diff --git a/convert-hf-to-gguf.py b/convert-hf-to-gguf.py index 7808384ff..5aa9670be 100755 --- a/convert-hf-to-gguf.py +++ b/convert-hf-to-gguf.py @@ -2079,6 +2079,8 @@ class GemmaModel(Model): self.gguf_writer.add_file_type(self.ftype) def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: + del bid # unused + # lm_head is not used in llama.cpp, while autoawq will include this tensor in model # To prevent errors, skip loading lm_head.weight. if name == "lm_head.weight": @@ -2089,7 +2091,7 @@ class GemmaModel(Model): if name.endswith("norm.weight"): data_torch = data_torch + 1 - return super().modify_tensors(data_torch, name, bid) + return [(self.map_tensor_name(name), data_torch)] @Model.register("Starcoder2ForCausalLM") @@ -2277,7 +2279,7 @@ class LazyTorchTensor: @staticmethod def _recurse_apply(o: Any, fn: Callable[[Any], Any]) -> Any: - # TODO: dicts + # TODO: dict and set if isinstance(o, (list, tuple)): L = [] for item in o: @@ -2379,7 +2381,7 @@ class LazyTorchTensor: def __add__(self, *args): # gemma return self._wrap_fn(torch.Tensor.__add__)(self, *args) - def __getitem__(self, *args): # bloom falcon internlm2 + def __getitem__(self, *args): # bloom falcon refact internlm2 return self._wrap_fn(torch.Tensor.__getitem__)(self, *args)