekken, mistral-v7, monarch, openchat, orion, phi3, rwkv-world, vicuna, vicuna-orca, zephyr<br/>(env: LLAMA_ARG_CHAT_TEMPLATE) |
| `-sps, --slot-prompt-similarity SIMILARITY` | how much the prompt of a request must match the prompt of a slot in order to use that slot (default: 0.50, 0.0 = disabled)<br/> |
| `--lora-init-without-apply` | load LoRA adapters without applying them (apply later via POST /lora-adapters) (default: disabled) |
| `--draft-max, --draft, --draft-n N` | number of tokens to draft for speculative decoding (default: 16) |
| `--draft-min, --draft-n-min N` | minimum number of draft tokens to use for speculative decoding (default: 5) |
| `--draft-p-min P` | minimum speculative decoding probability (greedy) (default: 0.9) |
| `-cd, --ctx-size-draft N` | size of the prompt context for the draft model (default: 0, 0 = loaded from model) |
| `--draft-max, --draft, --draft-n N` | number of tokens to draft for speculative decoding (default: 16)<br/>(env: LLAMA_ARG_DRAFT_MAX) |
| `--draft-min, --draft-n-min N` | minimum number of draft tokens to use for speculative decoding (default: 5)<br/>(env: LLAMA_ARG_DRAFT_MIN) |
| `--draft-p-min P` | minimum speculative decoding probability (greedy) (default: 0.9)<br/>(env: LLAMA_ARG_DRAFT_P_MIN) |
| `-cd, --ctx-size-draft N` | size of the prompt context for the draft model (default: 0, 0 = loaded from model)<br/>(env: LLAMA_ARG_CTX_SIZE_DRAFT) |
| `-devd, --device-draft <dev1,dev2,..>` | comma-separated list of devices to use for offloading the draft model (none = don't offload)<br/>use --list-devices to see a list of available devices |
| `-ngld, --gpu-layers-draft, --n-gpu-layers-draft N` | number of layers to store in VRAM for the draft model |
| `-md, --model-draft FNAME` | draft model for speculative decoding (default: unused) |
| `-ngld, --gpu-layers-draft, --n-gpu-layers-draft N` | number of layers to store in VRAM for the draft model<br/>(env: LLAMA_ARG_N_GPU_LAYERS_DRAFT) |
| `-md, --model-draft FNAME` | draft model for speculative decoding (default: unused)<br/>(env: LLAMA_ARG_MODEL_DRAFT) |
Note: If both command line argument and environment variable are both set for the same param, the argument will take precedence over env var.

View file

@ -1079,9 +1079,9 @@ struct server_slot {
SLT_INF(*this,
"\n"
"\rprompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
"\r eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
"\r total time = %10.2f ms / %5d tokens\n",
"prompt eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
" eval time = %10.2f ms / %5d tokens (%8.2f ms per token, %8.2f tokens per second)\n"
" total time = %10.2f ms / %5d tokens\n",
t_prompt_processing, n_prompt_tokens_processed, t_prompt, n_prompt_second,
t_token_generation, n_decoded, t_gen, n_gen_second,
t_prompt_processing + t_token_generation, n_prompt_tokens_processed + n_decoded);

View file

@ -394,7 +394,7 @@ int main(int raw_argc, char ** raw_argv) {
}
if (show_token_count) {
printf("Total number of tokens: %ld\n", tokens.size());
printf("Total number of tokens: %zu\n", tokens.size());
}
// silence valgrind
llama_free(ctx);

View file

@ -32,6 +32,13 @@ else()
endif()
endif()
# remove the lib prefix on win32 mingw
if (WIN32)
set(CMAKE_STATIC_LIBRARY_PREFIX "")
set(CMAKE_SHARED_LIBRARY_PREFIX "")
set(CMAKE_SHARED_MODULE_PREFIX "")
endif()
option(BUILD_SHARED_LIBS "ggml: build shared libraries" ${BUILD_SHARED_LIBS_DEFAULT})
option(GGML_BACKEND_DL "ggml: build backends as dynamic libraries (requires BUILD_SHARED_LIBS)" OFF)
@ -172,6 +179,11 @@ set (GGML_SYCL_TARGET "INTEL" CACHE STRING
set (GGML_SYCL_DEVICE_ARCH "" CACHE STRING
"ggml: sycl device architecture")
option(GGML_OPENCL "ggml: use OpenCL" OFF)
option(GGML_OPENCL_PROFILING "ggml: use OpenCL profiling (increases overhead)" OFF)
option(GGML_OPENCL_EMBED_KERNELS "ggml: embed kernels" ON)
option(GGML_OPENCL_USE_ADRENO_KERNELS "ggml: use optimized kernels for Adreno" ON)
# extra artifacts
option(GGML_BUILD_TESTS "ggml: build tests" ${GGML_STANDALONE})
option(GGML_BUILD_EXAMPLES "ggml: build examples" ${GGML_STANDALONE})

View file

@ -0,0 +1,26 @@
#ifndef GGML_OPENCL_H
#define GGML_OPENCL_H
#include "ggml.h"
#include "ggml-backend.h"
#ifdef __cplusplus
extern "C" {
#endif
//
// backend API
//
GGML_BACKEND_API ggml_backend_t ggml_backend_opencl_init(void);
GGML_BACKEND_API bool ggml_backend_is_opencl(ggml_backend_t backend);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_opencl_buffer_type(void);
GGML_BACKEND_API ggml_backend_buffer_type_t ggml_backend_opencl_host_buffer_type(void);
GGML_BACKEND_API ggml_backend_reg_t ggml_backend_opencl_reg(void);
#ifdef __cplusplus
}
#endif
#endif // GGML_OPENCL_H

View file

@ -194,11 +194,6 @@ endif()
if (WIN32)
add_compile_definitions(_CRT_SECURE_NO_WARNINGS)
if (BUILD_SHARED_LIBS)
# TODO: should not use this
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
endif()
endif()
# ggml
@ -313,6 +308,7 @@ ggml_add_backend(MUSA)
ggml_add_backend(RPC)
ggml_add_backend(SYCL)
ggml_add_backend(Vulkan)
ggml_add_backend(OpenCL)
foreach (target ggml-base ggml)
target_include_directories(${target} PUBLIC $<BUILD_INTERFACE:${CMAKE_CURRENT_SOURCE_DIR}/../include> $<INSTALL_INTERFACE:include>)

View file

@ -46,6 +46,10 @@
#include "ggml-vulkan.h"
#endif
#ifdef GGML_USE_OPENCL
#include "ggml-opencl.h"
#endif
#ifdef GGML_USE_BLAS
#include "ggml-blas.h"
#endif
@ -146,6 +150,9 @@ struct ggml_backend_registry {
#ifdef GGML_USE_VULKAN
register_backend(ggml_backend_vk_reg());
#endif
#ifdef GGML_USE_OPENCL
register_backend(ggml_backend_opencl_reg());
#endif
#ifdef GGML_USE_CANN
register_backend(ggml_backend_cann_reg());
#endif
@ -473,7 +480,8 @@ static ggml_backend_reg_t ggml_backend_load_best(const char * name, bool silent,
if (!fs::exists(search_path)) {
continue;
}
for (const auto & entry : fs::directory_iterator(search_path)) {
fs::directory_iterator dir_it(search_path, fs::directory_options::skip_permission_denied);
for (const auto & entry : dir_it) {
if (entry.is_regular_file()) {
std::string filename = entry.path().filename().string();
std::string ext = entry.path().extension().string();
@ -538,6 +546,7 @@ void ggml_backend_load_all_from_path(const char * dir_path) {
ggml_backend_load_best("rpc", silent, dir_path);
ggml_backend_load_best("sycl", silent, dir_path);
ggml_backend_load_best("vulkan", silent, dir_path);
ggml_backend_load_best("opencl", silent, dir_path);
ggml_backend_load_best("musa", silent, dir_path);
ggml_backend_load_best("cpu", silent, dir_path);
}

View file

@ -122,7 +122,7 @@ static const char * ggml_backend_amx_buffer_type_get_name(ggml_backend_buffer_ty
}
static ggml_backend_buffer_t ggml_backend_amx_buffer_type_alloc_buffer(ggml_backend_buffer_type_t buft, size_t size) {
void * data = aligned_alloc(TENSOR_ALIGNMENT, size);
void * data = ggml_aligned_malloc(size);
if (data == NULL) {
fprintf(stderr, "%s: failed to allocate buffer of size %zu\n", __func__, size);
return NULL;

View file

@ -126,8 +126,7 @@ struct ggml_arm_arch_features_type {
#endif
#include <windows.h>
#if !defined(__clang__)
#if defined(_MSC_VER) && !defined(__clang__)
#define GGML_CACHE_ALIGN __declspec(align(GGML_CACHE_LINE))
typedef volatile LONG atomic_int;
@ -455,21 +454,21 @@ const struct ggml_type_traits_cpu * ggml_get_type_traits_cpu(enum ggml_type type
#define GGML_F32x4_ADD vaddq_f32
#define GGML_F32x4_MUL vmulq_f32
#define GGML_F32x4_REDUCE_ONE(x) vaddvq_f32(x)
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
(res) = GGML_F32x4_REDUCE_ONE((x)[0]); \
#define GGML_F32x4_REDUCE(res, x) \
{ \
int offset = GGML_F32_ARR >> 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
offset >>= 1; \
for (int i = 0; i < offset; ++i) { \
(x)[i] = vaddq_f32((x)[i], (x)[offset+i]); \
} \
(res) = (ggml_float) GGML_F32x4_REDUCE_ONE((x)[0]); \
}
#define GGML_F32_VEC GGML_F32x4
@ -2396,7 +2395,7 @@ static void ggml_init_arm_arch_features(void) {
uint32_t hwcap2 = getauxval(AT_HWCAP2);
ggml_arm_arch_features.has_neon = !!(hwcap & HWCAP_ASIMD);
ggml_arm_arch_features.has_dotprod = !!(hwcap && HWCAP_ASIMDDP);
ggml_arm_arch_features.has_dotprod = !!(hwcap & HWCAP_ASIMDDP);
ggml_arm_arch_features.has_i8mm = !!(hwcap2 & HWCAP2_I8MM);
ggml_arm_arch_features.has_sve = !!(hwcap & HWCAP_SVE);
@ -12945,7 +12944,7 @@ static thread_ret_t ggml_graph_compute_secondary_thread(void* data);
#include "windows.h"
// TODO: support > 64 CPUs
bool ggml_thread_apply_affinity(bool * mask) {
static bool ggml_thread_apply_affinity(bool * mask) {
HANDLE h = GetCurrentThread();
uint64_t bitmask = 0ULL;

View file

@ -94,7 +94,9 @@ static void concat_f32_cuda(const float * x, const float * y, float * dst, int n
}
// non-contiguous kernel (slow)
static __global__ void concat_f32_non_cont(
template <int dim>
static __global__ void __launch_bounds__(CUDA_CONCAT_BLOCK_SIZE)
concat_f32_non_cont(
const char * src0,
const char * src1,
char * dst,
@ -121,22 +123,28 @@ static __global__ void concat_f32_non_cont(
uint64_t nb0,
uint64_t nb1,
uint64_t nb2,
uint64_t nb3,
int32_t dim) {
uint64_t nb3){
static_assert(dim >= 0 && dim <= 3);
const int64_t i3 = blockIdx.z;
const int64_t i2 = blockIdx.y;
const int64_t i1 = blockIdx.x;
int64_t o[4] = {0, 0, 0, 0};
o[dim] = dim == 0 ? ne00 : (dim == 1 ? ne01 : (dim == 2 ? ne02 : ne03));
const float * x;
for (int i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
for (int64_t i0 = threadIdx.x; i0 < ne0; i0 += blockDim.x) {
if (i0 < ne00 && i1 < ne01 && i2 < ne02 && i3 < ne03) {
x = (const float *)(src0 + (i3 )*nb03 + (i2 )*nb02 + (i1 )*nb01 + (i0 )*nb00);
} else {
x = (const float *)(src1 + (i3 - o[3])*nb13 + (i2 - o[2])*nb12 + (i1 - o[1])*nb11 + (i0 - o[0])*nb10);
if constexpr (dim == 0) {
x = (const float *) (src1 + i3 * nb13 + i2 * nb12 + i1 * nb11 + (i0 - ne00) * nb10);
} else if constexpr (dim == 1) {
x = (const float *) (src1 + i3 * nb13 + i2 * nb12 + (i1 - ne01) * nb11 + i0 * nb10);
} else if constexpr (dim == 2) {
x = (const float *) (src1 + i3 * nb13 + (i2 - ne02) * nb12 + i1 * nb11 + i0 * nb10);
} else if constexpr (dim == 3) {
x = (const float *) (src1 + (i3 - ne03) * nb13 + i2 * nb12 + i1 * nb11 + i0 * nb10);
}
}
float * y = (float *)(dst + i3*nb3 + i2*nb2 + i1*nb1 + i0*nb0);
@ -182,15 +190,32 @@ void ggml_cuda_op_concat(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
}
} else {
dim3 grid_dim(dst->ne[1], dst->ne[2], dst->ne[3]);
concat_f32_non_cont<<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
(const char *)src0->data,
(const char *)src1->data,
( char *)dst->data,
auto launch_kernel = [&](auto dim) {
concat_f32_non_cont<dim><<<grid_dim, CUDA_CONCAT_BLOCK_SIZE, 0, stream>>>(
(const char *) src0->data, (const char *) src1->data, (char *) dst->data,
src0->ne[0], src0->ne[1], src0->ne[2], src0->ne[3],
src0->nb[0], src0->nb[1], src0->nb[2], src0->nb[3],
src1->ne[0], src1->ne[1], src1->ne[2], src1->ne[3],
src1->nb[0], src1->nb[1], src1->nb[2], src1->nb[3],
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3], dim);
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3],
dst->nb[0], dst->nb[1], dst->nb[2], dst->nb[3]);
};
switch (dim) {
case 0:
launch_kernel(std::integral_constant<int, 0>{});
break;
case 1:
launch_kernel(std::integral_constant<int, 1>{});
break;
case 2:
launch_kernel(std::integral_constant<int, 2>{});
break;
case 3:
launch_kernel(std::integral_constant<int, 3>{});
break;
default:
GGML_ABORT("Invalid dim: %d", dim);
break;
}
}
}

View file

@ -74,8 +74,8 @@ static inline int ggml_up(int n, int m) {
//
GGML_ATTRIBUTE_FORMAT(2, 3)
void ggml_log_internal (enum ggml_log_level level, const char * format, ...);
void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data);
GGML_API void ggml_log_internal (enum ggml_log_level level, const char * format, ...);
GGML_API void ggml_log_callback_default(enum ggml_log_level level, const char * text, void * user_data);
#define GGML_LOG(...) ggml_log_internal(GGML_LOG_LEVEL_NONE , __VA_ARGS__)
#define GGML_LOG_INFO(...) ggml_log_internal(GGML_LOG_LEVEL_INFO , __VA_ARGS__)
@ -304,8 +304,8 @@ struct ggml_cgraph ggml_graph_view(struct ggml_cgraph * cgraph, int i0, int i1);
// Memory allocation
void * ggml_aligned_malloc(size_t size);
void ggml_aligned_free(void * ptr, size_t size);
GGML_API void * ggml_aligned_malloc(size_t size);
GGML_API void ggml_aligned_free(void * ptr, size_t size);
// FP16 to FP32 conversion

View file

@ -0,0 +1,147 @@
find_package(OpenCL REQUIRED)
find_package(Python3 REQUIRED)
set(TARGET_NAME ggml-opencl)
ggml_add_backend_library(${TARGET_NAME}
ggml-opencl.cpp
../../include/ggml-opencl.h)
target_link_libraries(${TARGET_NAME} PRIVATE ${OpenCL_LIBRARIES})
target_include_directories(${TARGET_NAME} PRIVATE ${OpenCL_INCLUDE_DIRS})
if (GGML_OPENCL_PROFILING)
message(STATUS "OpenCL profiling enabled (increases CPU overhead)")
add_compile_definitions(GGML_OPENCL_PROFILING)
endif ()
add_compile_definitions(GGML_OPENCL_SOA_Q)
if (GGML_OPENCL_USE_ADRENO_KERNELS)
message(STATUS "OpenCL will use matmul kernels optimized for Adreno")
add_compile_definitions(GGML_OPENCL_USE_ADRENO_KERNELS)
endif ()
if (GGML_OPENCL_EMBED_KERNELS)
add_compile_definitions(GGML_OPENCL_EMBED_KERNELS)
set(OPENCL_CL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl.cl.h")
set(OPENCL_MM_CL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_mm.cl.h")
set(OPENCL_CVT_CL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_cvt.cl.h")
set(OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_gemv_noshuffle.cl.h")
set(OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_gemv_noshuffle_general.cl.h")
set(OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_mul_mat_Ab_Bi_8x4.cl.h")
set(OPENCL_TRANSPOSE_16_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_transpose_16.cl.h")
set(OPENCL_TRANSPOSE_32_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_transpose_32.cl.h")
set(OPENCL_TRANSPOSE_32_16_SOURCE_EMBED "${CMAKE_BINARY_DIR}/autogenerated/ggml-opencl_transpose_32_16.cl.h")
set(EMBED_KERNEL_SCRIPT "${CMAKE_CURRENT_SOURCE_DIR}/kernels/embed_kernel.py")
file(MAKE_DIRECTORY "${CMAKE_BINARY_DIR}/autogenerated")
include_directories("${CMAKE_BINARY_DIR}/autogenerated")
# Python must be accessible from command line
add_custom_command(
OUTPUT ${OPENCL_CL_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl.cl
${OPENCL_CL_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_MM_CL_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_mm.cl
${OPENCL_MM_CL_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_mm.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_mm.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_CVT_CL_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_cvt.cl
${OPENCL_CVT_CL_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_cvt.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_cvt.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_gemv_noshuffle.cl
${OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_gemv_noshuffle.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_gemv_noshuffle.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_gemv_noshuffle_general.cl
${OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_gemv_noshuffle_general.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_gemv_noshuffle_general.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl
${OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_mul_mat_Ab_Bi_8x4.cl.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_TRANSPOSE_16_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_transpose_16.cl
${OPENCL_TRANSPOSE_16_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_transpose_16.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_transpose_16.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_TRANSPOSE_32_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_transpose_32.cl
${OPENCL_TRANSPOSE_32_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_transpose_32.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_transpose_32.cl.h"
)
add_custom_command(
OUTPUT ${OPENCL_TRANSPOSE_32_16_SOURCE_EMBED}
COMMAND ${Python3_EXECUTABLE} ${EMBED_KERNEL_SCRIPT}
${CMAKE_CURRENT_SOURCE_DIR}/kernels/ggml-opencl_transpose_32_16.cl
${OPENCL_TRANSPOSE_32_16_SOURCE_EMBED}
DEPENDS kernels/ggml-opencl_transpose_32_16.cl ${EMBED_KERNEL_SCRIPT}
COMMENT "Generate ggml-opencl_transpose_32_16.cl.h"
)
target_sources(${TARGET_NAME} PRIVATE
${OPENCL_CL_SOURCE_EMBED}
${OPENCL_MM_CL_SOURCE_EMBED}
${OPENCL_CVT_CL_SOURCE_EMBED}
${OPENCL_GEMV_NOSHUFFLE_SOURCE_EMBED}
${OPENCL_GEMV_NOSHUFFLE_GENERAL_SOURCE_EMBED}
${OPENCL_MUL_MAT_Ab_Bi_8x4_SOURCE_EMBED}
${OPENCL_TRANSPOSE_16_SOURCE_EMBED}
${OPENCL_TRANSPOSE_32_SOURCE_EMBED}
${OPENCL_TRANSPOSE_32_16_SOURCE_EMBED})
else ()
# copy ggml-opencl.cl to bin directory
configure_file(kernels/ggml-opencl.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl.cl COPYONLY)
configure_file(kernels/ggml-opencl_mm.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_mm.cl COPYONLY)
configure_file(kernels/ggml-opencl_cvt.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_cvt.cl COPYONLY)
configure_file(kernels/ggml-opencl_gemv_noshuffle.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_gemv_noshuffle.cl COPYONLY)
configure_file(kernels/ggml-opencl_gemv_noshuffle_general.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_gemv_noshuffle_general.cl COPYONLY)
configure_file(kernels/ggml-opencl_mul_mat_Ab_Bi_8x4.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_mul_mat_Ab_Bi_8x4.cl COPYONLY)
configure_file(kernels/ggml-opencl_transpose_16.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_transpose_16.cl COPYONLY)
configure_file(kernels/ggml-opencl_transpose_32.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_transpose_32.cl COPYONLY)
configure_file(kernels/ggml-opencl_transpose_32_16.cl ${CMAKE_RUNTIME_OUTPUT_DIRECTORY}/ggml-opencl_transpose_32_16.cl COPYONLY)
endif ()

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,26 @@
#
import sys
import logging
logger = logging.getLogger("opencl-embed-kernel")
def main():
logging.basicConfig(level=logging.INFO)
if len(sys.argv) != 3:
logger.info("Usage: python embed_kernel.py <input_file> <output_file>")
sys.exit(1)
ifile = open(sys.argv[1], "r")
ofile = open(sys.argv[2], "w")
for i in ifile:
ofile.write('R"({})"\n'.format(i))
ifile.close()
ofile.close()
if __name__ == "__main__":
main()

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,106 @@
//------------------------------------------------------------------------------
// This file is contains additional kernels for data conversion.
// These kernels are used when loading the model, so its performance is less
// important.
//------------------------------------------------------------------------------
#ifdef cl_khr_fp16
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#elif defined(cl_amd_fp16)
#pragma OPENCL EXTENSION cl_amd_fp16 : enable
#else
#error "Half precision floating point not supportedby OpenCL implementation on your device."
#endif
#ifdef cl_khr_subgroups
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#elif defined(cl_intel_subgroups)
#pragma OPENCL EXTENSION cl_intel_subgroups : enable
#else
#error "Subgroup not supported on your device."
#endif
#ifdef cl_intel_required_subgroup_size
// Always use subgroup size of 32 on Intel.
#pragma OPENCL EXTENSION cl_intel_required_subgroup_size : enable
#define INTEL_GPU 1
#define REQD_SUBGROUP_SIZE_16 __attribute__((intel_reqd_sub_group_size(16)))
#define REQD_SUBGROUP_SIZE_32 __attribute__((intel_reqd_sub_group_size(32)))
#elif defined(cl_qcom_reqd_sub_group_size)
// Always use subgroups size of 64 on Adreno.
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
#define ADRENO_GPU 1
#define REQD_SUBGROUP_SIZE_64 __attribute__((qcom_reqd_sub_group_size("half")))
#define REQD_SUBGROUP_SIZE_128 __attribute__((qcom_reqd_sub_group_size("full")))
#else
// TODO: do not know how to choose subgroup size on other GPUs.
#error "Selecting subgroup size is not supported on your device."
#endif
#define QK4_0 32
#define QR4_0 2
#define QK4_1 32
#define QR4_1 2
#define QK5_0 32
#define QR5_0 2
#define QK5_1 32
#define QR5_1 2
#define QK8_0 32
#define QR8_0 1
#define QK_K 256
#define K_QUANTS_PER_ITERATION 2
typedef char int8_t;
typedef uchar uint8_t;
typedef short int16_t;
typedef ushort uint16_t;
typedef int int32_t;
typedef uint uint32_t;
//------------------------------------------------------------------------------
// block_q4_0
//------------------------------------------------------------------------------
struct block_q4_0
{
half d;
uint8_t qs[QK4_0 / 2];
};
//------------------------------------------------------------------------------
// mul_vec_q_n_f32_flat_noshuffle
//
// This variation uses flat arrays (struct of arrays, SOA) representation for
// quant tensors. It also uses non shuffled bit order for weights.
//
// The shuffled version is kept in the original file because moving it here
// seems to result in worse performance for adreno.
//------------------------------------------------------------------------------
kernel void kernel_convert_block_q4_0_noshuffle(
global struct block_q4_0 * src0,
global uchar * dst_q,
global half * dst_d
) {
global struct block_q4_0 * b = (global struct block_q4_0 *) src0 + get_global_id(0);
global uchar * q = (global uchar *) dst_q + QK4_0/2*get_global_id(0);
global half * d = (global half *) dst_d + get_global_id(0);
*d = b->d;
for (int i = 0; i < QK4_0/4; ++i) {
uchar x0 = b->qs[2*i + 0];
uchar x1 = b->qs[2*i + 1];
q[i + 0 ] = convert_uchar(x0 & 0x0F) | convert_uchar((x1 & 0x0F) << 4);
q[i + QK4_0/4] = convert_uchar((x0 & 0xF0) >> 4) | convert_uchar(x1 & 0xF0);
#ifdef ADRENO_GPU
// Workaround for adreno - must have the following printf statement for
// the kernel to work properly. Otherwise it produces incorrect result.
// convert_uchar above also seems necessary.
// Compare against a large number so that it does not print anything.
// get_sub_group_local_id() also works.
if (get_global_id(0) == 65536*4096) {
printf("%04x - %02x\n", *(global ushort*)d, ((x0 & 0xF0) >> 4) | (x1 & 0xF0));
}
#endif
}
}

View file

@ -0,0 +1,265 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#pragma OPENCL EXTENSION cl_qcom_subgroup_uniform_load: enable
#pragma OPENCL EXTENSION cl_qcom_subgroup_constant_load: enable
#pragma OPENCL EXTENSION cl_qcom_extra_vector_types : enable
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
// assume
#define QK4_0 32
#define N_SIMDGROUP 4
#define dequantizeBlockAccum_ns_sgbroadcast_1_hi(total_sums, bits4, scale, y) \
float shared_y; \
shared_y = sub_group_broadcast(y.s0, 0); \
total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s1, 0); \
total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s2, 0); \
total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s3, 0); \
total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s4, 0); \
total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s5, 0); \
total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s6, 0); \
total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s7, 0); \
total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s0, 1); \
total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s1, 1); \
total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s2, 1); \
total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s3, 1); \
total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s4, 1); \
total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s5, 1); \
total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s6, 1); \
total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s7, 1); \
total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
#define dequantizeBlockAccum_ns_sgbroadcast_1_lo(total_sums, bits4, scale, y) \
shared_y = sub_group_broadcast(y.s0, 2); \
total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s1, 2); \
total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s2, 2); \
total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s3, 2); \
total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s4, 2); \
total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s5, 2); \
total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s6, 2); \
total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s7, 2); \
total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s0, 3); \
total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s1, 3); \
total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s2, 3); \
total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s3, 3); \
total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s4, 3); \
total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s5, 3); \
total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s6, 3); \
total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s7, 3); \
total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
#define dequantizeBlockAccum_ns_sgbroadcast_8_hi(total_sums, bits4, scale, y) \
float8 shared_y; \
shared_y = sub_group_broadcast(y, 0); \
total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
shared_y = sub_group_broadcast(y, 1); \
total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
#define dequantizeBlockAccum_ns_sgbroadcast_8_lo(total_sums, bits4, scale, y) \
shared_y = sub_group_broadcast(y, 2); \
total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
shared_y = sub_group_broadcast(y, 3); \
total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
__attribute__((qcom_reqd_sub_group_size("full")))
__kernel void kernel_gemv_noshuffle(
__read_only image1d_buffer_t src0_q, // quantized A
global half2 * src0_d, // A scales
__read_only image1d_buffer_t src1, // B
ulong offset1, // offset to B (0)
global float * dst, // C
ulong offsetd, // offset to C (0)
uint K, // K
int ne01, // M
int ne02, // 1
int ne10, // K
int ne12, // 1
int ne0, // M
int ne1, // N
int r2, // 1
int r3)
{
uint groupId = get_local_id(1);
uint gid = get_global_id(0);
ushort slid = get_sub_group_local_id();
__private uint4 regA;
__private half2 regS;
__private float8 regB;
__private float2 totalSum = (float2)(0.0f);
// loop along K in block granularity, skip 4 blocks every iter
for (uint k = groupId; k < (K / QK4_0); k += N_SIMDGROUP) {
regS = src0_d[gid + k * LINE_STRIDE_A]; // each fiber loads scale of two rows
// first 4 fibers in each wave load 8 B values to its private scope
if (slid < 4) {
regB.s0123 = read_imagef(src1, (slid * 2 + k * 8));
regB.s4567 = read_imagef(src1, (1 + slid * 2 + k * 8));
}
// load half weights for two blocks in consecutive rows
regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 0)).x;
regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 1)).x;
regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 2)).x;
regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 3)).x;
#ifdef VECTOR_SUB_GROUP_BROADCAT
dequantizeBlockAccum_ns_sgbroadcast_8_hi(totalSum, as_ushort8(regA), regS, regB);
#else
dequantizeBlockAccum_ns_sgbroadcast_1_hi(totalSum, as_ushort8(regA), regS, regB);
#endif // VECTOR_SUB_GROUP_BROADCAT
regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 4)).x;
regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 5)).x;
regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 6)).x;
regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 7)).x;
#ifdef VECTOR_SUB_GROUP_BROADCAT
dequantizeBlockAccum_ns_sgbroadcast_8_lo(totalSum, as_ushort8(regA), regS, regB);
#else
dequantizeBlockAccum_ns_sgbroadcast_1_lo(totalSum, as_ushort8(regA), regS, regB);
#endif // VECTOR_SUB_GROUP_BROADCAT
}
// reduction in local memory, assumes #wave=4
__local float2 reduceLM[SIMDGROUP_WIDTH * 3];
if (groupId == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = totalSum;
if (groupId == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = totalSum;
if (groupId == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = totalSum;
barrier(CLK_LOCAL_MEM_FENCE);
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 0 + slid];
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 1 + slid];
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 2 + slid];
// 2 outputs per fiber in wave 0
if (groupId == 0) {
dst = (global float*)((global char*)dst + offsetd);
vstore2(totalSum, 0, &(dst[gid * 2]));
}
}

View file

@ -0,0 +1,271 @@
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_khr_subgroups : enable
#pragma OPENCL EXTENSION cl_qcom_subgroup_uniform_load: enable
#pragma OPENCL EXTENSION cl_qcom_subgroup_constant_load: enable
#pragma OPENCL EXTENSION cl_qcom_extra_vector_types : enable
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
// assume
#define QK4_0 32
#define N_SIMDGROUP 4
#define dequantizeBlockAccum_ns_sgbroadcast_1_hi(total_sums, bits4, scale, y) \
float shared_y; \
shared_y = sub_group_broadcast(y.s0, 0); \
total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s1, 0); \
total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s2, 0); \
total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s3, 0); \
total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s4, 0); \
total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s5, 0); \
total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s6, 0); \
total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s7, 0); \
total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s0, 1); \
total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s1, 1); \
total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s2, 1); \
total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s3, 1); \
total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s4, 1); \
total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s5, 1); \
total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s6, 1); \
total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s7, 1); \
total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
#define dequantizeBlockAccum_ns_sgbroadcast_1_lo(total_sums, bits4, scale, y) \
shared_y = sub_group_broadcast(y.s0, 2); \
total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s1, 2); \
total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s2, 2); \
total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s3, 2); \
total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s4, 2); \
total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s5, 2); \
total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s6, 2); \
total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s7, 2); \
total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s0, 3); \
total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s1, 3); \
total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s2, 3); \
total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s3, 3); \
total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s4, 3); \
total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y; \
total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s5, 3); \
total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s6, 3); \
total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y; \
shared_y = sub_group_broadcast(y.s7, 3); \
total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y; \
total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y; \
#define dequantizeBlockAccum_ns_sgbroadcast_8_hi(total_sums, bits4, scale, y) \
float8 shared_y; \
shared_y = sub_group_broadcast(y, 0); \
total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
shared_y = sub_group_broadcast(y, 1); \
total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
#define dequantizeBlockAccum_ns_sgbroadcast_8_lo(total_sums, bits4, scale, y) \
shared_y = sub_group_broadcast(y, 2); \
total_sums.s0 += ((bits4.s0 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
total_sums.s0 += (((bits4.s0 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
total_sums.s0 += (((bits4.s0 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
total_sums.s0 += (((bits4.s0 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
total_sums.s0 += ((bits4.s2 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
total_sums.s0 += (((bits4.s2 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
total_sums.s0 += (((bits4.s2 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
total_sums.s0 += (((bits4.s2 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
total_sums.s1 += ((bits4.s1 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
total_sums.s1 += (((bits4.s1 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
total_sums.s1 += (((bits4.s1 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
total_sums.s1 += (((bits4.s1 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
total_sums.s1 += ((bits4.s3 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
total_sums.s1 += (((bits4.s3 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
total_sums.s1 += (((bits4.s3 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
total_sums.s1 += (((bits4.s3 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
shared_y = sub_group_broadcast(y, 3); \
total_sums.s0 += ((bits4.s4 & 0x000F) - 8) * scale.s0 * shared_y.s0; \
total_sums.s0 += (((bits4.s4 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s1; \
total_sums.s0 += (((bits4.s4 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s2; \
total_sums.s0 += (((bits4.s4 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s3; \
total_sums.s0 += ((bits4.s6 & 0x000F) - 8) * scale.s0 * shared_y.s4; \
total_sums.s0 += (((bits4.s6 & 0x00F0) >> 4) - 8) * scale.s0 * shared_y.s5; \
total_sums.s0 += (((bits4.s6 & 0x0F00) >> 8) - 8) * scale.s0 * shared_y.s6; \
total_sums.s0 += (((bits4.s6 & 0xF000) >> 12) - 8) * scale.s0 * shared_y.s7; \
total_sums.s1 += ((bits4.s5 & 0x000F) - 8) * scale.s1 * shared_y.s0; \
total_sums.s1 += (((bits4.s5 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s1; \
total_sums.s1 += (((bits4.s5 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s2; \
total_sums.s1 += (((bits4.s5 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s3; \
total_sums.s1 += ((bits4.s7 & 0x000F) - 8) * scale.s1 * shared_y.s4; \
total_sums.s1 += (((bits4.s7 & 0x00F0) >> 4) - 8) * scale.s1 * shared_y.s5; \
total_sums.s1 += (((bits4.s7 & 0x0F00) >> 8) - 8) * scale.s1 * shared_y.s6; \
total_sums.s1 += (((bits4.s7 & 0xF000) >> 12) - 8) * scale.s1 * shared_y.s7; \
__attribute__((qcom_reqd_sub_group_size("full")))
__kernel void kernel_gemv_noshuffle(
__read_only image1d_buffer_t src0_q, // quantized A
global half2 * src0_d, // A scales
__read_only image1d_buffer_t src1, // B
ulong offset1, // offset to B (0)
global float * dst, // C
ulong offsetd, // offset to C (0)
int ne00, // K
int ne01, // M
int ne02, // 1
int ne10, // K
int ne12, // 1
int ne0, // M
int ne1, // N
int r2, // 1
int r3)
{
uint groupId = get_local_id(1);
uint gid = get_global_id(0);
ushort slid = get_sub_group_local_id();
uint K = ne00;
uint M = ne01;
uint LINE_STRIDE_A = M / 2;
uint BLOCK_STRIDE_A = N_SIMDGROUP * M;
__private uint4 regA;
__private half2 regS;
__private float8 regB;
__private float2 totalSum = (float2)(0.0f);
// loop along K in block granularity, skip 4 blocks every iter
for (uint k = groupId; k < (K / QK4_0); k += N_SIMDGROUP) {
regS = src0_d[gid + k * LINE_STRIDE_A]; // each fiber loads scale of two rows
// first 4 fibers in each wave load 8 B values to its private scope
if (slid < 4) {
regB.s0123 = read_imagef(src1, (slid * 2 + k * 8));
regB.s4567 = read_imagef(src1, (1 + slid * 2 + k * 8));
}
// load half weights for two blocks in consecutive rows
regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 0)).x;
regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 1)).x;
regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 2)).x;
regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 3)).x;
#ifdef VECTOR_SUB_GROUP_BROADCAT
dequantizeBlockAccum_ns_sgbroadcast_8_hi(totalSum, as_ushort8(regA), regS, regB);
#else
dequantizeBlockAccum_ns_sgbroadcast_1_hi(totalSum, as_ushort8(regA), regS, regB);
#endif // VECTOR_SUB_GROUP_BROADCAT
regA.s0 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 4)).x;
regA.s1 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 5)).x;
regA.s2 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 6)).x;
regA.s3 = read_imageui(src0_q, (gid + k * BLOCK_STRIDE_A + LINE_STRIDE_A * 7)).x;
#ifdef VECTOR_SUB_GROUP_BROADCAT
dequantizeBlockAccum_ns_sgbroadcast_8_lo(totalSum, as_ushort8(regA), regS, regB);
#else
dequantizeBlockAccum_ns_sgbroadcast_1_lo(totalSum, as_ushort8(regA), regS, regB);
#endif // VECTOR_SUB_GROUP_BROADCAT
}
// reduction in local memory, assumes #wave=4
__local float2 reduceLM[SIMDGROUP_WIDTH * 3];
if (groupId == 1) reduceLM[SIMDGROUP_WIDTH * 0 + slid] = totalSum;
if (groupId == 2) reduceLM[SIMDGROUP_WIDTH * 1 + slid] = totalSum;
if (groupId == 3) reduceLM[SIMDGROUP_WIDTH * 2 + slid] = totalSum;
barrier(CLK_LOCAL_MEM_FENCE);
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 0 + slid];
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 1 + slid];
if (groupId == 0) totalSum += reduceLM[SIMDGROUP_WIDTH * 2 + slid];
// 2 outputs per fiber in wave 0
if (groupId == 0) {
dst = (global float*)((global char*)dst + offsetd);
vstore2(totalSum, 0, &(dst[gid * 2]));
}
}

File diff suppressed because it is too large Load diff

View file

@ -0,0 +1,130 @@
// src0_q, src0_d, src1 are transposed as a preprocessing step
// 4-bit weights are transposed in groups of 4 (unsigned short int)
// consider weights originally "next to each other", now "on top of each other"
// each fiber computes a 8x4 tile of output elements
// using unshuffled weights
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
#pragma OPENCL EXTENSION cl_qcom_reqd_sub_group_size : enable
__attribute__((qcom_reqd_sub_group_size("full")))
kernel void kernel_mul_mat_Ab_Bi_8x4(
global const ushort * src0_q, // quantized A
global const half * src0_d, // A scales
__read_only image1d_buffer_t src1, // B (1d image)
global float * dst, // C
int m, // M
int n, // N with padding
int k, // K
int n_no_padding // N without padding
) {
int m_4 = m >> 2;
int n_4 = n >> 2;
int gy = get_global_id(0);
int gx = get_global_id(1);
int gx_2 = gx << 2;
half8 c0 = 0, c1 = 0, c2 = 0, c3 = 0; // 8x4 output elements
half8 B; // registers for activations
half4 dequantized_weights; // registers for dequantized weights
__global const ushort* weight_ptr = src0_q + gx_2; // pointer for weights
__global const half* scale_ptr = src0_d + gx_2; // pointer for scales
for(int i=0; i<k; i+=4){ //loop through K dimension
B.s0123 = read_imageh(src1, gy*2 + (i)*(n_4));
B.s4567 = read_imageh(src1, gy*2 + (i)*(n_4)+1);
// keep (i/4) and (i/32) in parenthesis, rounds down
// load 4 consecutive groups of 4 weights
ushort4 bits4 = vload4(0, weight_ptr + (i/4)*(m)); // (i/4) because weights grouped in 4s
// load 4 consecutive scales
half4 scale = vload4(0, scale_ptr + (i/32)*(m));// (i/32) because 1 scale per 32 elements
// j=0
dequantized_weights.s0 = ((bits4.s0 & (0x000F)) - 8) * scale.s0; // dequantize a row of the 16 weights
dequantized_weights.s1 = ((bits4.s1 & (0x000F)) - 8) * scale.s1;
dequantized_weights.s2 = ((bits4.s2 & (0x000F)) - 8) * scale.s2;
dequantized_weights.s3 = ((bits4.s3 & (0x000F)) - 8) * scale.s3;
c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate
c1 += B * dequantized_weights.s1;
c2 += B * dequantized_weights.s2;
c3 += B * dequantized_weights.s3;
// j=1
B.s0123 = read_imageh(src1, gy*2 + (i+1)*(n_4));
B.s4567 = read_imageh(src1, gy*2 + (i+1)*(n_4)+1);
dequantized_weights.s0 = (((bits4.s0 & (0x00F0)) >> 4) - 8) * scale.s0; // dequantize a row of the 16 weights
dequantized_weights.s1 = (((bits4.s1 & (0x00F0)) >> 4) - 8) * scale.s1;
dequantized_weights.s2 = (((bits4.s2 & (0x00F0)) >> 4) - 8) * scale.s2;
dequantized_weights.s3 = (((bits4.s3 & (0x00F0)) >> 4) - 8) * scale.s3;
c0 += B * dequantized_weights.s0; //vector-scalar multiplication to accumulate
c1 += B * dequantized_weights.s1;
c2 += B * dequantized_weights.s2;
c3 += B * dequantized_weights.s3;
// j=2
B.s0123 = read_imageh(src1, gy*2 + (i+2)*(n_4));
B.s4567 = read_imageh(src1, gy*2 + (i+2)*(n_4)+1);
dequantized_weights.s0 = (((bits4.s0 & (0x0F00)) >> 8) - 8) * scale.s0; // dequantize a row of the 16 weights
dequantized_weights.s1 = (((bits4.s1 & (0x0F00)) >> 8) - 8) * scale.s1;
dequantized_weights.s2 = (((bits4.s2 & (0x0F00)) >> 8) - 8) * scale.s2;
dequantized_weights.s3 = (((bits4.s3 & (0x0F00)) >> 8) - 8) * scale.s3;
c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate
c1 += B * dequantized_weights.s1;
c2 += B * dequantized_weights.s2;
c3 += B * dequantized_weights.s3;
// j=3
B.s0123 = read_imageh(src1, gy*2 + (i+3)*(n_4));
B.s4567 = read_imageh(src1, gy*2 + (i+3)*(n_4)+1);
dequantized_weights.s0 = (((bits4.s0 & (0xF000)) >> 12) - 8) * scale.s0; // dequantize a row of the 16 weights
dequantized_weights.s1 = (((bits4.s1 & (0xF000)) >> 12) - 8) * scale.s1;
dequantized_weights.s2 = (((bits4.s2 & (0xF000)) >> 12) - 8) * scale.s2;
dequantized_weights.s3 = (((bits4.s3 & (0xF000)) >> 12) - 8) * scale.s3;
c0 += B * dequantized_weights.s0; // vector-scalar multiplication to accumulate
c1 += B * dequantized_weights.s1;
c2 += B * dequantized_weights.s2;
c3 += B * dequantized_weights.s3;
}
int idx = (gy<<3)*m + (gx<<2); // vectorized store 16 elements
// conditional check if store is to a valid location. Required when N is not a multiple of 8
// if statements allow registers to be reused for each store
// provides a performance boost due to reduced register footprint, which increases number of concurrent waves
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s0, c1.s0, c2.s0, c3.s0), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s1, c1.s1, c2.s1, c3.s1), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s2, c1.s2, c2.s2, c3.s2), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s3, c1.s3, c2.s3, c3.s3), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s4, c1.s4, c2.s4, c3.s4), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s5, c1.s5, c2.s5, c3.s5), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s6, c1.s6, c2.s6, c3.s6), 0, dst + idx);
idx += m;
}
if(idx+3 < m*n_no_padding){
vstore4((float4)(c0.s7, c1.s7, c2.s7, c3.s7), 0, dst + idx);
}
}

View file

@ -0,0 +1,32 @@
// 16-bit transpose, loading/storing an 8x8 tile of elements
kernel void kernel_transpose_16(
__read_only image1d_buffer_t input,
__write_only image1d_buffer_t output,
const uint rows,
const uint cols
) {
const int i = get_global_id(0);
const int j = get_global_id(1);
const int i_3 = i<<3;
const int j_3 = j<<3;
ushort8 temp0 = as_ushort8(read_imagef(input, (j_3+0)*cols+i));
ushort8 temp1 = as_ushort8(read_imagef(input, (j_3+1)*cols+i));
ushort8 temp2 = as_ushort8(read_imagef(input, (j_3+2)*cols+i));
ushort8 temp3 = as_ushort8(read_imagef(input, (j_3+3)*cols+i));
ushort8 temp4 = as_ushort8(read_imagef(input, (j_3+4)*cols+i));
ushort8 temp5 = as_ushort8(read_imagef(input, (j_3+5)*cols+i));
ushort8 temp6 = as_ushort8(read_imagef(input, (j_3+6)*cols+i));
ushort8 temp7 = as_ushort8(read_imagef(input, (j_3+7)*cols+i));
write_imagef(output, (i_3+0)*rows+j, as_float4((ushort8)(temp0.s0, temp1.s0, temp2.s0, temp3.s0, temp4.s0, temp5.s0, temp6.s0, temp7.s0)));
write_imagef(output, (i_3+1)*rows+j, as_float4((ushort8)(temp0.s1, temp1.s1, temp2.s1, temp3.s1, temp4.s1, temp5.s1, temp6.s1, temp7.s1)));
write_imagef(output, (i_3+2)*rows+j, as_float4((ushort8)(temp0.s2, temp1.s2, temp2.s2, temp3.s2, temp4.s2, temp5.s2, temp6.s2, temp7.s2)));
write_imagef(output, (i_3+3)*rows+j, as_float4((ushort8)(temp0.s3, temp1.s3, temp2.s3, temp3.s3, temp4.s3, temp5.s3, temp6.s3, temp7.s3)));
write_imagef(output, (i_3+4)*rows+j, as_float4((ushort8)(temp0.s4, temp1.s4, temp2.s4, temp3.s4, temp4.s4, temp5.s4, temp6.s4, temp7.s4)));
write_imagef(output, (i_3+5)*rows+j, as_float4((ushort8)(temp0.s5, temp1.s5, temp2.s5, temp3.s5, temp4.s5, temp5.s5, temp6.s5, temp7.s5)));
write_imagef(output, (i_3+6)*rows+j, as_float4((ushort8)(temp0.s6, temp1.s6, temp2.s6, temp3.s6, temp4.s6, temp5.s6, temp6.s6, temp7.s6)));
write_imagef(output, (i_3+7)*rows+j, as_float4((ushort8)(temp0.s7, temp1.s7, temp2.s7, temp3.s7, temp4.s7, temp5.s7, temp6.s7, temp7.s7)));
}

View file

@ -0,0 +1,25 @@
// 32-bit transpose, loading/storing a 4x4 tile of elements
kernel void kernel_transpose_32(
__read_only image1d_buffer_t input,
__write_only image1d_buffer_t output,
const uint rows,
const uint cols
) {
const int i = get_global_id(0);
const int j = get_global_id(1);
const int i_2 = i<<2;
const int j_2 = j<<2;
float4 temp0 = read_imagef(input, (j_2+0)*cols+i);
float4 temp1 = read_imagef(input, (j_2+1)*cols+i);
float4 temp2 = read_imagef(input, (j_2+2)*cols+i);
float4 temp3 = read_imagef(input, (j_2+3)*cols+i);
write_imagef(output, (i_2+0)*rows+j, (float4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0));
write_imagef(output, (i_2+1)*rows+j, (float4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
write_imagef(output, (i_2+2)*rows+j, (float4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
write_imagef(output, (i_2+3)*rows+j, (float4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
}

View file

@ -0,0 +1,35 @@
// 32-bit transpose, loading/storing a 4x4 tile of elements
// Only used for activations
// converts to FP16
// also adds zero padding for non multiple of 8 prompt lengths
#pragma OPENCL EXTENSION cl_khr_fp16 : enable
kernel void kernel_transpose_32_16(__read_only image1d_buffer_t input, __write_only image1d_buffer_t output, const uint rows, const uint cols, const uint padded_rows) {
const int i = get_global_id(0);
const int j = get_global_id(1);
const int i_2 = i<<2;
const int j_2 = j<<2;
half4 temp0 = {0,0,0,0}; // initialize outputs to 0
half4 temp1 = {0,0,0,0};
half4 temp2 = {0,0,0,0};
half4 temp3 = {0,0,0,0};
if((j_2+0)*cols+i*4+3 < rows*cols*16){ // only load from a valid location. Otherwise keep register data as 0
temp0 = read_imageh(input, (j_2+0)*cols+i);
}
if((j_2+1)*cols+i*4+3 < rows*cols*16){
temp1 = read_imageh(input, (j_2+1)*cols+i);
}
if((j_2+2)*cols+i*4+3 < rows*cols*16){
temp2 = read_imageh(input, (j_2+2)*cols+i);
}
if((j_2+3)*cols+i*4+3 < rows*cols*16){
temp3 = read_imageh(input, (j_2+3)*cols+i);
}
write_imageh(output, (i_2+0)*padded_rows+j, (half4)(temp0.s0, temp1.s0, temp2.s0, temp3.s0)); // no conditionals for output, includes zero padding
write_imageh(output, (i_2+1)*padded_rows+j, (half4)(temp0.s1, temp1.s1, temp2.s1, temp3.s1));
write_imageh(output, (i_2+2)*padded_rows+j, (half4)(temp0.s2, temp1.s2, temp2.s2, temp3.s2));
write_imageh(output, (i_2+3)*padded_rows+j, (half4)(temp0.s3, temp1.s3, temp2.s3, temp3.s3));
}

View file

@ -11,6 +11,7 @@
//
#include "common.hpp"
#include "ggml-impl.h"
int get_current_device_id() {
return dpct::dev_mgr::instance().current_device_id();
@ -28,11 +29,7 @@ void* ggml_sycl_host_malloc(size_t size) try {
if (err != 0) {
// clear the error
fprintf(
stderr,
"WARNING: failed to allocate %.2f MB of pinned memory: %s\n",
size / 1024.0 / 1024.0,
"syclGetErrorString is not supported");
GGML_LOG_ERROR("WARNING: failed to allocate %.2f MB of pinned memory: %s\n", size / 1024.0 / 1024.0, "syclGetErrorString is not supported");
return nullptr;
}
@ -66,18 +63,12 @@ int64_t downsample_sycl_global_range(int64_t accumulate_block_num, int64_t block
void ggml_sycl_op_flatten(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
const ggml_sycl_op_flatten_t op) try {
const int64_t nrows0 = ggml_nrows(src0);
const bool use_src1 = src1 != nullptr;
const int64_t nrows1 = use_src1 ? ggml_nrows(src1) : 1;
GGML_ASSERT(!use_src1 || src1->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
GGML_ASSERT( dst->backend != GGML_BACKEND_TYPE_GPU_SPLIT);
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
ggml_tensor_extra_gpu * src1_extra = use_src1 ? (ggml_tensor_extra_gpu *) src1->extra : nullptr;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
// dd = data device
float * src0_ddf = (float *) src0->data;
float * src1_ddf = use_src1 ? (float *) src1->data : nullptr;

View file

@ -626,6 +626,7 @@ struct bin_bcast_sycl {
});
}
}
GGML_UNUSED(ctx);
}
};

View file

@ -47,7 +47,7 @@ static void concat_f32_dim1(const float *x, const float *y, float *dst,
// operation
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
if (item_ct1.get_group(1) < ne01) { // src0
if (item_ct1.get_group(1) < (size_t) ne01) { // src0
int offset_src =
nidx + item_ct1.get_group(1) * ne0 + item_ct1.get_group(0) * ne0 * ne01;
dst[offset_dst] = x[offset_src];
@ -70,7 +70,7 @@ static void concat_f32_dim2(const float *x, const float *y, float *dst,
// operation
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
if (item_ct1.get_group(0) < ne02) { // src0
if (item_ct1.get_group(0) < (size_t) ne02) { // src0
int offset_src = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
dst[offset_dst] = x[offset_src];

View file

@ -424,7 +424,7 @@ static void convert_unary(const void * __restrict__ vx, dst_t * __restrict__ y,
const int64_t global_id = item_ct1.get_local_id(2) + work_group_size * item_ct1.get_group(2);
// make each work-item deal with more elements since sycl global range can not exceed max int
const src_t * x = (src_t *) vx;
const src_t * x = (const src_t *) vx;
for (int64_t i = global_id; i < k; i += work_group_size * item_ct1.get_group_range(2)) {
y[i] = x[i];
}

View file

@ -1015,9 +1015,9 @@ void ggml_sycl_op_dequantize_mul_mat_vec(
break;
}
(void) src1;
(void) dst;
(void) src1_ddq_i;
(void) src1_ncols;
(void) src1_padded_row_size;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddq_i);
GGML_UNUSED(src1_ncols);
GGML_UNUSED(src1_padded_row_size);
}

View file

@ -1237,7 +1237,7 @@ namespace dpct
std::map<byte_t *, allocation>::iterator get_map_iterator(const void *ptr)
{
auto it = m_map.upper_bound((byte_t *)ptr);
auto it = m_map.upper_bound(const_cast<byte_t *>(reinterpret_cast<const byte_t *>(ptr)));
if (it == m_map.end())
{
// Not a virtual pointer.

View file

@ -237,7 +237,7 @@ void upscale_f32(const float *x, float *dst, const int nb00, const int nb01,
int i02 = i12 / sf2;
int i03 = i13 / sf3;
dst[index] = *(float *)((char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
dst[index] = *(const float *)((const char *)x + i03 * nb03 + i02 * nb02 + i01 * nb01 + i00 * nb00);
}
void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const int ne01, const int ne02,
@ -251,8 +251,7 @@ void pad_f32(const float *x, float *dst, const int ne0, const int ne00, const i
// operation
int offset_dst = nidx + item_ct1.get_group(1) * ne0 +
item_ct1.get_group(0) * ne0 * item_ct1.get_group_range(1);
if (nidx < ne00 && item_ct1.get_group(1) < ne01 &&
item_ct1.get_group(0) < ne02) {
if (nidx < ne00 && item_ct1.get_group(1) < (size_t) ne01 && item_ct1.get_group(0) < (size_t) ne02) {
int offset_src = nidx + item_ct1.get_group(1) * ne00 +
item_ct1.get_group(0) * ne00 * ne01;
dst[offset_dst] = x[offset_src];
@ -520,9 +519,10 @@ inline void ggml_sycl_op_silu(ggml_backend_sycl_context & ctx, const ggml_tensor
silu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
@ -535,9 +535,10 @@ inline void ggml_sycl_op_gelu(ggml_backend_sycl_context & ctx, const ggml_tensor
gelu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
const ggml_tensor *src1, ggml_tensor *dst,
@ -550,9 +551,10 @@ inline void ggml_sycl_op_gelu_quick(ggml_backend_sycl_context & ctx, const ggml_
gelu_quick_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
@ -564,9 +566,10 @@ inline void ggml_sycl_op_tanh(ggml_backend_sycl_context & ctx, const ggml_tensor
GGML_ASSERT( dst->type == GGML_TYPE_F32);
tanh_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
@ -579,9 +582,10 @@ inline void ggml_sycl_op_relu(ggml_backend_sycl_context & ctx, const ggml_tensor
relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -595,9 +599,10 @@ inline void ggml_sycl_op_hardsigmoid(ggml_backend_sycl_context & ctx, const ggml
hardsigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -610,9 +615,10 @@ inline void ggml_sycl_op_hardswish(ggml_backend_sycl_context & ctx, const ggml_t
hardswish_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -625,9 +631,10 @@ inline void ggml_sycl_op_exp(ggml_backend_sycl_context & ctx, const ggml_tensor
exp_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -640,9 +647,10 @@ inline void ggml_sycl_op_log(ggml_backend_sycl_context & ctx, const ggml_tensor
log_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -655,9 +663,10 @@ inline void ggml_sycl_op_sigmoid(ggml_backend_sycl_context & ctx, const ggml_ten
sigmoid_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -670,9 +679,10 @@ inline void ggml_sycl_op_sqrt(ggml_backend_sycl_context & ctx, const ggml_tensor
sqrt_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -685,9 +695,10 @@ inline void ggml_sycl_op_sin(ggml_backend_sycl_context & ctx, const ggml_tensor
sin_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -700,9 +711,10 @@ inline void ggml_sycl_op_cos(ggml_backend_sycl_context & ctx, const ggml_tensor
cos_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -715,9 +727,10 @@ inline void ggml_sycl_op_step(ggml_backend_sycl_context & ctx, const ggml_tensor
step_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -730,9 +743,10 @@ inline void ggml_sycl_op_neg(ggml_backend_sycl_context & ctx, const ggml_tensor
neg_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -749,9 +763,10 @@ inline void ggml_sycl_op_leaky_relu(ggml_backend_sycl_context & ctx, const ggml_
leaky_relu_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), negative_slope, main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
@ -764,9 +779,10 @@ inline void ggml_sycl_op_sqr(ggml_backend_sycl_context & ctx, const ggml_tensor
sqr_f32_sycl(src0_dd, dst_dd, ggml_nelements(src0), main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -787,9 +803,10 @@ inline void ggml_sycl_op_upscale(ggml_backend_sycl_context & ctx, const ggml_ten
dst->ne[0], dst->ne[1], dst->ne[2], dst->ne[3], sf0, sf1, sf2, sf3,
main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
@ -805,9 +822,10 @@ inline void ggml_sycl_op_pad(ggml_backend_sycl_context & ctx, const ggml_tensor
src0->ne[0], src0->ne[1], src0->ne[2],
dst->ne[0], dst->ne[1], dst->ne[2], main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
@ -827,7 +845,8 @@ inline void ggml_sycl_op_acc(ggml_backend_sycl_context & ctx, const ggml_tensor
acc_f32_sycl(src0_dd, src1_dd, dst_dd, ggml_nelements(dst), src1->ne[0], src1->ne[1], src1->ne[2], nb1, nb2, offset, main_stream);
(void) dst;
GGML_UNUSED(dst);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_add(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,

View file

@ -51,8 +51,8 @@ public:
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab);
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab);
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab);
auto a_mem = dnnl::memory(a_in_md, eng, (void*)a);
auto b_mem = dnnl::memory(b_in_md, eng, (void*)b);
auto a_mem = dnnl::memory(a_in_md, eng, const_cast<void*>(a));
auto b_mem = dnnl::memory(b_in_md, eng, const_cast<void*>(b));
auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md);
auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c);
@ -79,8 +79,8 @@ public:
const auto a_in_md = dnnl::memory::desc(a_dims, at, a_trans ? tag::ba : tag::ab);
const auto b_in_md = dnnl::memory::desc(b_dims, bt, b_trans ? tag::ba : tag::ab);
const auto c_md = dnnl::memory::desc(c_dims, ct, tag::ab);
auto a_mem = dnnl::memory(a_in_md, eng, (void*)a);
auto b_mem = dnnl::memory(b_in_md, eng, (void*)b);
auto a_mem = dnnl::memory(a_in_md, eng, const_cast<void*>(a));
auto b_mem = dnnl::memory(b_in_md, eng, const_cast<void*>(b));
auto matmul_pd = dnnl::matmul::primitive_desc(eng, a_in_md, b_in_md, c_md);
auto c_mem = dnnl::memory(matmul_pd.dst_desc(), eng, c);

View file

@ -47,7 +47,7 @@ static ggml_sycl_device_info ggml_sycl_init() {
info.device_count = dpct::dev_mgr::instance().device_count();
if (info.device_count == 0) {
GGML_LOG_ERROR("%s: failed to initialize " GGML_SYCL_NAME ": %s\n", __func__);
GGML_LOG_ERROR("%s: failed to initialize: %s\n", GGML_SYCL_NAME, __func__);
return info;
}
@ -64,7 +64,7 @@ static ggml_sycl_device_info ggml_sycl_init() {
#else
GGML_LOG_INFO("%s: SYCL_USE_XMX: no\n", __func__);
#endif
GGML_LOG_INFO("%s: found %d " GGML_SYCL_NAME " devices:\n", __func__, info.device_count);
GGML_LOG_INFO("%s: found %d %s devices:\n", __func__, info.device_count, GGML_SYCL_NAME);
for (int i = 0; i < info.device_count; ++i) {
info.devices[i].vmm = 0;
@ -137,7 +137,6 @@ void ggml_backend_sycl_print_sycl_devices() {
for (int id = 0; id < device_count; ++id) {
sycl::device device = dpct::dev_mgr::instance().get_device(id);
sycl::backend backend = device.get_backend();
std::string backend_type = get_device_backend_and_type(device);
int type_id = DeviceNums[backend_type]++;
std::stringstream device_type;
@ -420,13 +419,11 @@ ggml_backend_sycl_buffer_cpy_tensor(ggml_backend_buffer_t buffer,
return true;
}
return false;
GGML_UNUSED(buffer);
} catch (const sycl::exception & exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__ << ", line:" << __LINE__ << std::endl;
std::exit(1);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
<< ", line:" << __LINE__ << std::endl;
std::exit(1);
}
static void ggml_backend_sycl_buffer_clear(ggml_backend_buffer_t buffer,
uint8_t value) try {
@ -1092,10 +1089,7 @@ struct ggml_sycl_pool_leg : public ggml_sycl_pool {
ggml_sycl_buffer buffer_pool[MAX_SYCL_BUFFERS] = {};
size_t pool_size = 0;
explicit ggml_sycl_pool_leg(queue_ptr qptr_, int device_) :
qptr(qptr_),
device(device_) {
}
explicit ggml_sycl_pool_leg(queue_ptr qptr_, int device_) : device(device_), qptr(qptr_) {}
~ggml_sycl_pool_leg() {
for (int i = 0; i < MAX_SYCL_BUFFERS; ++i) {
@ -1238,7 +1232,7 @@ static void quantize_q8_1(const float * __restrict__ x, void * __restrict__ vy,
zeros[i] = 0.f;
qzeros[i] = 0;
}
const TC xi = ix < kx ? *(TC *)&x[iy * kx + ix] : zeros;
const TC xi = ix < kx ? *(const TC *)&x[iy * kx + ix] : zeros;
float sum = xi[0];
float amax = sycl::fabs(xi[0]);
#pragma unroll
@ -1799,6 +1793,9 @@ static void pool2d_nchw_kernel(
switch (op) {
case GGML_OP_POOL_AVG: res = 0; break;
case GGML_OP_POOL_MAX: res = -FLT_MAX; break;
default:
res = (To) sycl::nan(uint32_t(0));
break;
}
for (int i = bh; i < eh; i += 1) {
@ -1817,6 +1814,9 @@ static void pool2d_nchw_kernel(
switch (op) {
case GGML_OP_POOL_AVG: res += (cur / (kh * kw)); break;
case GGML_OP_POOL_MAX: res = sycl::max(res, (To)cur); break;
default:
res = (To) sycl::nan(uint32_t(0));
break;
}
}
}
@ -1855,7 +1855,8 @@ static void get_rows_sycl(ggml_backend_sycl_context & ctx, const ggml_tensor *sr
s3, nb01, nb02, nb03, s10, s11, s12, item_ct1);
});
(void) dst;
GGML_UNUSED(dst);
GGML_UNUSED(ctx);
}
template <typename src0_t>
@ -1893,10 +1894,10 @@ static void get_rows_sycl_float(ggml_backend_sycl_context & ctx, const ggml_tens
});
}
(void) dst;
GGML_UNUSED(dst);
GGML_UNUSED(ctx);
}
static void quantize_row_q8_1_sycl(const float *x, void *vy, const int kx,
const int ky, const int kx_padded,
queue_ptr stream) {
@ -2464,8 +2465,8 @@ static void ggml_sycl_op_repeat(ggml_backend_sycl_context & ctx, const ggml_tens
ggml_sycl_op_bin_bcast<bin_bcast_sycl<op_repeat>>(ctx, dst, src0, dst, nullptr, src0_d, dst_d, main_stream);
(void) src1;
(void) src1_d;
GGML_UNUSED(src1);
GGML_UNUSED(src1_d);
}
@ -2484,17 +2485,18 @@ inline void ggml_sycl_op_mul_mat_sycl(
const int64_t ne00 = src0->ne[0];
const int64_t ne10 = src1->ne[0];
const int64_t ne0 = dst->ne[0];
const int64_t row_diff = row_high - row_low;
int id;
SYCL_CHECK(
CHECK_TRY_ERROR(id = get_current_device_id()));
#if !GGML_SYCL_DNNL
const int64_t ne0 = dst->ne[0];
// the main device has a larger memory buffer to hold the results from all GPUs
// ldc == nrows of the matrix that cuBLAS writes into
int ldc = id == ctx.device ? ne0 : row_diff;
#endif
#ifdef GGML_SYCL_F16
bool use_fp16 = true; // TODO(Yu) SYCL capability check
@ -2531,9 +2533,9 @@ inline void ggml_sycl_op_mul_mat_sycl(
: src1_as_f16.get();
ggml_sycl_pool_alloc<sycl::half> dst_f16(ctx.pool(), row_diff * src1_ncols);
const sycl::half alpha_f16 = 1.0f;
const sycl::half beta_f16 = 0.0f;
#if !GGML_SYCL_DNNL
const sycl::half alpha_f16 = 1.0f;
const sycl::half beta_f16 = 0.0f;
SYCL_CHECK(CHECK_TRY_ERROR(dpct::gemm(
*stream, oneapi::mkl::transpose::trans,
oneapi::mkl::transpose::nontrans, row_diff, src1_ncols, ne10,
@ -2570,9 +2572,9 @@ inline void ggml_sycl_op_mul_mat_sycl(
const float * src0_ddf_i = src0->type == GGML_TYPE_F32 ? (const float *) src0_dd_i : src0_ddq_as_f32.get();
const float * src1_ddf1_i = src1->type == GGML_TYPE_F32 ? (const float *) src1_ddf_i : src1_ddq_as_f32.get();
const float alpha = 1.0f;
const float beta = 0.0f;
#if !GGML_SYCL_DNNL
const float alpha = 1.0f;
const float beta = 0.0f;
# ifdef GGML_SYCL_NVIDIA
SYCL_CHECK(CHECK_TRY_ERROR(oneapi::mkl::blas::column_major::gemm(
oneapi::mkl::backend_selector<oneapi::mkl::backend::cublas>{ *stream }, oneapi::mkl::transpose::trans,
@ -2590,9 +2592,9 @@ inline void ggml_sycl_op_mul_mat_sycl(
src0_ddf_i, DnnlGemmWrapper::to_dt<float>(), dst_dd_i, DnnlGemmWrapper::to_dt<float>());
#endif
}
(void) dst;
(void) src1_ddq_i;
(void) src1_padded_row_size;
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddq_i);
GGML_UNUSED(src1_padded_row_size);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@ -2638,8 +2640,9 @@ static void ggml_sycl_op_pool2d(ggml_backend_sycl_context & ctx, const ggml_tens
item_ct1);
});
(void) src1;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_sum(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -2654,9 +2657,10 @@ inline void ggml_sycl_op_sum(ggml_backend_sycl_context & ctx, const ggml_tensor
sum_rows_f32_sycl(src0_dd, dst_dd, ne, 1, main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -2673,9 +2677,10 @@ inline void ggml_sycl_op_sum_rows(ggml_backend_sycl_context & ctx, const ggml_te
sum_rows_f32_sycl(src0_dd, dst_dd, ncols, nrows, main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -2694,9 +2699,10 @@ inline void ggml_sycl_op_argsort(ggml_backend_sycl_context & ctx, const ggml_ten
argsort_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, order, main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -2713,9 +2719,10 @@ inline void ggml_sycl_op_argmax(ggml_backend_sycl_context & ctx, const ggml_tens
argmax_f32_i32_sycl(src0_dd, (int *)dst_dd, ncols, nrows, main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor *src0,
@ -2735,9 +2742,10 @@ inline void ggml_sycl_op_diag_mask_inf(ggml_backend_sycl_context & ctx, const gg
diag_mask_inf_f32_sycl(src0_dd, dst_dd, ne00, nrows0, ne01, n_past, main_stream);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
@ -2758,9 +2766,10 @@ inline void ggml_sycl_op_scale(ggml_backend_sycl_context & ctx, const ggml_tenso
*/
SYCL_CHECK(0);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, const ggml_tensor *src0, const ggml_tensor *src1,
@ -2783,9 +2792,10 @@ inline void ggml_sycl_op_clamp(ggml_backend_sycl_context & ctx, const ggml_tenso
*/
SYCL_CHECK(0);
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}
static void ggml_sycl_set_peer_access(const int n_tokens, int main_device) {
@ -2862,7 +2872,6 @@ static void ggml_sycl_op_mul_mat(ggml_backend_sycl_context & ctx, const ggml_ten
ggml_tensor_extra_gpu * src0_extra = (ggml_tensor_extra_gpu *) src0->extra;
ggml_tensor_extra_gpu * src1_extra = (ggml_tensor_extra_gpu *) src1->extra;
ggml_tensor_extra_gpu * dst_extra = (ggml_tensor_extra_gpu *) dst->extra;
const bool src0_is_contiguous = ggml_is_contiguous(src0);
const bool src1_is_contiguous = ggml_is_contiguous(src1);
@ -3289,7 +3298,6 @@ static void ggml_sycl_mul_mat_batched_sycl(ggml_backend_sycl_context & ctx,
GGML_TENSOR_BINARY_OP_LOCALS
const int64_t ne_dst = ggml_nelements(dst);
SYCL_CHECK(ggml_sycl_set_device(ctx.device));
queue_ptr main_stream = ctx.stream();;
@ -3397,6 +3405,7 @@ catch (sycl::exception const &exc) {
inline bool ggml_sycl_supports_mmq(enum ggml_type type) {
// TODO: accuracy issues in MMQ
GGML_UNUSED(type);
return false;
}
@ -3772,7 +3781,7 @@ static void ggml_sycl_cpy(ggml_backend_sycl_context & ctx, const ggml_tensor *sr
GGML_ABORT("fatal error");
}
(void) dst;
GGML_UNUSED(dst);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__
@ -3783,7 +3792,7 @@ catch (sycl::exception const &exc) {
static void ggml_sycl_dup(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
// TODO: why do we pass dst as src1 here?
ggml_sycl_cpy(ctx, src0, dst, nullptr);
(void) src1;
GGML_UNUSED(src1);
}
static void ggml_sycl_diag_mask_inf(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
@ -3828,13 +3837,16 @@ static void ggml_sycl_argmax(ggml_backend_sycl_context & ctx, const ggml_tensor
}
static void ggml_sycl_nop(ggml_backend_sycl_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
(void) src0;
(void) src1;
(void) dst;
GGML_UNUSED(src0);
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(ctx);
}
void ggml_sycl_set_main_device(const int main_device) try {
if (dpct::get_current_device_id() == main_device) return;
if (dpct::get_current_device_id() == static_cast<unsigned int> (main_device)) {
return;
}
check_allow_gpu_index(main_device);
dpct::select_device(main_device);
@ -4202,6 +4214,7 @@ try
{
ggml_backend_sycl_context *sycl_ctx =
(ggml_backend_sycl_context *)backend->context;
sycl::event *sycl_event = static_cast<sycl::event *>(event->context);
const queue_ptr &stream = sycl_ctx->stream(sycl_ctx->device, 0);
@ -4216,7 +4229,7 @@ catch (sycl::exception const &exc)
}
static void ggml_backend_sycl_event_wait(ggml_backend_t backend, ggml_backend_event_t event) try {
ggml_backend_sycl_context* sycl_ctx = static_cast<ggml_backend_sycl_context*>(backend->context);
sycl::event* sycl_event = static_cast<sycl::event*>(event->context);
if (ggml_backend_is_sycl(backend)) {
@ -4624,6 +4637,7 @@ static void *ggml_backend_sycl_reg_get_proc_address(ggml_backend_reg_t reg, cons
// SYCL doesn't support registering host memory, left here for reference
// "ggml_backend_register_host_buffer"
// "ggml_backend_unregister_host_buffer"
GGML_UNUSED(name);
return nullptr;
}

View file

@ -120,6 +120,7 @@ void ggml_sycl_op_im2col(
im2col_sycl(src1_dd, (float *)dst_dd, IW, IH, OW, OH, KW, KH, IC, batch, batch_offset, delta_offset, s0, s1, p0, p1, d0, d1, main_stream);
}
(void) src0;
(void) src0_dd;
GGML_UNUSED(src0);
GGML_UNUSED(src0_dd);
GGML_UNUSED(ctx);
}

View file

@ -813,7 +813,7 @@ load_tiles_q4_K(const void *__restrict__ vx, int *__restrict__ x_ql,
x_ql[i * (WARP_SIZE + 1) + k] = get_int_from_uint8_aligned(bxi->qs, kqsx);
}
const int blocks_per_tile_x_row = WARP_SIZE / QI4_K; // == 1 if QK_K == 256
constexpr int blocks_per_tile_x_row = QI4_K > WARP_SIZE ? 1 : WARP_SIZE / QI4_K; // == 1 if QK_K == 256
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
#pragma unroll
@ -961,7 +961,7 @@ load_tiles_q5_K(const void *__restrict__ vx, int *__restrict__ x_ql,
x_ql[i * (2*WARP_SIZE + 1) + kq1] = ql1 | qh1;
}
const int blocks_per_tile_x_row = WARP_SIZE / QI5_K; // == 1 if QK_K == 256
constexpr int blocks_per_tile_x_row = QI5_K > WARP_SIZE ? 1 : WARP_SIZE / QI5_K; // == 1 if QK_K == 256
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
#pragma unroll
@ -1109,7 +1109,7 @@ load_tiles_q6_K(const void *__restrict__ vx, int *__restrict__ x_ql,
dpct::sub_sat());
}
const int blocks_per_tile_x_row = WARP_SIZE / QI6_K; // == 1 if QK_K == 256
constexpr int blocks_per_tile_x_row = QI6_K > WARP_SIZE ? 1 : WARP_SIZE / QI6_K; // == 1 if QK_K == 256
const int kbxd = k % blocks_per_tile_x_row; // == 0 if QK_K == 256
float * x_dmf = (float *) x_dm;
@ -3020,9 +3020,9 @@ void ggml_sycl_op_mul_mat_q(
break;
}
(void) src1;
(void) dst;
(void) src1_ddf_i;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddf_i);
}
catch (sycl::exception const &exc) {
std::cerr << exc.what() << "Exception caught at file:" << __FILE__

View file

@ -753,11 +753,7 @@ static void mul_mat_vec_iq2_xs_q8_1_sycl(const void *vx, const void *vy,
const sycl::range<3> block_nums(1, 1, block_num_y);
const sycl::range<3> block_dims(1, GGML_SYCL_MMV_Y, QK_WARP_SIZE);
{
stream->submit([&](sycl::handler &cgh) {
auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0];
auto ksigns64_ptr_ct1 = &ksigns64[0];
stream->submit([&](sycl::handler & cgh) {
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
@ -780,9 +776,6 @@ static void mul_mat_vec_iq2_s_q8_1_sycl(const void *vx, const void *vy,
{
stream->submit([&](sycl::handler &cgh) {
auto iq2xs_grid_ptr_ct1 = &iq2xs_grid[0];
auto ksigns64_ptr_ct1 = &ksigns64[0];
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
@ -805,9 +798,6 @@ static void mul_mat_vec_iq3_xxs_q8_1_sycl(const void *vx, const void *vy,
{
stream->submit([&](sycl::handler &cgh) {
auto iq3xxs_grid_ptr_ct1 = &iq3xxs_grid[0];
auto ksigns64_ptr_ct1 = &ksigns64[0];
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
@ -830,8 +820,6 @@ static void mul_mat_vec_iq3_s_q8_1_sycl(const void *vx, const void *vy,
{
stream->submit([&](sycl::handler &cgh) {
auto iq3s_grid_ptr_ct1 = &iq3s_grid[0];
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
@ -854,9 +842,6 @@ static void mul_mat_vec_iq1_s_q8_1_sycl(const void *vx, const void *vy,
{
stream->submit([&](sycl::handler &cgh) {
auto iq1s_grid_ptr_ct1 = &iq1s_grid_gpu[0];
auto ksigns64_ptr_ct1 = &ksigns64[0];
cgh.parallel_for(
sycl::nd_range<3>(block_nums * block_dims, block_dims),
[=](sycl::nd_item<3> item_ct1)
@ -954,7 +939,7 @@ void ggml_sycl_op_mul_mat_vec_q(
const size_t q8_1_bs = QK8_1;
// the main device has a larger memory buffer to hold the results from all GPUs
// nrows_dst == nrows of the matrix that the kernel writes into
const int64_t nrows_dst = id == ctx.device ? ne00 : row_diff;
for (int i = 0; i < src1_ncols; i++)
{
const size_t src1_ddq_i_offset = i * src1_padded_col_size * q8_1_ts / q8_1_bs;
@ -1023,7 +1008,8 @@ void ggml_sycl_op_mul_mat_vec_q(
break;
}
}
(void) src1;
(void) dst;
(void) src1_ddf_i;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_ddf_i);
GGML_UNUSED(ctx);
}

View file

@ -31,7 +31,7 @@ static void norm_f32(const float* x, float* dst, const int ncols, const float ep
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
mean_var = 0.f;
int nreduce = nwarps / WARP_SIZE;
size_t nreduce = nwarps / WARP_SIZE;
for (size_t i = 0; i < nreduce; i += 1)
{
mean_var += s_sum[lane_id + i * WARP_SIZE];
@ -55,7 +55,7 @@ static void group_norm_f32(const float* x, float* dst, const int group_size, con
const int nthreads = item_ct1.get_local_range(2);
const int nwarps = nthreads / WARP_SIZE;
start += item_ct1.get_local_id(2);
int nreduce = nwarps / WARP_SIZE;
size_t nreduce = nwarps / WARP_SIZE;
if (end >= ne_elements) {
end = ne_elements;
@ -163,7 +163,7 @@ static void rms_norm_f32(const float* x, float* dst, const int ncols, const floa
converged control flow. You may need to adjust the code.
*/
item_ct1.barrier(sycl::access::fence_space::local_space);
int nreduce = nwarps / WARP_SIZE;
size_t nreduce = nwarps / WARP_SIZE;
tmp = 0.f;
for (size_t i = 0; i < nreduce; i += 1)
{
@ -352,6 +352,7 @@ void ggml_sycl_op_group_norm(ggml_backend_sycl_context& ctx, const ggml_tensor*
(void)src1;
(void)dst;
(void)src1_dd;
GGML_UNUSED(ctx);
}
void ggml_sycl_op_rms_norm(ggml_backend_sycl_context& ctx, const ggml_tensor* src0,

View file

@ -269,7 +269,8 @@ void ggml_sycl_op_rope(
}
}
(void) src1;
(void) dst;
(void) src1_dd;
GGML_UNUSED(src1);
GGML_UNUSED(dst);
GGML_UNUSED(src1_dd);
GGML_UNUSED(ctx);
}

View file

@ -16,7 +16,7 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const
const int lane_id = item_ct1.get_local_id(2) % WARP_SIZE;
const int nthreads = block_size;
const int nwarps = nthreads / WARP_SIZE;
int nreduce = nwarps / WARP_SIZE;
size_t nreduce = nwarps / WARP_SIZE;
float slope = 1.0f;
// ALiBi
@ -53,8 +53,9 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const
if (block_size > WARP_SIZE) {
if (warp_id == 0) {
buf[lane_id] = -INFINITY;
for (size_t i = 1; i < nreduce; i += 1)
for (size_t i = 1; i < nreduce; i += 1) {
buf[lane_id + i * WARP_SIZE] = -INFINITY;
}
}
item_ct1.barrier(sycl::access::fence_space::local_space);
@ -63,8 +64,7 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const
}
item_ct1.barrier(sycl::access::fence_space::local_space);
max_val = buf[lane_id];
for (size_t i = 1; i < nreduce; i += 1)
{
for (size_t i = 1; i < nreduce; i += 1) {
max_val = std::max(max_val, buf[lane_id + i * WARP_SIZE]);
}
max_val = warp_reduce_max(max_val, item_ct1);
@ -89,8 +89,9 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const
item_ct1.barrier(sycl::access::fence_space::local_space);
if (warp_id == 0) {
buf[lane_id] = 0.f;
for (size_t i = 1; i < nreduce; i += 1)
for (size_t i = 1; i < nreduce; i += 1) {
buf[lane_id + i * WARP_SIZE] = 0.f;
}
}
item_ct1.barrier(sycl::access::fence_space::local_space);
@ -100,8 +101,7 @@ static void soft_max_f32(const float * x, const float * mask, float * dst, const
item_ct1.barrier(sycl::access::fence_space::local_space);
tmp = buf[lane_id];
for (size_t i = 1; i < nreduce; i += 1)
{
for (size_t i = 1; i < nreduce; i += 1) {
tmp += buf[lane_id + i * WARP_SIZE];
}
tmp = warp_reduce_sum(tmp, item_ct1);

View file

@ -68,4 +68,5 @@ void ggml_sycl_op_timestep_embedding(ggml_backend_sycl_context & ctx, const ggml
const int max_period = dst->op_params[1];
timestep_embedding_f32_sycl(src0_d, dst_d, src0->ne[0], dst->nb[1], dim, max_period, stream);
GGML_UNUSED(src1);
}

View file

@ -59,7 +59,7 @@ static void rwkv_wkv_f32_kernel(
float y = 0;
// Process in chunks of 4 for better vectorization
sycl::float4 k4, r4, tf4, td4, s4, kv4;
sycl::float4 k4, r4, tf4, td4, s4;
#pragma unroll
for (int j = 0; j < head_size; j += 4) {
// Load data in vec4 chunks
@ -135,4 +135,7 @@ void ggml_sycl_op_rwkv_wkv6(ggml_backend_sycl_context& ctx, const ggml_tensor* s
);
});
});
GGML_UNUSED(src0);
GGML_UNUSED(src1);
}

View file

@ -1,11 +1,13 @@
#pragma once
#include "ggml.h"
#ifdef __cplusplus
extern "C" {
#endif
void ggml_critical_section_start(void);
void ggml_critical_section_end(void);
GGML_API void ggml_critical_section_start(void);
GGML_API void ggml_critical_section_end(void);
#ifdef __cplusplus
}

View file

@ -163,7 +163,11 @@ struct vk_device_struct {
uint32_t shader_core_count;
bool uma;
bool float_controls_rte_fp16;
bool coopmat2;
bool subgroup_size_control;
uint32_t subgroup_min_size;
uint32_t subgroup_max_size;
bool subgroup_require_full_support;
bool coopmat_support;
bool coopmat_acc_f32_support;
@ -171,6 +175,7 @@ struct vk_device_struct {
uint32_t coopmat_m;
uint32_t coopmat_n;
uint32_t coopmat_k;
bool coopmat2;
size_t idx;
@ -749,8 +754,12 @@ static uint32_t compile_count = 0;
static std::mutex compile_count_mutex;
static std::condition_variable compile_count_cond;
static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, const std::string name, size_t spv_size, const void* spv_data, const std::string entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t> specialization_constants, uint32_t align, bool disable_robustness) {
VK_LOG_DEBUG("ggml_vk_create_pipeline(" << device->name << ", " << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size << ", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align << ")");
static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipeline, const std::string name, size_t spv_size, const void* spv_data, const std::string entrypoint,
uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, std::vector<uint32_t> specialization_constants,
uint32_t align, bool disable_robustness, bool require_full_subgroups, uint32_t required_subgroup_size) {
VK_LOG_DEBUG("ggml_vk_create_pipeline(" << device->name << ", " << name << ", " << entrypoint << ", " << parameter_count << ", " << push_constant_size <<
", (" << wg_denoms[0] << "," << wg_denoms[1] << "," << wg_denoms[2] << "), specialization_constants, " << align <<
", " << disable_robustness << ", " << require_full_subgroups << ", " << required_subgroup_size << ")");
GGML_ASSERT(parameter_count > 0);
GGML_ASSERT(wg_denoms[0] > 0 && wg_denoms[1] > 0 && wg_denoms[2] > 0); // NOLINT
@ -809,14 +818,28 @@ static void ggml_vk_create_pipeline_func(vk_device& device, vk_pipeline& pipelin
specialization_constants.data()
);
vk::PipelineShaderStageCreateFlags pipeline_shader_stage_create_flags{};
if (device->subgroup_require_full_support && require_full_subgroups) {
pipeline_shader_stage_create_flags |= vk::PipelineShaderStageCreateFlagBits::eRequireFullSubgroupsEXT;
}
vk::PipelineShaderStageCreateInfo pipeline_shader_create_info(
vk::PipelineShaderStageCreateFlags(),
pipeline_shader_stage_create_flags,
vk::ShaderStageFlagBits::eCompute,
pipeline->shader_module,
entrypoint.c_str(),
&specialization_info);
vk::PipelineShaderStageRequiredSubgroupSizeCreateInfoEXT pipeline_shader_stage_required_subgroup_size_create_info;
pipeline_shader_stage_required_subgroup_size_create_info.requiredSubgroupSize = required_subgroup_size;
if (device->subgroup_size_control && required_subgroup_size > 0) {
GGML_ASSERT(device->subgroup_min_size <= required_subgroup_size && required_subgroup_size <= device->subgroup_max_size);
pipeline_shader_create_info.setPNext(&pipeline_shader_stage_required_subgroup_size_create_info);
}
vk::ComputePipelineCreateInfo compute_pipeline_create_info(
vk::PipelineCreateFlags(),
vk::PipelineCreateFlags{},
pipeline_shader_create_info,
pipeline->layout);
@ -1497,7 +1520,9 @@ static void ggml_vk_load_shaders(vk_device& device) {
device->pipeline_matmul_id_f32 = std::make_shared<vk_matmul_pipeline_struct>();
std::vector<std::future<void>> compiles;
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint, uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants, uint32_t align, bool disable_robustness = false) {
auto const &ggml_vk_create_pipeline = [&](vk_device& device, vk_pipeline& pipeline, const std::string &name, size_t spv_size, const void* spv_data, const std::string &entrypoint,
uint32_t parameter_count, uint32_t push_constant_size, std::array<uint32_t, 3> wg_denoms, const std::vector<uint32_t>& specialization_constants,
uint32_t align, bool disable_robustness = false, bool require_full_subgroups = false, uint32_t required_subgroup_size = 0) {
{
// wait until fewer than N compiles are in progress
uint32_t N = std::max(1u, std::thread::hardware_concurrency());
@ -1507,7 +1532,8 @@ static void ggml_vk_load_shaders(vk_device& device) {
}
compile_count++;
}
compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), name, spv_size, spv_data, entrypoint, parameter_count, push_constant_size, wg_denoms, specialization_constants, align, disable_robustness));
compiles.push_back(std::async(ggml_vk_create_pipeline_func, std::ref(device), std::ref(pipeline), name, spv_size, spv_data, entrypoint,
parameter_count, push_constant_size, wg_denoms, specialization_constants, align, disable_robustness, require_full_subgroups, required_subgroup_size));
};
#if defined(VK_NV_cooperative_matrix2) && defined(GGML_VULKAN_COOPMAT2_GLSLC_SUPPORT)
@ -1613,40 +1639,59 @@ static void ggml_vk_load_shaders(vk_device& device) {
// Create 6 variants, {s,m,l}x{unaligned,aligned}
#define CREATE_MM(PIPELINE_NAME, NAMELC, F16ACC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
if (device->mul_mat ## ID ## _l) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->l, #NAMELC #F16ACC "_l", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, 1, false, true); \
if (device->mul_mat ## ID ## _m) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->m, #NAMELC #F16ACC "_m", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, 1, false, true); \
if (device->mul_mat ## ID ## _s) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->s, #NAMELC #F16ACC "_s", NAMELC ## F16ACC ## _coopmat_len, NAMELC ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, 1, false, true); \
if (device->mul_mat ## ID ## _l) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_l, #NAMELC #F16ACC "_aligned_l", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), l_ ## WG_DENOMS, l_ ## WARPTILE, l_align, false, true); \
if (device->mul_mat ## ID ## _m) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_m, #NAMELC #F16ACC "_aligned_m", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), m_ ## WG_DENOMS, m_ ## WARPTILE, m_align, false, true); \
if (device->mul_mat ## ID ## _s) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _coopmat_len, NAMELC ## _aligned ## F16ACC ## _coopmat_data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align, false, true); \
// Create 2 variants, {f16,f32} accumulator
#define CREATE_MM2(PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
if (device->coopmat_acc_f16_support) { \
CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
} \
if (device->coopmat_acc_f32_support) { \
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
} \
CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(pipeline_matmul_f16_f32, matmul_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
if (device->coopmat_acc_f16_support) {
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
} else {
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_0].f16acc, matmul_q4_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_1].f16acc, matmul_q4_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_0].f16acc, matmul_q5_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_1].f16acc, matmul_q5_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q8_0].f16acc, matmul_q8_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q2_K].f16acc, matmul_q2_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q3_K].f16acc, matmul_q3_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q4_K].f16acc, matmul_q4_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q5_K].f16acc, matmul_q5_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_Q6_K].f16acc, matmul_q6_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_dequant_mul_mat_mat[GGML_TYPE_IQ4_NL].f16acc, matmul_iq4_nl_f32, , wg_denoms, warptile_mmq, vk_mat_mat_push_constants, 3, );
}
// If there's not enough shared memory for row_ids and the result tile, don't create these pipelines.
if (device->mul_mat_id_s || device->mul_mat_id_m || device->mul_mat_id_l) {
@ -1654,19 +1699,35 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM2(pipeline_matmul_id_f16, matmul_id_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM2(pipeline_matmul_id_f16_f32, matmul_id_f16_f32, wg_denoms, warptile, vk_mat_mat_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
if (device->coopmat_acc_f16_support) {
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
} else {
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_0].f16acc, matmul_id_q4_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_1].f16acc, matmul_id_q4_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_0].f16acc, matmul_id_q5_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_1].f16acc, matmul_id_q5_1_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q8_0].f16acc, matmul_id_q8_0_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q2_K].f16acc, matmul_id_q2_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q3_K].f16acc, matmul_id_q3_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q4_K].f16acc, matmul_id_q4_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q5_K].f16acc, matmul_id_q5_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, , wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
}
}
#undef CREATE_MM2
#undef CREATE_MM
} else if (device->fp16) {
// Create 6 variants, {s,m,l}x{unaligned,aligned}
@ -1684,6 +1745,11 @@ static void ggml_vk_load_shaders(vk_device& device) {
if (device->mul_mat ## ID ## _s) \
ggml_vk_create_pipeline(device, device-> PIPELINE_NAME ->a_s, #NAMELC #F16ACC "_aligned_s", NAMELC ## _aligned ## F16ACC ## _len, NAMELC ## _aligned ## F16ACC ## _data, "main", PARAMCOUNT, sizeof(PUSHCONST), s_ ## WG_DENOMS, s_ ## WARPTILE, s_align); \
// Create 2 variants, {f16,f32} accumulator
#define CREATE_MM2(PIPELINE_NAME, NAMELC, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
CREATE_MM(PIPELINE_NAME . f16acc, NAMELC, _f16acc, WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
CREATE_MM(PIPELINE_NAME . f32acc, NAMELC, , WG_DENOMS, WARPTILE, PUSHCONST, PARAMCOUNT, ID) \
CREATE_MM(pipeline_matmul_f32, matmul_f32_f32, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM(pipeline_matmul_f32_f16, matmul_f32_f16, , wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
CREATE_MM2(pipeline_matmul_f16, matmul_f16, wg_denoms, warptile, vk_mat_mat_push_constants, 3, );
@ -1721,6 +1787,7 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f16acc, matmul_id_q6_k_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f16acc, matmul_id_iq4_nl_f32, _f16acc, mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
}
#undef CREATE_MM2
#undef CREATE_MM
} else {
// Create 6 variants, {s,m,l}x{unaligned,aligned}
@ -1775,53 +1842,58 @@ static void ggml_vk_load_shaders(vk_device& device) {
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_Q6_K].f32acc, matmul_id_q6_k_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
CREATE_MM(pipeline_dequant_mul_mat_mat_id[GGML_TYPE_IQ4_NL].f32acc, matmul_id_iq4_nl_f32, , mmq_wg_denoms, warptile_mmq, vk_mat_mat_id_push_constants, 4, _id);
}
#undef CREATE_MM2
#undef CREATE_MM
}
// mul mat vec
// computing two rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0.
// AMD GCN and Intel graphics cards perform best when the number of rows per shader is doubled
uint32_t rm = 1;
if ((device->vendor_id == VK_VENDOR_ID_AMD && device->subgroup_min_size == 64 && device->subgroup_max_size == 64) || device->vendor_id == VK_VENDOR_ID_INTEL)
rm = 2;
// computing additional rows per workgroup is a benefit for Q4_0 -> Q5_1, but not for Q8_0.
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f32_f32", mul_mat_vec_f32_f32_f32_len, mul_mat_vec_f32_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f32_f32", mul_mat_vec_f16_f32_f32_len, mul_mat_vec_f16_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f32_f32", mul_mat_vec_q4_0_f32_f32_len, mul_mat_vec_q4_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f32_f32", mul_mat_vec_q4_1_f32_f32_len, mul_mat_vec_q4_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f32_f32", mul_mat_vec_q5_0_f32_f32_len, mul_mat_vec_q5_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f32_f32", mul_mat_vec_q5_1_f32_f32_len, mul_mat_vec_q5_1_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f32_f32", mul_mat_vec_q8_0_f32_f32_len, mul_mat_vec_q8_0_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f32_f32", mul_mat_vec_q2_k_f32_f32_len, mul_mat_vec_q2_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f32_f32", mul_mat_vec_q3_k_f32_f32_len, mul_mat_vec_q3_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f32_f32", mul_mat_vec_q4_k_f32_f32_len, mul_mat_vec_q4_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f32_f32", mul_mat_vec_q5_k_f32_f32_len, mul_mat_vec_q5_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f32_f32", mul_mat_vec_q6_k_f32_f32_len, mul_mat_vec_q6_k_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {subgroup_size_16, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f32_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f32_f32", mul_mat_vec_iq4_nl_f32_f32_len, mul_mat_vec_iq4_nl_f32_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F32 ], "mul_mat_vec_f32_f16_f32", mul_mat_vec_f32_f16_f32_len, mul_mat_vec_f32_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_F16 ], "mul_mat_vec_f16_f16_f32", mul_mat_vec_f16_f16_f32_len, mul_mat_vec_f16_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_0], "mul_mat_vec_q4_0_f16_f32", mul_mat_vec_q4_0_f16_f32_len, mul_mat_vec_q4_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_1], "mul_mat_vec_q4_1_f16_f32", mul_mat_vec_q4_1_f16_f32_len, mul_mat_vec_q4_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_0], "mul_mat_vec_q5_0_f16_f32", mul_mat_vec_q5_0_f16_f32_len, mul_mat_vec_q5_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_1], "mul_mat_vec_q5_1_f16_f32", mul_mat_vec_q5_1_f16_f32_len, mul_mat_vec_q5_1_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q8_0], "mul_mat_vec_q8_0_f16_f32", mul_mat_vec_q8_0_f16_f32_len, mul_mat_vec_q8_0_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q2_K], "mul_mat_vec_q2_k_f16_f32", mul_mat_vec_q2_k_f16_f32_len, mul_mat_vec_q2_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q3_K], "mul_mat_vec_q3_k_f16_f32", mul_mat_vec_q3_k_f16_f32_len, mul_mat_vec_q3_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q4_K], "mul_mat_vec_q4_k_f16_f32", mul_mat_vec_q4_k_f16_f32_len, mul_mat_vec_q4_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q5_K], "mul_mat_vec_q5_k_f16_f32", mul_mat_vec_q5_k_f16_f32_len, mul_mat_vec_q5_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_Q6_K], "mul_mat_vec_q6_k_f16_f32", mul_mat_vec_q6_k_f16_f32_len, mul_mat_vec_q6_k_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2, 1, 1}, {subgroup_size_16, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_f16_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_iq4_nl_f16_f32", mul_mat_vec_iq4_nl_f16_f32_len, mul_mat_vec_iq4_nl_f16_f32_data, "main", 3, sizeof(vk_mat_vec_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F32 ], "mul_mat_vec_id_f32_f32", mul_mat_vec_id_f32_f32_len, mul_mat_vec_id_f32_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_F16 ], "mul_mat_vec_id_f16_f32", mul_mat_vec_id_f16_f32_len, mul_mat_vec_id_f16_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {device->subgroup_size, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {device->subgroup_size, 1}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_0], "mul_mat_vec_id_q4_0_f32", mul_mat_vec_id_q4_0_f32_len, mul_mat_vec_id_q4_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_1], "mul_mat_vec_id_q4_1_f32", mul_mat_vec_id_q4_1_f32_len, mul_mat_vec_id_q4_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_0], "mul_mat_vec_id_q5_0_f32", mul_mat_vec_id_q5_0_f32_len, mul_mat_vec_id_q5_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_1], "mul_mat_vec_id_q5_1_f32", mul_mat_vec_id_q5_1_f32_len, mul_mat_vec_id_q5_1_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {device->subgroup_size, 2*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q8_0], "mul_mat_vec_id_q8_0_f32", mul_mat_vec_id_q8_0_f32_len, mul_mat_vec_id_q8_0_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1*rm, 1, 1}, {device->subgroup_size, 1*rm}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q2_K], "mul_mat_vec_id_q2_k_f32", mul_mat_vec_id_q2_k_f32_len, mul_mat_vec_id_q2_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q3_K], "mul_mat_vec_id_q3_k_f32", mul_mat_vec_id_q3_k_f32_len, mul_mat_vec_id_q3_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q4_K], "mul_mat_vec_id_q4_k_f32", mul_mat_vec_id_q4_k_f32_len, mul_mat_vec_id_q4_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q5_K], "mul_mat_vec_id_q5_k_f32", mul_mat_vec_id_q5_k_f32_len, mul_mat_vec_id_q5_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_Q6_K], "mul_mat_vec_id_q6_k_f32", mul_mat_vec_id_q6_k_f32_len, mul_mat_vec_id_q6_k_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {1, 1, 1}, {subgroup_size_16}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2, 1, 1}, {subgroup_size_16, 2}, 1, true);
ggml_vk_create_pipeline(device, device->pipeline_dequant_mul_mat_vec_id_f32[GGML_TYPE_IQ4_NL], "mul_mat_vec_id_iq4_nl_f32", mul_mat_vec_id_iq4_nl_f32_len, mul_mat_vec_id_iq4_nl_f32_data, "main", 4, sizeof(vk_mat_vec_id_push_constants), {2*rm, 1, 1}, {subgroup_size_16, 2*rm}, 1, true);
// dequant shaders
ggml_vk_create_pipeline(device, device->pipeline_dequant[GGML_TYPE_F32 ], "f32_to_f16", dequant_f32_len, dequant_f32_data, "main", 2, 5 * sizeof(uint32_t), {256 * 16, 1, 1}, {}, 1);
@ -1999,6 +2071,8 @@ static vk_device ggml_vk_get_device(size_t idx) {
amd_shader_core_properties2 = true;
} else if (strcmp("VK_EXT_pipeline_robustness", properties.extensionName) == 0) {
pipeline_robustness = true;
} else if (strcmp("VK_EXT_subgroup_size_control", properties.extensionName) == 0) {
device->subgroup_size_control = true;
} else if (strcmp("VK_KHR_cooperative_matrix", properties.extensionName) == 0 &&
!getenv("GGML_VK_DISABLE_COOPMAT")) {
device->coopmat_support = true;
@ -2019,6 +2093,8 @@ static vk_device ggml_vk_get_device(size_t idx) {
vk::PhysicalDeviceShaderSMBuiltinsPropertiesNV sm_props;
vk::PhysicalDeviceShaderCoreProperties2AMD amd_shader_core_properties2_props;
vk::PhysicalDeviceVulkan12Properties vk12_props;
vk::PhysicalDeviceSubgroupSizeControlPropertiesEXT subgroup_size_control_props;
props2.pNext = &props3;
props3.pNext = &subgroup_props;
subgroup_props.pNext = &driver_props;
@ -2038,6 +2114,10 @@ static vk_device ggml_vk_get_device(size_t idx) {
last_struct->pNext = (VkBaseOutStructure *)&amd_shader_core_properties2_props;
last_struct = (VkBaseOutStructure *)&amd_shader_core_properties2_props;
}
if (device->subgroup_size_control) {
last_struct->pNext = (VkBaseOutStructure *)&subgroup_size_control_props;
last_struct = (VkBaseOutStructure *)&subgroup_size_control_props;
}
#if defined(VK_NV_cooperative_matrix2)
vk::PhysicalDeviceCooperativeMatrix2PropertiesNV coopmat2_props;
@ -2076,7 +2156,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->fp16 = !force_disable_f16 && fp16_storage && fp16_compute;
if (device->vendor_id == VK_VENDOR_ID_INTEL || (props2.properties.vendorID == VK_VENDOR_ID_AMD && driver_props.driverID == vk::DriverId::eAmdProprietary)) {
if (device->vendor_id == VK_VENDOR_ID_INTEL || (device->vendor_id == VK_VENDOR_ID_AMD && (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource))) {
// Intel drivers don't support coopmat properly yet
// Only RADV supports coopmat properly on AMD
device->coopmat_support = false;
@ -2132,6 +2212,17 @@ static vk_device ggml_vk_get_device(size_t idx) {
device_extensions.push_back("VK_EXT_pipeline_robustness");
}
VkPhysicalDeviceSubgroupSizeControlFeaturesEXT subgroup_size_control_features;
subgroup_size_control_features.pNext = nullptr;
subgroup_size_control_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_SUBGROUP_SIZE_CONTROL_FEATURES_EXT;
subgroup_size_control_features.computeFullSubgroups = false;
subgroup_size_control_features.subgroupSizeControl = false;
if (device->subgroup_size_control) {
last_struct->pNext = (VkBaseOutStructure *)&subgroup_size_control_features;
last_struct = (VkBaseOutStructure *)&subgroup_size_control_features;
}
VkPhysicalDeviceCooperativeMatrixFeaturesKHR coopmat_features;
coopmat_features.pNext = nullptr;
coopmat_features.sType = VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_COOPERATIVE_MATRIX_FEATURES_KHR;
@ -2159,6 +2250,20 @@ static vk_device ggml_vk_get_device(size_t idx) {
device->pipeline_robustness = pl_robustness_features.pipelineRobustness;
if (device->subgroup_size_control) {
device->subgroup_min_size = subgroup_size_control_props.minSubgroupSize;
device->subgroup_max_size = subgroup_size_control_props.maxSubgroupSize;
}
device->subgroup_size_control = device->subgroup_size_control &&
(subgroup_size_control_props.requiredSubgroupSizeStages & vk::ShaderStageFlagBits::eCompute) &&
subgroup_size_control_features.subgroupSizeControl;
if (device->subgroup_size_control) {
device->subgroup_require_full_support = subgroup_size_control_features.computeFullSubgroups;
device_extensions.push_back("VK_EXT_subgroup_size_control");
}
device->coopmat_support = device->coopmat_support && coopmat_features.cooperativeMatrix;
if (coopmat2_support) {
@ -2308,7 +2413,7 @@ static vk_device ggml_vk_get_device(size_t idx) {
}
}
if (device->coopmat_m == 0) {
if (device->coopmat_m == 0 || !device->coopmat_acc_f32_support) {
// No suitable matmul mode found
GGML_LOG_DEBUG("ggml_vulkan: WARNING: No suitable matrix core mode found. Disabling matrix cores.\n");
device->coopmat_support = false;
@ -2441,7 +2546,7 @@ static void ggml_vk_print_gpu_info(size_t idx) {
}
}
if (props2.properties.vendorID == VK_VENDOR_ID_INTEL || (props2.properties.vendorID == VK_VENDOR_ID_AMD && driver_props.driverID == vk::DriverId::eAmdProprietary)) {
if (props2.properties.vendorID == VK_VENDOR_ID_INTEL || (props2.properties.vendorID == VK_VENDOR_ID_AMD && (driver_props.driverID == vk::DriverId::eAmdProprietary || driver_props.driverID == vk::DriverId::eAmdOpenSource))) {
// Intel drivers don't support coopmat properly yet
// Only RADV supports coopmat properly on AMD
coopmat_support = false;
@ -2728,7 +2833,7 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_pipeline(ggml_backend_vk_conte
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F16) {
return ctx->device->pipeline_matmul_f32_f16;
}
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16) {
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_f16_f32.f16acc;
}
@ -2803,7 +2908,7 @@ static vk_matmul_pipeline ggml_vk_get_mul_mat_mat_id_pipeline(ggml_backend_vk_co
if (src0_type == GGML_TYPE_F32 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f32;
}
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16) {
if (prec == GGML_PREC_DEFAULT && ctx->device->fp16 && !(ctx->device->coopmat_support && !ctx->device->coopmat_acc_f16_support)) {
if (src0_type == GGML_TYPE_F16 && src1_type == GGML_TYPE_F32) {
return ctx->device->pipeline_matmul_id_f16_f32.f16acc;
}

View file

@ -25,92 +25,94 @@ vec2 dequantize(uint ib, uint iqs, uint a_offset) {
#if defined(DATA_A_Q4_0)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return (vec2(vui & 0xF, vui >> 4) - 8.0f) * d;
return (vec2(vui & 0xF, vui >> 4) - 8.0f);
}
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a_packed16[a_offset + ib].d);
const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]);
return (vec4(vui & 0xF, (vui >> 4) & 0xF, (vui >> 8) & 0xF, (vui >> 12) & 0xF) - 8.0f) * d;
return (vec4(vui & 0xF, (vui >> 4) & 0xF, (vui >> 8) & 0xF, vui >> 12) - 8.0f);
}
#endif
#if defined(DATA_A_Q4_1)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
const float m = float(data_a[a_offset + ib].m);
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return vec2(vui & 0xF, vui >> 4) * d + m;
return vec2(vui & 0xF, vui >> 4);
}
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a_packed16[a_offset + ib].d);
const float m = float(data_a_packed16[a_offset + ib].m);
const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]);
return vec4(vui & 0xF, (vui >> 4) & 0xF, (vui >> 8) & 0xF, (vui >> 12) & 0xF) * d + m;
return vec4(vui & 0xF, (vui >> 4) & 0xF, (vui >> 8) & 0xF, vui >> 12);
}
#endif
#if defined(DATA_A_Q5_0)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
const uint uint_qh = uint(data_a[a_offset + ib].qh[1]) << 16 | data_a[a_offset + ib].qh[0];
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f) * d;
return (vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) - 16.0f);
}
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a_packed16[a_offset + ib].d);
const uint uint_qh = uint(data_a_packed16[a_offset + ib].qh[1]) << 16 | data_a_packed16[a_offset + ib].qh[0];
const ivec2 qh0 = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
const ivec2 qh1 = ivec2(((uint_qh >> (iqs + 1)) << 4) & 0x10, (uint_qh >> (iqs + 13)) & 0x10);
const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]);
return (vec4(((vui >> 0) & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, ((vui >> 12) & 0xF) | qh1.y) - 16.0f) * d;
return (vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y) - 16.0f);
}
#endif
#if defined(DATA_A_Q5_1)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
const float m = float(data_a[a_offset + ib].m);
const uint uint_qh = data_a[a_offset + ib].qh;
const ivec2 qh = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y) * d + m;
return vec2((vui & 0xF) | qh.x, (vui >> 4) | qh.y);
}
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a_packed16[a_offset + ib].d);
const float m = float(data_a_packed16[a_offset + ib].m);
const uint uint_qh = data_a_packed16[a_offset + ib].qh;
const ivec2 qh0 = ivec2(((uint_qh >> iqs) << 4) & 0x10, (uint_qh >> (iqs + 12)) & 0x10);
const ivec2 qh1 = ivec2(((uint_qh >> (iqs + 1)) << 4) & 0x10, (uint_qh >> (iqs + 13)) & 0x10);
const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]);
return vec4(((vui >> 0) & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, ((vui >> 12) & 0xF) | qh1.y) * d + m;
return vec4((vui & 0xF) | qh0.x, ((vui >> 4) & 0xF) | qh0.y, ((vui >> 8) & 0xF) | qh1.x, (vui >> 12) | qh1.y);
}
#endif
#if defined(DATA_A_Q8_0)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
return vec2(int(data_a[a_offset + ib].qs[iqs]), int(data_a[a_offset + ib].qs[iqs + 1])) * d;
return vec2(int(data_a[a_offset + ib].qs[iqs]), int(data_a[a_offset + ib].qs[iqs + 1]));
}
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a_packed16[a_offset + ib].d);
uint32_t v0 = data_a_packed16[a_offset + ib].qs[iqs/2];
uint32_t v1 = data_a_packed16[a_offset + ib].qs[iqs/2 + 1];
return vec4(int8_t(v0 & 0xFF), int8_t((v0 >> 8) & 0xFF), int8_t(v1 & 0xFF), int8_t((v1 >> 8) & 0xFF)) * d;
return vec4(int8_t(v0 & 0xFF), int8_t(v0 >> 8), int8_t(v1 & 0xFF), int8_t(v1 >> 8));
}
#endif
#if defined(DATA_A_IQ4_NL)
vec2 dequantize(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a[a_offset + ib].d);
const uint vui = uint(data_a[a_offset + ib].qs[iqs]);
return vec2(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[vui >> 4]) * d;
return vec2(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[vui >> 4]);
}
vec4 dequantize4(uint ib, uint iqs, uint a_offset) {
const float d = float(data_a_packed16[a_offset + ib].d);
const uint vui = uint(data_a_packed16[a_offset + ib].qs[iqs/2]);
return vec4(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[(vui >> 4) & 0xF], kvalues_iq4nl[(vui >> 8) & 0xF], kvalues_iq4nl[(vui >> 12) & 0xF]) * d;
return vec4(kvalues_iq4nl[vui & 0xF], kvalues_iq4nl[(vui >> 4) & 0xF], kvalues_iq4nl[(vui >> 8) & 0xF], kvalues_iq4nl[vui >> 12]);
}
#endif
#if defined(DATA_A_F32) || defined(DATA_A_F16)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(0, 0);
}
#endif
#if defined(DATA_A_Q4_0) || defined(DATA_A_Q5_0) || defined(DATA_A_Q8_0) || defined(DATA_A_IQ4_NL)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(float(data_a[a_offset + ib].d), 0);
}
#endif
#if defined(DATA_A_Q4_1) || defined(DATA_A_Q5_1)
vec2 get_dm(uint ib, uint a_offset) {
return vec2(float(data_a[a_offset + ib].d), float(data_a[a_offset + ib].m));
}
#endif

View file

@ -9,8 +9,8 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint i = gl_WorkGroupID.x * 256 + wgy;
if (i >= p.M * p.K / QUANT_K) {
const uint ib = gl_WorkGroupID.x * 256 + wgy;
if (ib >= p.M * p.K / QUANT_K) {
return;
}
@ -20,37 +20,49 @@ void main() {
const uint is = 2 * il;
const uint n = 4;
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib].d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib].d.y);
const uint y_idx = i * QUANT_K + 64 * il + n * ir;
const uint y_idx = ib * QUANT_K + 64 * il + n * ir;
const uint qs_idx = 32*il + n * ir;
uint8_t sc;
uint8_t m;
if (is < 4) {
sc = uint8_t(data_a[i].scales[is] & 63);
m = uint8_t(data_a[i].scales[is + 4] & 63);
} else {
sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4));
m = uint8_t((data_a[i].scales[is + 4] >> 4) | ((data_a[i].scales[is ] >> 6) << 4));
}
const FLOAT_TYPE d1 = dall * sc;
const FLOAT_TYPE m1 = dmin * m;
uint scidx0 = (is < 4) ? is : (is + 4);
uint scidx1 = (is < 4) ? is : (is - 4);
uint scidxmask1 = (is < 4) ? 0x30 : 0xC0;
uint scidxshift1 = (is < 4) ? 0 : 2;
uint mbidx0 = is + 4;
uint mbidx1 = (is < 4) ? is + 4 : is;
uint mbidxmask0 = (is < 4) ? 0xF : 0xF0;
uint mbidxshift0 = (is < 4) ? 0 : 4;
uint mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
uint mbidxshift1 = (is < 4) ? 0 : 2;
uint8_t sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1));
uint8_t mbyte = uint8_t((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0 | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1));
const FLOAT_TYPE d1 = dall * sc;
const FLOAT_TYPE m1 = dmin * mbyte;
scidx0 = (is < 4) ? is + 1 : (is + 5);
scidx1 = (is < 4) ? is + 1 : (is - 3);
scidxmask1 = (is < 4) ? 0x30 : 0xC0;
scidxshift1 = (is < 4) ? 0 : 2;
mbidx0 = is + 5;
mbidx1 = (is < 4) ? is + 5 : is + 1;
mbidxmask0 = (is < 4) ? 0xF : 0xF0;
mbidxshift0 = (is < 4) ? 0 : 4;
mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
mbidxshift1 = (is < 4) ? 0 : 2;
sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1));
mbyte = uint8_t((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0 | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1));
if (is < 4) {
sc = uint8_t(data_a[i].scales[is + 1] & 63);
m = uint8_t(data_a[i].scales[is + 5] & 63);
} else {
sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4));
m = uint8_t((data_a[i].scales[is + 5] >> 4) | ((data_a[i].scales[is + 1] >> 6) << 4));
}
const FLOAT_TYPE d2 = dall * sc;
const FLOAT_TYPE m2 = dmin * m;
const FLOAT_TYPE m2 = dmin * mbyte;
[[unroll]] for (uint l = 0; l < n; ++l) {
data_b[y_idx + l ] = D_TYPE(d1 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] & 0xF) - m1);
data_b[y_idx + l + 32] = D_TYPE(d2 * FLOAT_TYPE(data_a[i].qs[qs_idx + l] >> 4) - m2);
data_b[y_idx + l ] = D_TYPE(d1 * FLOAT_TYPE(data_a[ib].qs[qs_idx + l] & 0xF) - m1);
data_b[y_idx + l + 32] = D_TYPE(d2 * FLOAT_TYPE(data_a[ib].qs[qs_idx + l] >> 4) - m2);
}
}
}

View file

@ -9,8 +9,8 @@ layout (binding = 1) writeonly buffer D {D_TYPE data_b[];};
void main() {
[[unroll]] for (uint wgy = 0; wgy < 256; wgy++) {
const uint i = gl_WorkGroupID.x * 256 + wgy;
if (i >= p.M * p.K / QUANT_K) {
const uint ib = gl_WorkGroupID.x * 256 + wgy;
if (ib >= p.M * p.K / QUANT_K) {
return;
}
@ -19,40 +19,52 @@ void main() {
const uint ir = tid % 16;
const uint is = 2 * il;
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[i].d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[i].d.y);
const FLOAT_TYPE dall = FLOAT_TYPE(data_a[ib].d.x);
const FLOAT_TYPE dmin = FLOAT_TYPE(data_a[ib].d.y);
const uint y_idx = i * QUANT_K + 64 * il + 2 * ir;
const uint y_idx = ib * QUANT_K + 64 * il + 2 * ir;
const uint qs_idx = 32*il + 2 * ir;
const uint qh_idx = 2 * ir;
uint8_t sc;
uint8_t m;
if (is < 4) {
sc = uint8_t(data_a[i].scales[is] & 63);
m = uint8_t(data_a[i].scales[is + 4] & 63);
} else {
sc = uint8_t((data_a[i].scales[is + 4] & 0xF) | ((data_a[i].scales[is - 4] >> 6) << 4));
m = uint8_t((data_a[i].scales[is + 4] >> 4) | ((data_a[i].scales[is ] >> 6) << 4));
}
const FLOAT_TYPE d1 = dall * sc;
const FLOAT_TYPE m1 = dmin * m;
uint scidx0 = (is < 4) ? is : (is + 4);
uint scidx1 = (is < 4) ? is : (is - 4);
uint scidxmask1 = (is < 4) ? 0x30 : 0xC0;
uint scidxshift1 = (is < 4) ? 0 : 2;
uint mbidx0 = is + 4;
uint mbidx1 = (is < 4) ? is + 4 : is;
uint mbidxmask0 = (is < 4) ? 0xF : 0xF0;
uint mbidxshift0 = (is < 4) ? 0 : 4;
uint mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
uint mbidxshift1 = (is < 4) ? 0 : 2;
uint8_t sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1));
uint8_t mbyte = uint8_t((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0 | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1));
const FLOAT_TYPE d1 = dall * sc;
const FLOAT_TYPE m1 = dmin * mbyte;
scidx0 = (is < 4) ? is + 1 : (is + 5);
scidx1 = (is < 4) ? is + 1 : (is - 3);
scidxmask1 = (is < 4) ? 0x30 : 0xC0;
scidxshift1 = (is < 4) ? 0 : 2;
mbidx0 = is + 5;
mbidx1 = (is < 4) ? is + 5 : is + 1;
mbidxmask0 = (is < 4) ? 0xF : 0xF0;
mbidxshift0 = (is < 4) ? 0 : 4;
mbidxmask1 = (is < 4) ? 0x30 : 0xC0;
mbidxshift1 = (is < 4) ? 0 : 2;
sc = uint8_t((data_a[ib].scales[scidx0] & 0xF) | ((data_a[ib].scales[scidx1] & scidxmask1) >> scidxshift1));
mbyte = uint8_t((data_a[ib].scales[mbidx0] & mbidxmask0) >> mbidxshift0 | ((data_a[ib].scales[mbidx1] & mbidxmask1) >> mbidxshift1));
if (is < 4) {
sc = uint8_t(data_a[i].scales[is + 1] & 63);
m = uint8_t(data_a[i].scales[is + 5] & 63);
} else {
sc = uint8_t((data_a[i].scales[is + 5] & 0xF) | ((data_a[i].scales[is - 3] >> 6) << 4));
m = uint8_t((data_a[i].scales[is + 5] >> 4) | ((data_a[i].scales[is + 1] >> 6) << 4));
}
const FLOAT_TYPE d2 = dall * sc;
const FLOAT_TYPE m2 = dmin * m;
const FLOAT_TYPE m2 = dmin * mbyte;
const uint8_t hm1 = uint8_t(1 << (2 * il ));
const uint8_t hm2 = uint8_t(1 << (2 * il + 1));
data_b[y_idx ] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx ] & 0xF) + (((data_a[i].qh[qh_idx ] & hm1) != 0) ? 16 : 0)) - m1);
data_b[y_idx + 1] = D_TYPE(d1 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] & 0xF) + (((data_a[i].qh[qh_idx + 1] & hm1) != 0) ? 16 : 0)) - m1);
data_b[y_idx + 32] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx ] >> 4) + (((data_a[i].qh[qh_idx ] & hm2) != 0) ? 16 : 0)) - m2);
data_b[y_idx + 33] = D_TYPE(d2 * FLOAT_TYPE((data_a[i].qs[qs_idx + 1] >> 4) + (((data_a[i].qh[qh_idx + 1] & hm2) != 0) ? 16 : 0)) - m2);
data_b[y_idx ] = D_TYPE(d1 * FLOAT_TYPE((data_a[ib].qs[qs_idx ] & 0xF) + (((data_a[ib].qh[qh_idx ] & hm1) != 0) ? 16 : 0)) - m1);
data_b[y_idx + 1] = D_TYPE(d1 * FLOAT_TYPE((data_a[ib].qs[qs_idx + 1] & 0xF) + (((data_a[ib].qh[qh_idx + 1] & hm1) != 0) ? 16 : 0)) - m1);
data_b[y_idx + 32] = D_TYPE(d2 * FLOAT_TYPE((data_a[ib].qs[qs_idx ] >> 4) + (((data_a[ib].qh[qh_idx ] & hm2) != 0) ? 16 : 0)) - m2);
data_b[y_idx + 33] = D_TYPE(d2 * FLOAT_TYPE((data_a[ib].qs[qs_idx + 1] >> 4) + (((data_a[ib].qh[qh_idx + 1] & hm2) != 0) ? 16 : 0)) - m2);
}
}

View file

@ -31,6 +31,8 @@ void main() {
const uint y_offset = QUANT_R == 1 ? 1 : QUANT_K/2;
vec2 v = dequantize(ib, iqs, 0);
const vec2 dm = get_dm(ib, 0);
v = v * dm.x + dm.y;
data_d[d_offset + iybs + iqs ] = D_TYPE(v.x);
data_d[d_offset + iybs + iqs + y_offset] = D_TYPE(v.y);

View file

@ -31,27 +31,13 @@ void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_
#if K_PER_ITER == 8
#if QUANT_R == 2
B_TYPE_VEC4 bv02 = data_b_v4[(b_offset + iybs + iqs) / 4];
B_TYPE_VEC4 bv13 = data_b_v4[(b_offset + iybs + iqs + y_offset) / 4];
FLOAT_TYPE b0 = FLOAT_TYPE(bv02.x);
FLOAT_TYPE b1 = FLOAT_TYPE(bv13.x);
FLOAT_TYPE b2 = FLOAT_TYPE(bv02.y);
FLOAT_TYPE b3 = FLOAT_TYPE(bv13.y);
FLOAT_TYPE b4 = FLOAT_TYPE(bv02.z);
FLOAT_TYPE b5 = FLOAT_TYPE(bv13.z);
FLOAT_TYPE b6 = FLOAT_TYPE(bv02.w);
FLOAT_TYPE b7 = FLOAT_TYPE(bv13.w);
const B_TYPE_VEC4 bv02 = data_b_v4[(b_offset + iybs + iqs) / 4];
const B_TYPE_VEC4 bv13 = data_b_v4[(b_offset + iybs + iqs + y_offset) / 4];
const vec4 bv0 = vec4(bv02.x, bv13.x, bv02.y, bv13.y);
const vec4 bv1 = vec4(bv02.z, bv13.z, bv02.w, bv13.w);
#else
B_TYPE_VEC4 bv0 = data_b_v4[(b_offset + iybs + iqs) / 4];
B_TYPE_VEC4 bv1 = data_b_v4[(b_offset + iybs + iqs) / 4 + 1];
FLOAT_TYPE b0 = FLOAT_TYPE(bv0.x);
FLOAT_TYPE b1 = FLOAT_TYPE(bv0.y);
FLOAT_TYPE b2 = FLOAT_TYPE(bv0.z);
FLOAT_TYPE b3 = FLOAT_TYPE(bv0.w);
FLOAT_TYPE b4 = FLOAT_TYPE(bv1.x);
FLOAT_TYPE b5 = FLOAT_TYPE(bv1.y);
FLOAT_TYPE b6 = FLOAT_TYPE(bv1.z);
FLOAT_TYPE b7 = FLOAT_TYPE(bv1.w);
const vec4 bv0 = vec4(data_b_v4[(b_offset + iybs + iqs) / 4]);
const vec4 bv1 = vec4(data_b_v4[(b_offset + iybs + iqs) / 4 + 1]);
#endif
#else
// Check if the second of the pair of elements is OOB, and don't fetch B or
@ -67,22 +53,29 @@ void iter(inout FLOAT_TYPE temp[NUM_ROWS], const uint first_row, const uint num_
b1 = FLOAT_TYPE(data_b[b_offset + iybs + iqs + y_offset]);
}
#endif
uint ibi = first_row*p.ncols;
[[unroll]] for (uint n = 0; n < num_rows; ++n) {
const uint ib = ((first_row + n)*p.ncols + col)/QUANT_K; // block index
const uint ib = (ibi + col)/QUANT_K; // block index
ibi += p.ncols;
#if K_PER_ITER == 8
const vec4 v = dequantize4(ib, iqs, a_offset);
const vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
vec4 v = dequantize4(ib, iqs, a_offset);
vec4 v2 = dequantize4(ib, iqs+(4/QUANT_R), a_offset);
const vec2 dm = get_dm(ib, a_offset);
if (dm.y != 0) { // quant has min component
v = v * dm.x + dm.y;
v2 = v2 * dm.x + dm.y;
}
// matrix multiplication
temp[n] = fma(FLOAT_TYPE(v.x), b0, temp[n]);
temp[n] = fma(FLOAT_TYPE(v.y), b1, temp[n]);
temp[n] = fma(FLOAT_TYPE(v.z), b2, temp[n]);
temp[n] = fma(FLOAT_TYPE(v.w), b3, temp[n]);
temp[n] = fma(FLOAT_TYPE(v2.x), b4, temp[n]);
temp[n] = fma(FLOAT_TYPE(v2.y), b5, temp[n]);
temp[n] = fma(FLOAT_TYPE(v2.z), b6, temp[n]);
temp[n] = fma(FLOAT_TYPE(v2.w), b7, temp[n]);
FLOAT_TYPE rowtmp = dot(bv0, v);
rowtmp += dot(bv1, v2);
if (dm.y == 0)
rowtmp *= dm.x;
temp[n] += rowtmp;
#else
const vec2 v = dequantize(ib, iqs, a_offset);

View file

@ -145,11 +145,10 @@ class GGUFReader:
count = int(count)
itemsize = int(np.empty([], dtype = dtype).itemsize)
end_offs = offset + itemsize * count
return (
self.data[offset:end_offs]
.view(dtype = dtype)[:count]
.newbyteorder(override_order or self.byte_order)
)
arr = self.data[offset:end_offs].view(dtype=dtype)[:count]
if override_order is None:
return arr
return arr.view(arr.dtype.newbyteorder(override_order))
def _push_field(self, field: ReaderField, skip_sum: bool = False) -> int:
if field.name in self.fields:

View file

@ -1,10 +1,3 @@
# TODO: should not use this
if (WIN32)
if (BUILD_SHARED_LIBS)
set(CMAKE_WINDOWS_EXPORT_ALL_SYMBOLS ON)
endif()
endif()
llama_add_compile_flags()
#

View file

@ -1794,7 +1794,7 @@ private:
DWORD bufLen = FormatMessageA(FORMAT_MESSAGE_ALLOCATE_BUFFER | FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
NULL, error_code, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT), (LPSTR)&lpMsgBuf, 0, NULL);
if (!bufLen) {
ret = format("Win32 error code: %s", error_code);
ret = format("Win32 error code: %lx", error_code);
} else {
ret = lpMsgBuf;
LocalFree(lpMsgBuf);
@ -2132,7 +2132,7 @@ struct llama_mmap {
HMODULE hKernel32 = GetModuleHandleW(L"kernel32.dll");
// may fail on pre-Windows 8 systems
pPrefetchVirtualMemory = reinterpret_cast<decltype(pPrefetchVirtualMemory)> (GetProcAddress(hKernel32, "PrefetchVirtualMemory"));
pPrefetchVirtualMemory = (decltype(pPrefetchVirtualMemory))(void *) GetProcAddress(hKernel32, "PrefetchVirtualMemory");
if (pPrefetchVirtualMemory) {
// advise the kernel to preload the mapped memory
@ -21577,7 +21577,7 @@ float * llama_get_embeddings_ith(struct llama_context * ctx, int32_t i) {
throw std::runtime_error(format("negative index out of range [0, %d)", ctx->n_outputs));
}
} else if ((size_t) i >= ctx->output_ids.size()) {
throw std::runtime_error(format("out of range [0, %lu)", ctx->output_ids.size()));
throw std::runtime_error(format("out of range [0, %zu)", ctx->output_ids.size()));
} else {
j = ctx->output_ids[i];
}

View file

@ -84,38 +84,50 @@ llama_test(test-tokenizer-0 NAME test-tokenizer-0-qwen2 ARGS ${CMAKE
llama_test(test-tokenizer-0 NAME test-tokenizer-0-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
llama_test(test-tokenizer-0 NAME test-tokenizer-0-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
# build test-tokenizer-1-bpe target once and add many tests
add_executable(test-tokenizer-1-bpe test-tokenizer-1-bpe.cpp)
target_link_libraries(test-tokenizer-1-bpe PRIVATE common)
install(TARGETS test-tokenizer-1-bpe RUNTIME)
# TODO: disabled due to slowness
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-aquila ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-falcon ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-gpt-2 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-2.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-gpt-neox ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-llama-bpe ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf --ignore-merges)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-mpt ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
if (NOT WIN32)
# these tests are disabled on Windows because they use internal functions not exported with LLAMA_API
llama_target_and_test(test-sampling.cpp)
llama_target_and_test(test-grammar-parser.cpp)
llama_target_and_test(test-grammar-integration.cpp)
llama_target_and_test(test-llama-grammar.cpp)
# TODO: disabled on loongarch64 because the ggml-ci node lacks Python 3.8
if (NOT ${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
llama_target_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..)
target_include_directories(test-json-schema-to-grammar PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../examples/server)
endif()
# build test-tokenizer-1-spm target once and add many tests
add_executable(test-tokenizer-1-spm test-tokenizer-1-spm.cpp)
target_link_libraries(test-tokenizer-1-spm PRIVATE common)
install(TARGETS test-tokenizer-1-spm RUNTIME)
llama_test(test-tokenizer-1-spm NAME test-tokenizer-1-llama-spm ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-spm.gguf)
#llama_test(test-tokenizer-1-spm NAME test-tokenizer-1-baichuan ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-baichuan.gguf)
# build test-tokenizer-1-bpe target once and add many tests
add_executable(test-tokenizer-1-bpe test-tokenizer-1-bpe.cpp)
target_link_libraries(test-tokenizer-1-bpe PRIVATE common)
install(TARGETS test-tokenizer-1-bpe RUNTIME)
# TODO: disabled due to slowness
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-aquila ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-aquila.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-falcon ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-falcon.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-gpt-2 ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-2.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-gpt-neox ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-gpt-neox.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-llama-bpe ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-bpe.gguf --ignore-merges)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-mpt ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-mpt.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-refact ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-refact.gguf)
#llama_test(test-tokenizer-1-bpe NAME test-tokenizer-1-starcoder ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-starcoder.gguf)
# build test-tokenizer-1-spm target once and add many tests
add_executable(test-tokenizer-1-spm test-tokenizer-1-spm.cpp)
target_link_libraries(test-tokenizer-1-spm PRIVATE common)
install(TARGETS test-tokenizer-1-spm RUNTIME)
llama_test(test-tokenizer-1-spm NAME test-tokenizer-1-llama-spm ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-llama-spm.gguf)
#llama_test(test-tokenizer-1-spm NAME test-tokenizer-1-baichuan ARGS ${CMAKE_CURRENT_SOURCE_DIR}/../models/ggml-vocab-baichuan.gguf)
# llama_target_and_test(test-double-float.cpp) # SLOW
endif()
# llama_target_and_test(test-double-float.cpp) # SLOW
llama_target_and_test(test-log.cpp)
llama_target_and_test(test-arg-parser.cpp)
llama_target_and_test(test-sampling.cpp)
llama_target_and_test(test-chat-template.cpp)
llama_target_and_test(test-grammar-parser.cpp)
llama_target_and_test(test-grammar-integration.cpp)
llama_target_and_test(test-llama-grammar.cpp)
# llama_target_and_test(test-opt.cpp) # SLOW
llama_target_and_test(test-backend-ops.cpp)
@ -130,11 +142,6 @@ if (NOT GGML_BACKEND_DL)
llama_target_and_test(test-rope.cpp)
endif()
# TODO: disabled on loongarch64 because the ggml-ci node lacks Python 3.8
if (NOT ${CMAKE_SYSTEM_PROCESSOR} MATCHES "loongarch64")
llama_target_and_test(test-json-schema-to-grammar.cpp WORKING_DIRECTORY ${CMAKE_CURRENT_SOURCE_DIR}/..)
target_include_directories(test-json-schema-to-grammar PRIVATE ${CMAKE_CURRENT_SOURCE_DIR}/../examples/server)
endif()
# dummy executable - not installed
get_filename_component(TEST_TARGET test-c.c NAME_WE)