model: convert-hf-to-gguf.py add _set_vocab_tiktoken gpt2 backed on llama.cpp

This commit is contained in:
Pierrick HYMBERT 2024-04-07 12:15:16 +02:00
parent dccb012637
commit 61be4b91a6

View file

@ -390,6 +390,51 @@ class Model(ABC):
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
special_vocab.add_to_gguf(self.gguf_writer) special_vocab.add_to_gguf(self.gguf_writer)
def _set_vocab_tiktoken(self):
# https://github.com/openai/tiktoken
dir_model = self.dir_model
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = tokenizer.vocab_size
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.get_vocab().items()}
added_vocab = tokenizer.get_added_vocab()
merges = []
# FIXME REVIEW should we extract this from QwenModel to base Model class ?
mergeable_ranks = tokenizer.encoding._mergeable_ranks
for token, rank in mergeable_ranks.items():
reverse_vocab[QwenModel.token_bytes_to_string(token)] = rank
if len(token) == 1:
continue
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
assert len(merged) == 2
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
for i in range(vocab_size):
if reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
# FIXME REVIEW should we introduce tiktoken in llama.cpp ?
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
special_vocab.merges = merges
# FIXME REVIEW how to add special tokens https://huggingface.co/databricks/dbrx-instruct/blob/main/tiktoken.py#L193
special_vocab.add_to_gguf(self.gguf_writer)
@Model.register("GPTNeoXForCausalLM") @Model.register("GPTNeoXForCausalLM")
class GPTNeoXModel(Model): class GPTNeoXModel(Model):
@ -1445,42 +1490,8 @@ class Qwen2MoeModel(Model):
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"]) self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"]) self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
def _set_vocab_gpt2(self): def set_vocab(self):
dir_model = self.dir_model self._set_vocab_tiktoken()
tokens: list[str] = []
toktypes: list[int] = []
from transformers import AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
vocab_size = tokenizer.vocab_size
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.get_vocab().items()}
added_vocab = tokenizer.get_added_vocab()
self.gguf_writer.add_chat_template(tokenizer.default_chat_template)
# REVIEW: Not tested yet, need to deep dive this tiktoken
for i in range(vocab_size):
if i not in reverse_vocab:
tokens.append(f"[PAD{i}]")
toktypes.append(gguf.TokenType.USER_DEFINED)
elif reverse_vocab[i] in added_vocab:
tokens.append(reverse_vocab[i])
if tokenizer.added_tokens_decoder[i].special:
toktypes.append(gguf.TokenType.CONTROL)
else:
toktypes.append(gguf.TokenType.USER_DEFINED)
else:
tokens.append(reverse_vocab[i])
toktypes.append(gguf.TokenType.NORMAL)
self.gguf_writer.add_tokenizer_model("gpt2")
self.gguf_writer.add_token_list(tokens)
self.gguf_writer.add_token_types(toktypes)
special_vocab = gguf.SpecialVocab(dir_model) # FIXME https://huggingface.co/databricks/dbrx-instruct/blob/main/tokenizer_config.json
special_vocab.merges = []
special_vocab.add_to_gguf(self.gguf_writer)
@Model.register("MiniCPMForCausalLM") @Model.register("MiniCPMForCausalLM")