convert-falcon-hf-to-gguf: Support --vocab-only option, bail out if no tokenizer.json
This commit is contained in:
parent
8534197f14
commit
61911ca4db
1 changed files with 68 additions and 59 deletions
|
@ -8,6 +8,7 @@ import struct
|
||||||
import json
|
import json
|
||||||
import numpy as np
|
import numpy as np
|
||||||
import torch
|
import torch
|
||||||
|
import argparse
|
||||||
|
|
||||||
from typing import Any, List
|
from typing import Any, List
|
||||||
from pathlib import Path
|
from pathlib import Path
|
||||||
|
@ -47,17 +48,22 @@ def count_model_parts(dir_model: str) -> int:
|
||||||
return num_parts
|
return num_parts
|
||||||
|
|
||||||
|
|
||||||
if len(sys.argv) < 3:
|
def parse_args() -> argparse.Namespace:
|
||||||
print(f"Usage: python {sys.argv[0]} dir-model ftype\n")
|
parser = argparse.ArgumentParser(description="Convert a Falcon model to a GGML compatible file")
|
||||||
print(" ftype == 0 -> float32")
|
parser.add_argument("--vocab-only", action="store_true", help="extract only the vocab")
|
||||||
print(" ftype == 1 -> float16")
|
parser.add_argument("--outfile", type=Path, help="path to write to; default: based on input")
|
||||||
|
parser.add_argument("model", type=Path, help="directory containing model file, or model file itself (*.bin)")
|
||||||
|
parser.add_argument("ftype", type=int, choices=[0, 1], help="output format - use 0 for float32, 1 for float16", default = 1)
|
||||||
|
return parser.parse_args()
|
||||||
|
|
||||||
|
args = parse_args()
|
||||||
|
|
||||||
|
dir_model = args.model
|
||||||
|
ftype = args.ftype
|
||||||
|
if not dir_model.is_dir():
|
||||||
|
print(f'Error: {args.model} is not a directory', file = sys.stderr)
|
||||||
sys.exit(1)
|
sys.exit(1)
|
||||||
|
|
||||||
|
|
||||||
# output in the same directory as the model
|
|
||||||
dir_model = sys.argv[1]
|
|
||||||
last_dir = os.path.basename(os.path.normpath(dir_model))
|
|
||||||
|
|
||||||
# possible tensor data types
|
# possible tensor data types
|
||||||
# ftype == 0 -> float32
|
# ftype == 0 -> float32
|
||||||
# ftype == 1 -> float16
|
# ftype == 1 -> float16
|
||||||
|
@ -65,25 +71,21 @@ last_dir = os.path.basename(os.path.normpath(dir_model))
|
||||||
# map from ftype to string
|
# map from ftype to string
|
||||||
ftype_str = ["f32", "f16"]
|
ftype_str = ["f32", "f16"]
|
||||||
|
|
||||||
ftype = 1
|
if args.outfile is not None:
|
||||||
if len(sys.argv) > 2:
|
fname_out = args.outfile
|
||||||
ftype = int(sys.argv[2])
|
else:
|
||||||
if ftype < 0 or ftype > 1:
|
# output in the same directory as the model by default
|
||||||
print("Invalid ftype: " + str(ftype))
|
fname_out = dir_model / f'ggml-model-{ftype_str[ftype]}.gguf'
|
||||||
|
|
||||||
sys.exit(1)
|
print("gguf: loading model "+dir_model.name)
|
||||||
|
|
||||||
fname_out = sys.argv[1] + "/ggml-model-" + ftype_str[ftype] + ".gguf"
|
with open(dir_model / "config.json", "r", encoding="utf-8") as f:
|
||||||
|
|
||||||
print("gguf: loading model "+last_dir)
|
|
||||||
|
|
||||||
with open(dir_model + "/config.json", "r", encoding="utf-8") as f:
|
|
||||||
hparams = json.load(f)
|
hparams = json.load(f)
|
||||||
|
|
||||||
if hparams["architectures"][0] != "RWForCausalLM":
|
if hparams["architectures"][0] != "RWForCausalLM":
|
||||||
print("Model architecture not supported: " + hparams["architectures"][0])
|
print("Model architecture not supported: " + hparams["architectures"][0])
|
||||||
|
|
||||||
sys.exit()
|
sys.exit(1)
|
||||||
|
|
||||||
# get number of model parts
|
# get number of model parts
|
||||||
num_parts = count_model_parts(dir_model)
|
num_parts = count_model_parts(dir_model)
|
||||||
|
@ -117,25 +119,29 @@ tokens: List[bytearray] = []
|
||||||
scores: List[float] = []
|
scores: List[float] = []
|
||||||
toktypes: List[int] = []
|
toktypes: List[int] = []
|
||||||
|
|
||||||
if Path(dir_model + "/tokenizer.json").is_file():
|
tokenizer_json_file = dir_model / 'tokenizer.json'
|
||||||
# gpt2 tokenizer
|
if not tokenizer_json_file.is_file():
|
||||||
gguf_writer.add_tokenizer_model("gpt2")
|
print(f'Error: Missing {tokenizer_json_file}', file = sys.stderr)
|
||||||
|
sys.exit(1)
|
||||||
|
|
||||||
with open(dir_model + "/tokenizer.json", "r", encoding="utf-8") as f:
|
# gpt2 tokenizer
|
||||||
|
gguf_writer.add_tokenizer_model("gpt2")
|
||||||
|
|
||||||
|
with open(tokenizer_json_file, "r", encoding="utf-8") as f:
|
||||||
tokenizer_json = json.load(f)
|
tokenizer_json = json.load(f)
|
||||||
|
|
||||||
print("gguf: get gpt2 tokenizer vocab")
|
print("gguf: get gpt2 tokenizer vocab")
|
||||||
|
|
||||||
vocab_size = len(tokenizer_json["model"]["vocab"])
|
vocab_size = len(tokenizer_json["model"]["vocab"])
|
||||||
|
|
||||||
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
# ref: https://github.com/cmp-nct/ggllm.cpp/blob/master/falcon_convert.py
|
||||||
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
tokenizer = AutoTokenizer.from_pretrained(dir_model)
|
||||||
|
|
||||||
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
reverse_vocab = {id: encoded_tok for encoded_tok, id in tokenizer.vocab.items()}
|
||||||
byte_encoder = bytes_to_unicode()
|
byte_encoder = bytes_to_unicode()
|
||||||
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
byte_decoder = {v: k for k, v in byte_encoder.items()}
|
||||||
|
|
||||||
for i in range(vocab_size):
|
for i in range(vocab_size):
|
||||||
if i in reverse_vocab:
|
if i in reverse_vocab:
|
||||||
try:
|
try:
|
||||||
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
text = bytearray([byte_decoder[c] for c in reverse_vocab[i]])
|
||||||
|
@ -155,11 +161,11 @@ if Path(dir_model + "/tokenizer.json").is_file():
|
||||||
scores.append(0.0) # dymmy
|
scores.append(0.0) # dymmy
|
||||||
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
toktypes.append(gguf.TokenType.NORMAL) # dummy
|
||||||
|
|
||||||
gguf_writer.add_token_list(tokens)
|
gguf_writer.add_token_list(tokens)
|
||||||
gguf_writer.add_token_scores(scores)
|
gguf_writer.add_token_scores(scores)
|
||||||
gguf_writer.add_token_types(toktypes)
|
gguf_writer.add_token_types(toktypes)
|
||||||
|
|
||||||
special_vocab = gguf.SpecialVocab(Path(dir_model))
|
special_vocab = gguf.SpecialVocab(dir_model, load_merges = True)
|
||||||
special_vocab.add_to_gguf(gguf_writer)
|
special_vocab.add_to_gguf(gguf_writer)
|
||||||
|
|
||||||
# TENSORS
|
# TENSORS
|
||||||
|
@ -183,8 +189,10 @@ else:
|
||||||
)
|
)
|
||||||
|
|
||||||
for part_name in part_names:
|
for part_name in part_names:
|
||||||
|
if args.vocab_only:
|
||||||
|
break
|
||||||
print("gguf: loading model part '" + part_name + "'")
|
print("gguf: loading model part '" + part_name + "'")
|
||||||
model_part = torch.load(f"{dir_model}/{part_name}", map_location="cpu")
|
model_part = torch.load(dir_model / part_name, map_location="cpu")
|
||||||
|
|
||||||
for name in model_part.keys():
|
for name in model_part.keys():
|
||||||
data = model_part[name]
|
data = model_part[name]
|
||||||
|
@ -244,10 +252,11 @@ print("gguf: write header")
|
||||||
gguf_writer.write_header_to_file()
|
gguf_writer.write_header_to_file()
|
||||||
print("gguf: write metadata")
|
print("gguf: write metadata")
|
||||||
gguf_writer.write_kv_data_to_file()
|
gguf_writer.write_kv_data_to_file()
|
||||||
print("gguf: write tensors")
|
if not args.vocab_only:
|
||||||
gguf_writer.write_tensors_to_file()
|
print("gguf: write tensors")
|
||||||
|
gguf_writer.write_tensors_to_file()
|
||||||
|
|
||||||
gguf_writer.close()
|
gguf_writer.close()
|
||||||
|
|
||||||
print("gguf: model successfully exported to '" + fname_out + "'")
|
print(f"gguf: model successfully exported to '{fname_out}'")
|
||||||
print("")
|
print("")
|
||||||
|
|
Loading…
Add table
Add a link
Reference in a new issue