common : reimplement logging (#9418)

https://github.com/ggerganov/llama.cpp/pull/9418
This commit is contained in:
Georgi Gerganov 2024-09-15 20:46:12 +03:00 committed by GitHub
parent e6deac31f7
commit 6262d13e0b
No known key found for this signature in database
GPG key ID: B5690EEEBB952194
54 changed files with 2092 additions and 2419 deletions

View file

@ -5,13 +5,12 @@
#include "llama.h"
#include "ggml.h"
#include <cmath>
#include <cstdint>
#include <cstdio>
#include <cinttypes>
#include <fstream>
#include <string>
#include <vector>
#include <unordered_map>
int main(int argc, char ** argv){
gpt_params params;
@ -20,6 +19,8 @@ int main(int argc, char ** argv){
return 1;
}
gpt_init();
const int n_draft = params.n_draft;
// init llama.cpp
@ -49,7 +50,7 @@ int main(int argc, char ** argv){
try {
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
} catch (std::ifstream::failure const &) {
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
exit(1);
}
}
@ -128,7 +129,7 @@ int main(int argc, char ** argv){
const int64_t eta_min = eta_ms / (60*1000);
const int64_t eta_s = (eta_ms - 60*1000*eta_min) / 1000;
LOG_TEE("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
LOG_INF("lookup-stats: %d/%d done, ETA: %02" PRId64 ":%02" PRId64 "\n", i_start, n_input, eta_min, eta_s);
}
// After each chunk, update the dynamic ngram cache with the context ngram cache:
@ -136,24 +137,24 @@ int main(int argc, char ** argv){
ngram_cache_context.clear();
}
LOG_TEE("\n");
LOG("\n");
LOG_TEE("\n");
LOG_TEE("n_draft = %d\n", n_draft);
LOG_TEE("n_predict = %d\n", n_input - n_input % n_ctx);
LOG_TEE("n_drafted = %d\n", n_drafted);
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
LOG_INF("\n");
LOG_INF("n_draft = %d\n", n_draft);
LOG_INF("n_predict = %d\n", n_input - n_input % n_ctx);
LOG_INF("n_drafted = %d\n", n_drafted);
LOG_INF("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
LOG_INF("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_INF("n_accept = %d\n", n_accept);
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
llama_free(ctx);
llama_free_model(model);
llama_backend_free();
fprintf(stderr, "\n\n");
LOG("\n\n");
return 0;
}

View file

@ -3,6 +3,7 @@
#include "common.h"
#include "ngram-cache.h"
#include "sampling.h"
#include "log.h"
#include "llama.h"
#include <cstdint>
@ -18,17 +19,13 @@ int main(int argc, char ** argv){
return 1;
}
gpt_init();
// max. number of additional tokens to draft if match is found
const int n_draft = params.n_draft;
const bool dump_kv_cache = params.dump_kv_cache;
#ifndef LOG_DISABLE_LOGS
log_set_target(log_filename_generator("lookup", "log"));
LOG_TEE("Log start\n");
log_dump_cmdline(argc, argv);
#endif // LOG_DISABLE_LOGS
// init llama.cpp
llama_backend_init();
llama_numa_init(params.numa);
@ -58,7 +55,7 @@ int main(int argc, char ** argv){
try {
ngram_cache_static = llama_ngram_cache_load(params.lookup_cache_static);
} catch (std::ifstream::failure const &) {
fprintf(stderr, "error: failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
LOG_ERR("failed to open static lookup cache: %s", params.lookup_cache_static.c_str());
exit(1);
}
}
@ -76,14 +73,14 @@ int main(int argc, char ** argv){
const int max_tokens_list_size = max_context_size - 4;
if ((int) inp.size() > max_tokens_list_size) {
fprintf(stderr, "%s: error: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
LOG_ERR("%s: prompt too long (%d tokens, max %d)\n", __func__, (int) inp.size(), max_tokens_list_size);
return 1;
}
fprintf(stderr, "\n\n");
LOG("\n\n");
for (auto id : inp) {
fprintf(stderr, "%s", llama_token_to_piece(ctx, id).c_str());
LOG("%s", llama_token_to_piece(ctx, id).c_str());
}
fflush(stderr);
@ -124,7 +121,7 @@ int main(int argc, char ** argv){
}
// print current draft sequence
LOG("drafted %s\n", LOG_TOKENS_TOSTR_PRETTY(ctx, draft).c_str());
LOG_DBG("drafted %s\n", string_from(ctx, draft).c_str());
int i_dft = 0;
while (true) {
@ -136,7 +133,7 @@ int main(int argc, char ** argv){
const std::string token_str = llama_token_to_piece(ctx, id);
if (!params.use_color) {
printf("%s", token_str.c_str());
LOG("%s", token_str.c_str());
}
if (llama_token_is_eog(model, id)) {
@ -147,7 +144,7 @@ int main(int argc, char ** argv){
// check if the target token matches the draft
if (i_dft < (int) draft.size() && id == draft[i_dft]) {
LOG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
LOG_DBG("the sampled target token matches the %dth drafted token (%d, '%s') - accepted\n", i_dft, id, token_str.c_str());
++n_accept;
++n_past;
++i_dft;
@ -161,19 +158,19 @@ int main(int argc, char ** argv){
if (params.use_color) {
// color accepted draft token
printf("\033[34m%s\033[0m", token_str.c_str());
LOG("\033[34m%s\033[0m", token_str.c_str());
fflush(stdout);
}
continue;
}
if (params.use_color) {
printf("%s", token_str.c_str());
LOG("%s", token_str.c_str());
}
fflush(stdout);
LOG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
LOG_DBG("the sampled target token (%d, '%s') did not match, or we ran out of drafted tokens\n", id, token_str.c_str());
draft.clear();
draft.push_back(id);
@ -224,22 +221,22 @@ int main(int argc, char ** argv){
llama_ngram_cache_merge(ngram_cache_dynamic, ngram_cache_context);
llama_ngram_cache_save(ngram_cache_dynamic, params.lookup_cache_dynamic);
LOG_TEE("\n\n");
LOG("\n\n");
LOG_TEE("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_TEE("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_INF("encoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_input, (t_enc_end - t_enc_start) / 1e6f, inp.size() / ((t_enc_end - t_enc_start) / 1e6f));
LOG_INF("decoded %4d tokens in %8.3f seconds, speed: %8.3f t/s\n", n_predict, (t_dec_end - t_dec_start) / 1e6f, n_predict / ((t_dec_end - t_dec_start) / 1e6f));
LOG_TEE("\n");
LOG_TEE("n_draft = %d\n", n_draft);
LOG_TEE("n_predict = %d\n", n_predict);
LOG_TEE("n_drafted = %d\n", n_drafted);
LOG_TEE("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
LOG_TEE("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
LOG_INF("\n");
LOG_INF("n_draft = %d\n", n_draft);
LOG_INF("n_predict = %d\n", n_predict);
LOG_INF("n_drafted = %d\n", n_drafted);
LOG_INF("t_draft_flat = %.2f ms\n", t_draft_flat_us*1e-3);
LOG_INF("t_draft = %.2f ms, %.2f us per token, %.2f tokens per second\n",
t_draft_us*1e-3, 1.0f*t_draft_us/n_drafted, n_drafted/(1e-6*t_draft_us));
LOG_TEE("n_accept = %d\n", n_accept);
LOG_TEE("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_INF("n_accept = %d\n", n_accept);
LOG_INF("accept = %.3f%%\n", 100.0f * n_accept / n_drafted);
LOG_TEE("\ntarget:\n\n");
LOG_INF("\ntarget:\n\n");
gpt_perf_print(ctx, smpl);
gpt_sampler_free(smpl);
@ -251,7 +248,7 @@ int main(int argc, char ** argv){
llama_backend_free();
fprintf(stderr, "\n\n");
LOG("\n\n");
return 0;
}