cuda : support non-contiguous src1 in get_rows

This commit is contained in:
slaren 2023-12-09 22:39:34 +01:00
parent 2e4db48291
commit 62b95f93d0
3 changed files with 141 additions and 78 deletions

View file

@ -1686,31 +1686,39 @@ static __global__ void quantize_q8_1(const float * __restrict__ x, void * __rest
}
template<int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
static __global__ void k_get_rows(const void * x, const int32_t * y, dst_t * dst, const int ncols) {
const int col = (blockIdx.x*blockDim.x + threadIdx.x)*2;
const int row = blockDim.y*blockIdx.y + threadIdx.y;
static __global__ void k_get_rows(
const void * src0, const int32_t * src1, dst_t * dst,
int64_t ne00, /*int64_t ne01, int64_t ne02, int64_t ne03,*/
/*int64_t ne10, int64_t ne11,*/ int64_t ne12, /*int64_t ne13,*/
/*size_t s0,*/ size_t s1, size_t s2, size_t s3,
/*size_t nb00,*/ size_t nb01, size_t nb02, size_t nb03,
size_t s10, size_t s11, size_t s12/*, size_t s13*/) {
if (col >= ncols) {
const int i00 = (blockIdx.x*blockDim.x + threadIdx.x)*2;
const int i10 = blockDim.y*blockIdx.y + threadIdx.y;
const int i11 = (blockIdx.z*blockDim.z + threadIdx.z)/ne12;
const int i12 = (blockIdx.z*blockDim.z + threadIdx.z)%ne12;
if (i00 >= ne00) {
return;
}
const int r = y[row];
const int i01 = src1[i10*s10 + i11*s11 + i12*s12];
// copy x[r*ncols + col] to dst[row*ncols + col]
const int xi = r*ncols + col;
const int di = row*ncols + col;
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
const void * src0_row = (const char *)src0 + i01*nb01 + i11*nb02 + i12*nb03;
const int ib = xi/qk; // block index
const int iqs = (xi%qk)/qr; // quant index
const int iybs = di - di%qk; // y block start index
const int ib = i00/qk; // block index
const int iqs = (i00%qk)/qr; // quant index
const int iybs = i00 - i00%qk; // dst block start index
const int y_offset = qr == 1 ? 1 : qk/2;
// dequantize
dfloat2 v;
dequantize_kernel(x, ib, iqs, v);
dequantize_kernel(src0_row, ib, iqs, v);
dst[iybs + iqs + 0] = v.x;
dst[iybs + iqs + y_offset] = v.y;
dst_row[iybs + iqs + 0] = v.x;
dst_row[iybs + iqs + y_offset] = v.y;
}
template <int qk, int qr, dequantize_kernel_t dequantize_kernel, typename dst_t>
@ -5055,11 +5063,35 @@ static __global__ void im2col_f32_f16(
}
template<int qk, int qr, dequantize_kernel_t dq>
static void get_rows_cuda(const void * x, const int32_t * y, float * dst, const int nrows, const int ncols, cudaStream_t stream) {
static void get_rows_cuda(const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
GGML_TENSOR_BINARY_OP_LOCALS
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
const int block_num_x = (ncols + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
const dim3 block_nums(block_num_x, nrows, 1);
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(x, y, dst, ncols);
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
// strides in elements
//const size_t s0 = nb0 / ggml_element_size(dst);
const size_t s1 = nb1 / ggml_element_size(dst);
const size_t s2 = nb2 / ggml_element_size(dst);
const size_t s3 = nb3 / ggml_element_size(dst);
const size_t s10 = nb10 / ggml_element_size(src1);
const size_t s11 = nb11 / ggml_element_size(src1);
const size_t s12 = nb12 / ggml_element_size(src1);
//const size_t s13 = nb13 / ggml_element_size(src1);
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
src0_dd, src1_dd, dst_dd,
ne00, /*ne01, ne02, ne03,*/
/*ne10, ne11,*/ ne12, /*ne13,*/
/* s0,*/ s1, s2, s3,
/* nb00,*/ nb01, nb02, nb03,
s10, s11, s12/*, s13*/);
(void) dst;
}
template<float (*bin_op)(const float, const float)>
@ -5071,7 +5103,6 @@ struct bin_bcast_cuda {
GGML_TENSOR_BINARY_OP_LOCALS
int nr0 = ne10/ne0;
int nr1 = ne11/ne1;
int nr2 = ne12/ne2;
@ -5119,26 +5150,28 @@ struct bin_bcast_cuda {
int64_t ne12 = cne1[2];
int64_t ne13 = cne1[3];
//size_t nb0 = cnb0[0];
size_t nb0 = cnb0[0];
size_t nb1 = cnb0[1];
size_t nb2 = cnb0[2];
size_t nb3 = cnb0[3];
//size_t nb10 = cnb1[0];
size_t nb10 = cnb1[0];
size_t nb11 = cnb1[1];
size_t nb12 = cnb1[2];
size_t nb13 = cnb1[3];
//size_t s0 = nb0 / sizeof(src1_t);
size_t s0 = nb0 / sizeof(src1_t);
size_t s1 = nb1 / sizeof(src1_t);
size_t s2 = nb2 / sizeof(src1_t);
size_t s3 = nb3 / sizeof(src1_t);
//size_t s10 = nb10 / sizeof(src1_t);
size_t s10 = nb10 / sizeof(src1_t);
size_t s11 = nb11 / sizeof(src1_t);
size_t s12 = nb12 / sizeof(src1_t);
size_t s13 = nb13 / sizeof(src1_t);
GGML_ASSERT(s0 == 1);
GGML_ASSERT(s10 == 1);
const int block_size = 128;
@ -6449,36 +6482,34 @@ static void ggml_cuda_op_get_rows(
GGML_ASSERT(src1->type == GGML_TYPE_I32);
GGML_ASSERT(dst->type == GGML_TYPE_F32);
GGML_ASSERT(ggml_is_contiguous(src0));
GGML_ASSERT(ggml_is_contiguous(src1));
GGML_ASSERT(ggml_is_contiguous(dst));
const int ncols = src0->ne[0];
const int nrows = ggml_nelements(src1);
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
const int32_t * src1_i32 = (const int32_t *) src1_d;
switch (src0->type) {
case GGML_TYPE_F16:
get_rows_cuda<1, 1, convert_f16>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
get_rows_cuda<1, 1, convert_f16>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_F32:
get_rows_cuda<1, 1, convert_f32>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
get_rows_cuda<1, 1, convert_f32>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_Q4_0:
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_Q4_1:
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_Q5_0:
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_Q5_1:
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
case GGML_TYPE_Q8_0:
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0_d, src1_i32, dst_d, nrows, ncols, stream);
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_i32, dst_d, stream);
break;
default:
// TODO: k-quants
@ -8286,11 +8317,8 @@ static void ggml_cuda_mul_mat_id(const ggml_tensor * src0, const ggml_tensor * s
const struct ggml_tensor * src0_row = dst->src[row_id + 2];
if (src1->backend == GGML_BACKEND_GPU) {
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
} else {
src1_row.data = (char *) src1->data + i01*src1->nb[1];
}
src1_row_extra.data_device[g_main_device] = (char *) src1_extra->data_device[g_main_device] + i01*src1->nb[1];
src1_row.data = (char *) src1->data + i01*src1->nb[1];
dst_row_extra.data_device[g_main_device] = (char *) dst_extra->data_device[g_main_device] + i01*dst->nb[1];
@ -8707,9 +8735,7 @@ bool ggml_cuda_compute_forward(struct ggml_compute_params * params, struct ggml_
func = ggml_cuda_repeat;
break;
case GGML_OP_GET_ROWS:
if (ggml_is_contiguous(tensor->src[1])) {
func = ggml_cuda_get_rows;
}
func = ggml_cuda_get_rows;
break;
case GGML_OP_DUP:
func = ggml_cuda_dup;
@ -9215,6 +9241,21 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
}
return true;
} break;
case GGML_OP_GET_ROWS:
{
switch (op->src[0]->type) {
case GGML_TYPE_F16:
case GGML_TYPE_F32:
case GGML_TYPE_Q4_0:
case GGML_TYPE_Q4_1:
case GGML_TYPE_Q5_0:
case GGML_TYPE_Q5_1:
case GGML_TYPE_Q8_0:
return true;
default:
return false;
}
} break;
case GGML_OP_NONE:
case GGML_OP_RESHAPE:
case GGML_OP_VIEW:
@ -9222,7 +9263,6 @@ static bool ggml_backend_cuda_supports_op(ggml_backend_t backend, const ggml_ten
case GGML_OP_TRANSPOSE:
case GGML_OP_NORM:
case GGML_OP_REPEAT:
case GGML_OP_GET_ROWS:
case GGML_OP_DUP:
case GGML_OP_ADD:
case GGML_OP_MUL:
@ -9298,7 +9338,9 @@ static ggml_backend_t ggml_backend_reg_cuda_init(const char * params, void * use
UNUSED(params);
}
extern "C" int ggml_backend_cuda_reg_devices() {
extern "C" int ggml_backend_cuda_reg_devices();
int ggml_backend_cuda_reg_devices() {
int device_count = ggml_cuda_get_device_count();
//int device_count = 1; // DEBUG: some tools require delaying CUDA initialization
for (int i = 0; i < device_count; i++) {