model: convert-hf-to-gguf.py add _set_vocab_tiktoken gpt2 backed on llama.cpp
This commit is contained in:
parent
dccb012637
commit
61be4b91a6
1 changed files with 47 additions and 36 deletions
|
@ -390,6 +390,51 @@ class Model(ABC):
|
|||
special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens))
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
def _set_vocab_tiktoken(self):
|
||||
# https://github.com/openai/tiktoken
|
||||
dir_model = self.dir_model
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||||
|
||||
vocab_size = tokenizer.vocab_size
|
||||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.get_vocab().items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
merges = []
|
||||
|
||||
# FIXME REVIEW should we extract this from QwenModel to base Model class ?
|
||||
mergeable_ranks = tokenizer.encoding._mergeable_ranks
|
||||
for token, rank in mergeable_ranks.items():
|
||||
reverse_vocab[QwenModel.token_bytes_to_string(token)] = rank
|
||||
if len(token) == 1:
|
||||
continue
|
||||
merged = QwenModel.bpe(mergeable_ranks, token, max_rank=rank)
|
||||
assert len(merged) == 2
|
||||
merges.append(' '.join(map(QwenModel.token_bytes_to_string, merged)))
|
||||
|
||||
for i in range(vocab_size):
|
||||
if reverse_vocab[i] in added_vocab:
|
||||
tokens.append(reverse_vocab[i])
|
||||
if tokenizer.added_tokens_decoder[i].special:
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
else:
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
# FIXME REVIEW should we introduce tiktoken in llama.cpp ?
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model, load_merges=False)
|
||||
special_vocab.merges = merges
|
||||
# FIXME REVIEW how to add special tokens https://huggingface.co/databricks/dbrx-instruct/blob/main/tiktoken.py#L193
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
|
||||
|
||||
@Model.register("GPTNeoXForCausalLM")
|
||||
class GPTNeoXModel(Model):
|
||||
|
@ -1445,42 +1490,8 @@ class Qwen2MoeModel(Model):
|
|||
self.gguf_writer.add_expert_count(ffn_config["moe_num_experts"])
|
||||
self.gguf_writer.add_expert_used_count(ffn_config["moe_top_k"])
|
||||
|
||||
def _set_vocab_gpt2(self):
|
||||
dir_model = self.dir_model
|
||||
tokens: list[str] = []
|
||||
toktypes: list[int] = []
|
||||
|
||||
from transformers import AutoTokenizer
|
||||
tokenizer = AutoTokenizer.from_pretrained(dir_model, trust_remote_code=True)
|
||||
vocab_size = tokenizer.vocab_size
|
||||
|
||||
reverse_vocab = {id_: encoded_tok for encoded_tok, id_ in tokenizer.get_vocab().items()}
|
||||
added_vocab = tokenizer.get_added_vocab()
|
||||
|
||||
self.gguf_writer.add_chat_template(tokenizer.default_chat_template)
|
||||
|
||||
# REVIEW: Not tested yet, need to deep dive this tiktoken
|
||||
for i in range(vocab_size):
|
||||
if i not in reverse_vocab:
|
||||
tokens.append(f"[PAD{i}]")
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
elif reverse_vocab[i] in added_vocab:
|
||||
tokens.append(reverse_vocab[i])
|
||||
if tokenizer.added_tokens_decoder[i].special:
|
||||
toktypes.append(gguf.TokenType.CONTROL)
|
||||
else:
|
||||
toktypes.append(gguf.TokenType.USER_DEFINED)
|
||||
else:
|
||||
tokens.append(reverse_vocab[i])
|
||||
toktypes.append(gguf.TokenType.NORMAL)
|
||||
|
||||
self.gguf_writer.add_tokenizer_model("gpt2")
|
||||
self.gguf_writer.add_token_list(tokens)
|
||||
self.gguf_writer.add_token_types(toktypes)
|
||||
|
||||
special_vocab = gguf.SpecialVocab(dir_model) # FIXME https://huggingface.co/databricks/dbrx-instruct/blob/main/tokenizer_config.json
|
||||
special_vocab.merges = []
|
||||
special_vocab.add_to_gguf(self.gguf_writer)
|
||||
def set_vocab(self):
|
||||
self._set_vocab_tiktoken()
|
||||
|
||||
|
||||
@Model.register("MiniCPMForCausalLM")
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue